Oklahoma Academic Standards for Science

Content Framework

Kindergarten
PROJECT MANAGERS

Lance Gibbs
Science Director
Lawton Public Schools

Megan Veldhuizen
Science Specialist
Lawton Public Schools

K-5 CONTRIBUTORS

Megan Cannon
Teacher
Sapulpa Public Schools

Mandi Cloud
Teacher
Sand Springs Public Schools

Elizabeth Beck
Teacher
Edmond Public Schools

Georgia Smith
Teacher
BRISTOW PUBLIC SCHOOLS

Susan Wray
Teacher
OAKDALE PUBLIC SCHOOLS

CONTRIBUTING SCHOOL DISTRICT

Lawton Public Schools
LAWTON, OK
The Oklahoma Academic Standards for Science describe the specific areas of student learning that are considered the most important for proficiency in the discipline at a particular grade level and provide a basis for the development of local curricula and statewide assessments. The Oklahoma Academic Standards were informed by A Framework for K-12 Science Education (National Research Council, 2012), Benchmarks for Science Literacy (American Association for the Advancement of Science, 1993), The Next Generation Science Standards (2013), and the Oklahoma Priority Academic Students Skills for Science (Oklahoma State Department of Education, 2011).

Three Dimensions of Science Instruction
The Oklahoma Academic Standards for Science are designed to address the rich and complex nature of science learning: the processes of thinking about, analyzing, and using science and engineering information, the fundamental concepts that are relevant to all subject areas, and the content that is unique to individual subject areas.

In the standards, three dimensions are referred to as:

1. Science and Engineering Practices: They represent the major practices that scientists and engineers use, practices that require both skill and knowledge.
2. Disciplinary Core Ideas: There are three major domains; Physical Science, Life Science, and Earth and Space Science.
3. Crosscutting Concepts: These connect ideas across all science disciplines. This is how Scientists and Engineers think.

When students have learning experiences that include each dimension in the context of the others, they are able to fully develop the skills and understandings associated with real science.
THREE DIMENSIONAL LEARNING

DIMENSION 1: SCIENCE AND ENGINEERING PRACTICES

Dimension 1 describes (1) the major practices that scientists employ as they investigate and build models and theories about the world, (2) a key set of engineering practices that engineers use as they design and build systems. Here, we use the term “practices” in place of “skills” to emphasize that engaging in scientific investigation requires both skill and knowledge that is specific to each practice. (NRC, A Framework for K-12 Science Education, 2012)

DIMENSION 2: DISCIPLINARY CORE IDEAS

The continuing expansion of scientific knowledge makes it impossible to teach all the ideas related to a given discipline in explicit detail during the K-12 years. We need to ensure we are preparing our students with sufficient core knowledge so that they can later continue to acquire additional information on their own. An education focused on a limited set of ideas and practices in science and engineering should enable students to evaluate and select reliable sources of scientific information, and allow them to continue their development well beyond their K-12 school years as science learners, users of scientific knowledge, and perhaps also as producers of such knowledge. (NRC, A Framework for K-12 Science Education, 2012)

DIMENSION 3: CROSSCUTTING CONCEPTS

Crosscutting concepts provide a connective structure that supports students’ understanding of science as disciplines and that facilitates students’ comprehension of the phenomena under study in particular disciplines. The crosscutting concepts also aid in students organizational framework for connecting knowledge from various disciplines into a coherent and scientifically-based view of the world. Explicit reference to the concepts, as well as their emergence in multiple disciplinary contexts, can help students develop a cumulative, coherent, and usable understanding of science and engineering. (NRC, A Framework for K-12 Science Education, 2012)
Table of Contents

1. Science and Engineering Practices
2. 5E Model Chart
3. Making Cross Curricular Connections
4. Domain Comparison Chart
5. Scope and Sequence
6. Instructional Framework
Science and Engineering Practices

The Science and Engineering Practices describe the major practices that scientists employ as they investigate and build models and theories about the world and a key set of engineering practices that engineers use as they design and build systems. The term “practice” is used instead of the term “process” to emphasize that scientists and engineers use skill and knowledge simultaneously, not in isolation. The eight science and engineering practices are:

1. Ask questions and define problems
2. Develop and use models
3. Plan and conduct investigations
4. Analyze and interpret data
5. Use mathematical and computational thinking
6. Construct explanations and design solutions
7. Engage in scientific argument from evidence
8. Obtain, evaluate, and communicate information

Each Performance expectation integrates one of the above Science and Engineering Practices with a Disciplinary Core Idea in Science. The integration of Science and Engineering Practices with science content represents a shift from previous science standards in Oklahoma, giving the learning context and allowing students to utilize scientific reasoning and critical thinking to develop their understanding of science.

From the Oklahoma State Department of Education Science Standard Document
The Engineering Design Process is a simple process that is easy for students to use and understand. This process can be started at any point, move back and forth between steps, or repeat the cycle. Students are engaged in different activities at each point. Here is an overview of each step:

ASK: What is the problem?

RESEARCH: How have others approached it? What are your constraints?

IMAGINE: What are some solutions? Brainstorm ideas. Choose the best one.

PLAN: Draw a diagram. Make lists of materials you will need.

CREATE: Follow your plan and create something.

TEST: Test it out! Try out the design solution and see if it works.

IMPROVE: What works? What doesn’t? What could work better? Modify your design to make it better. Test it out!

The 5E Model is an instructional model based on the constructivist model, which states that learners construct or build new ideas off of those they previously had. Each of the 5Es describes a phase of learning and can be used with any age student, including adults. The BSCS 5E Instructional Model lets you think about an integrated instructional unit. The lesson is your basic unit of instruction, but with the new Oklahoma Academic Standards for Science, the 5E Model allows you to translate your lessons into classroom instruction with a sequence of integrated instructional activities.

Figure 4.1. Purposes of the Phases in the BSCS 5E Instructional Model

<table>
<thead>
<tr>
<th>ENGAGE</th>
<th>EXPLORE</th>
<th>EXPLAIN</th>
<th>ELABORATE</th>
<th>EVALUATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Create interest and stimulate curiosity.</td>
<td>• Provide experience of the phenomenon.</td>
<td>• Introduce concepts and practices that can be used to interpret data and construct explanations.</td>
<td>• Use and apply concepts and explanations in new contexts.</td>
<td>• Provide an opportunity for students to review and reflect on their understanding and skills.</td>
</tr>
<tr>
<td>• Provide a meaningful context for learning.</td>
<td>• Examine students’ questions to test their ideas.</td>
<td>• Construct multimodal explanations and justify claims in terms based on evidence.</td>
<td>• Reconstruct and extend explanations using different modes, such as written language, diagrammatic and graphic modes, and mathematics.</td>
<td>• Provide evidence for changes to students’ understanding, beliefs, and skills.</td>
</tr>
<tr>
<td>• Raise questions for inquiry and science practices.</td>
<td>• Investigate questions and problems.</td>
<td>• Compare different explanations generated by students.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Reveal students’ current ideas and beliefs.</td>
<td></td>
<td>• Review current scientific explanations.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Bybee, Rodger W., author. The BSCS 5E Instructional Model : Creating Teachable Moments. Arlington, Virginia :NSTA
Making Cross-Curricular Connections

Speaking and Listening
*Links to new ELA Standards coming soon

Math
*Links to new Math Standards coming soon

Literacy Connections

Unit 1 (Pushes and Pulls): Push and Pull by Hollie J Enders, Fast and slow by Sue Barracough, Move It!: Motion, Forces and You by Adrieree Mason, Push and Pull, Fast and Slow and Everyone Shouted “Pull!” by Darlene R. Stille, A First Look at Forces and Motion by Claire Llewellyn

Unit 2 (Structure and Function): Newton and Me (2010) by Lynne Mayer

Unit 3 (Weather): Watching the Seasons by Edana Eckart, The Shortest Day: Celebrating the Winter Solstice by Wendy Pfeffer and Jesse Reisch, Froggy Gets Dressed by Jonathan London and Frank Remkiewicz,

Unit 4 (Sunlight): The Sun is my Favorite Star by Frank Asch, Sun Up, Sun Down by Gail Gibbons, Sun and Moon by Marcus Pfister

Unit 5 (Plant and Animal Behaviors): The Tiny Seed by Eric Carle, What’s Alive by Kathleen Weidner Zoehfeld, Each Living Thing by Joanne Ryder, From Seed to Plant by Gail Gibbons, Little Gorilla by Ruth Borstein
The Oklahoma Academic Standards (OAS) for Science are divided into 3 Domains. These are Physical Science, Earth and Space Science, and Life Science. These Domains are then further divided into 11 Disciplinary Core Ideas (DCI) which progress throughout all grade levels. The chart below explains the vertical alignment of the Domains and DCIs for Kindergarten through Fifth Grade.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Earth And Space</th>
<th>Physical Science</th>
<th>Life Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCI</td>
<td>ESS1</td>
<td>ESS2</td>
<td>ESS3</td>
</tr>
<tr>
<td>Earth's Place in the Universe</td>
<td>Earth Systems</td>
<td>Earth and Human Activity</td>
<td>Matter and Its Interactions</td>
</tr>
<tr>
<td>Kindergarten</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>First Grade</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Second Grade</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Third Grade</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Fourth Grade</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Fifth Grade</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Month</td>
<td>District Unit</td>
<td>Domain</td>
<td>Disciplinary Core Idea</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>-------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>January</td>
<td>1</td>
<td>Physical Science</td>
<td>Pushes and Pulls</td>
</tr>
<tr>
<td>February</td>
<td>2</td>
<td>Physical Science</td>
<td>Structure and Function</td>
</tr>
<tr>
<td>March</td>
<td>3</td>
<td>Earth Science</td>
<td>Weather</td>
</tr>
<tr>
<td>March</td>
<td>4</td>
<td>Physical Science</td>
<td>Sunlight</td>
</tr>
<tr>
<td>April</td>
<td>5</td>
<td>Life Science</td>
<td>Plant and Animal</td>
</tr>
</tbody>
</table>
The Oklahoma State Department of Education is excited to announce the release of the first resources being offered through the Oklahoma Academic Standards Science Frameworks. The Science Frameworks represent curricular resources developed by Oklahoma teachers to help teachers translate standards into classroom practice. The Framework Overviews represent how a group of Oklahoma teachers, at a given grade level, might bundle performance expectations/standards found in the Oklahoma Academic Standards for Science. Bundling is how teachers would group performance expectations/standards for the purpose of developing instructional units of study.

Once bundled, the Science Framework writers were then charged with completing four categories of information that coincided with the bundle of performance expectations/standards. The categories provide insight into how the Science Framework writers collaborated to begin to translate standards into classroom instruction. The guidance provided in the categories does not represent a directive to teachers, schools or districts for classroom instruction and should not be viewed as such.

The Oklahoma State Department of Education would like to say a special thank you to the Oklahoma educators who participated in developing the Oklahoma Science Framework Overviews and to Quentin Biddy, the project director.

<table>
<thead>
<tr>
<th>Science Framework Writers</th>
<th>Solomon Bayouth</th>
<th>Megan Cannon</th>
<th>Wendy Howard</th>
<th>Jenny Thompson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elizabeth Beck</td>
<td>Mandi Cloud</td>
<td>Traci Richardson</td>
<td>Sarah Vann</td>
<td></td>
</tr>
<tr>
<td>Colleen Bennett</td>
<td>Benjamin Cottingham</td>
<td>Georgia Smith</td>
<td>Megan Veldhuizen</td>
<td></td>
</tr>
<tr>
<td>Rachel Brown</td>
<td>Jennifer Crabb</td>
<td>Stacey Stapleton</td>
<td>Tammy Will</td>
<td></td>
</tr>
<tr>
<td>Randi Butcher</td>
<td>Maria Harris</td>
<td>Amy Tankersley</td>
<td>Susan Wray</td>
<td></td>
</tr>
</tbody>
</table>

“The vision of the Overviews is to provide a resource for teachers that encourages them to embrace the new standards and implement them effectively in their classrooms. The suggestions provided by the frameworks project do not have to be implemented exactly as they are written and are not required to be a successful teacher, but serve as a guide to setting up effective lessons that will help students meet the necessary levels of success in a science classroom.” - Oklahoma Science Framework Project Writer

How To Read This Document

Below you will find short descriptions about each of the sections of information provided in this document. If you have questions regarding the Framework Overviews, please contact Tiffany Neill at 405-522-3524 or Tiffany.Neill@sde.ok.gov

Science Framework Overview: Sections

In Lay Terms

This section aims at providing a brief introduction to the goals outlined in the Performance Expectation Bundles/grouping of standards.

Three Dimensional Storyline

This section aims at providing a comprehensive instructional storyline of how the three dimensions represented in the Performance Expectation Bundles intertwine to support students engaging in science and engineering practices, crosscutting concepts and disciplinary core ideas. Keep in mind each performance expectation includes one science and engineering practice, one crosscutting concept and one disciplinary core idea. The color-coding in this section allows teachers to see where components of these three dimensions appear in the instructional storyline. To find out more about the three dimensions and how they are incorporated into the Oklahoma Academic Standards for Science, review pages 7-8 in the Oklahoma Academic Standards for Science or check out the OKSci PD on Your Plan Module series, Transitioning to the Oklahoma Academic Standards for Science.

Lesson Level Performance Expectations

This section aims at providing scaffolding three-dimensional learning targets that teachers can design instruction around to meet the end goals of the Performance Expectation(s) represented in the bundles or units of study. Keep in mind the performance expectations represent the things students should know, understand and be able to do to show proficiency at the end of instruction they participate in. A teacher can utilize the Lesson Level Performance Expectations in each bundle as a way to develop a series of instruction to meet the end goals of the performance expectations. For example, a teacher can develop or use a lesson, which may allow students to participate in instruction that covers some of the Lesson Level Performance Expectations, but not all. In this case the teacher would then develop or conduct another lesson that covers other Lesson Level Performance Expectations in the bundle.

Misconceptions

This section aims at providing research-based misconceptions that students frequently have related to the science concepts (disciplinary core ideas) embedded in the Performance Expectation Bundles along with matching correct conceptions.

2 Download the Oklahoma Academic Standards for Science at http://sde.ok.gov/sde/science.
3 Access the OKSci PD on Your Plan Modules at: https://www.evernote.com/l/AUXXIQC11VZDeLmUkOMPpjhKeJjqS-R8gww
Bundle: Pushes and Pulls

K-PS2-1
Students who demonstrate understanding can:
Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.

K-PS2-2
Students who demonstrate understanding can:
Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.*

In Lay Terms

Pushing and pulling an object will change how it moves. The direction and speed can be affected by the way it is pushed or pulled.

Three Dimensional Storyline

In this performance expectation bundle, students can **compare** the effects of pushes and pulls on an object’s motion, and then determine a way to change the object’s speed or direction. In order to **compare** how pushes and pulls have an **effect** on motion, students must first **observe** objects in motion (themselves, doors, fans, swings, etc.) They can record their findings using notes or by drawing pictures. These observations will raise questions such as, “Why do you have to push some objects harder to get them to move? How do you get objects to change the direction that they move?” Through investigations and classroom discussions, students at this grade can begin to formulate explanations for these questions.

From the earliest grades, students should have a variety of opportunities to **carry out investigations** that will help develop their ability to observe, measure, and analyze data from experiences they have while interacting with the world around them. This can occur through every-day experiences or through intentional small group investigations set up by the teacher.
By conducting small group investigations associated with pushes and pulls, students can recognize the **cause and effect** relationship between the strength of the push of an object and the distance it travels. Through **investigation and observation,** students will discover that pushes and pulls have different strengths and directions, and that by pushing or pulling on the object, they can change the object’s speed or direction. Using the information they observe, students can answer their initial questions and construct explanations for the observations they made.

During their **investigations,** students may naturally desire to design a structure or tool that will **change** the direction or speed of a moving object or stop it all together. In either case, students should be prompted to consider **how well the design works** to change the direction or speed of an object. Students should be prompted to use data to **support their claim** for how well the design worked as they intended.

Lesson level Performance Expectations

- Students can **observe** objects in motion.
• Students can communicate that pushing or pulling on an object can change its speed or direction, or can start or stop it.
• Students can make observations as objects collide.
• Students can communicate from observation that when objects collide, they push on one another and change motion.
• Students can communicate from observation that a bigger push or pull makes things speed up or slow down more quickly.
• Students can plan and carry out a simple investigation to solve a problem.
• Students can determine if something they design to push or pull an object makes it move the way they intended.
• Students can use data to determine how well a design works to change the speed or direction of a moving object.

<table>
<thead>
<tr>
<th>Misconceptions</th>
<th>Accurate Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Students may believe passive forces don’t exist.</td>
<td>1. Inert objects can apply force on objects.</td>
</tr>
<tr>
<td>2. Faster moving objects have a larger force</td>
<td>Force is also related to how big an object is, not just how fast it is moving.</td>
</tr>
<tr>
<td>acting on them.</td>
<td></td>
</tr>
</tbody>
</table>

References

- http://www.physics.montana.edu/phsed/misconceptions/forces/description.html#slownoforce

Bundle: Weather

K-ESS2-1
Students who demonstrate understanding can:
Use and share observations of local weather conditions to describe patterns over time.

K-ESS3-2
Students who demonstrate understanding can:
Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.

In Lay Terms

By making observations about what the weather is like, patterns in local weather can be observed. Making observations about local weather can lead to questions about weather forecasting and how it helps keep people safe.
Three Dimensional Storyline

Weather is a combination of sunlight, wind, rain, snow, and temperature. Students can observe changes in weather each day and as they experience different seasons.

Through these observations, students should be given opportunities to discuss their observations (sunny, cloudy, rainy, warm or cold) and be prompted to determine if there are patterns in their observations (e.g. Is the weather the same today as it was yesterday? Is the weather the same this month as is was last month?).

While making their observations students may naturally ask questions about why these patterns exist and they may have some ideas about reasons why this is happening. At this age the emphasis is not on a complete explanation for these patterns, but an attempt based on their observations of the patterns.

Observations about weather and weather patterns may also lead students to asking questions about who reports on the weather and why they do that? These questions provide an opportunity to help students gain information about weather forecasting and its ability to help people prepare for severe weather. Students can collect their own weather data in the classroom by keeping weather log books for a period of time. This allows students to track observable patterns.

Lesson Level Performance Expectations

- Students can gather evidence that weather is a combination of sunlight, wind, snow or rain, and temperature in a certain place.
- Students can construct explanations that describe changes in the weather they observe.
- Students can make observations about weather and describe patterns associated with weather over time.
- Students can raise questions from observations about severe weather and how weather scientists forecast severe weather so that they can protect communities.
- Students can communicate using evidence that certain kinds of severe weather are more likely than others in a given region.
- Students can communicate that we use technology to help with weather forecasting.
- Students can communicate that we use technology to alert people to serve weather.

Misconceptions

1. Clouds and rain are independent.

Accurate Concept

1. Clouds are necessary but not sufficient predictors of rain. The presence of clouds does not mean it will rain.

References

K-PS3-1
Students who demonstrate understanding can:
Make observations to determine the effect of sunlight on Earth’s surface.

K-PS3-2
Students who demonstrate understanding can:
Use tools and materials to design and build a structure that will reduce the warming effect of sunlight on an area.*

In Lay Terms

Through observations, students can see examples of sunlight heating different surfaces on Earth. Students then have opportunities to see how different materials can block the sun and reduce the warming of different surfaces.

Three Dimensional Storyline

In this performance expectation bundle, students are able to make observations of the sunlight’s impact on different surfaces on Earth and then think about materials for designing a structure that would reduce this impact. In making observations, students can begin to explain phenomena like, “Why the ground is cooler in the shade than in the sun?”

In order for students to make a claim that sunlight warms the surface of the Earth, students must first be given opportunities to observe sunlight on a variety of surfaces (sidewalk, grass, T-shirts, playground toys). Students can then begin to identify patterns that might suggest a cause and effect relationship between the light and the temperature of the surface of objects. At this age, the crosscutting concept of cause and effect has students examining and analyzing patterns found in everyday life, and beginning to consider what might be causing these patterns. In order to do this students should be given experiences through simple investigations that allow them to gather evidence to support or refute their ideas about causes and ultimately lead them to identifying the pattern, “sunlight warms the earth’s surfaces.”

With an understanding that sunlight warms the Earth’s surfaces, students can be given an opportunity to think about materials or structures, like umbrellas, that might reduce this warming effect. Students should be thinking about and/or discussing why they think a certain material or structure reduces the warming effect (i.e. It blocks the sun).

Lesson Level Performance Expectations

- Students can make observations to determine the effect of sunlight on Earth’s surface.
- Students can make observations of the sunlight’s impact on surfaces on Earth.
- Students can observe patterns for how the sunlight impacts surfaces on Earth.
• Students can communicate from observations that sunlight warms surfaces on Earth.
• Students can design a structure that will reduce the warming effect of sunlight on a surface.
• Students can use tools and materials to build a structure that will reduce the warming effect of sunlight on an area.*

<table>
<thead>
<tr>
<th>Misconceptions</th>
<th>Accurate Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The sun disappears at night.</td>
<td>1. The Earth is a sphere and rotates, as a result the sun only shines on one half of the Earth at any given time.</td>
</tr>
<tr>
<td>2. Snow and ice make it cold outside.</td>
<td>2. Decreased amounts of sunlight result in colder temperatures, snow and ice are a result of cold temperatures, not the cause.</td>
</tr>
<tr>
<td>3. Sunlight is helpful but not critical.</td>
<td>3. Sunlight is essential for plant survival and the source of nearly all the energy on our planet.</td>
</tr>
</tbody>
</table>

References

• http://k12s.phast.umass.edu/~nasa/misconceptions.html

| Bundle: Plant and Animal Behavior |

K-LS1-1
Students who demonstrate understanding can:

Use observations to describe patterns of what plants and animals (including humans) need to survive.

K-ESS2-2
Students who demonstrate understanding can:

Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs.

K-ESS3-1
Students who demonstrate understanding can:

Use a model to represent the relationship between the needs of different plants or animals (including humans) and the places they live.
In Lay Terms

Living things (plants, animals, and humans) help each other survive. Plants rely on animals and humans to spread seeds so more plants can be produced; animals need plants for nutrients to grow; and all living things need water, air, and sunlight to survive. They get these things from the places they live and in some cases they can change the places they live to meet their needs.

Three Dimensional Storyline

Animals (including humans) and plants are everywhere around us and students at this age should be given ample opportunities to observe plants and animals in their natural environments. These observation can lead students to ask questions like, “Why do some animals live in the ground and some live on plants? Why do plants die if we don’t water them? How do seeds move from where a plant is located to different spots in the ground? Why does the dirt where a plant is look different than the dirt where a plant isn’t located? Why are there holes in the dirt in my backyard or playground?”

When students ask questions, they can begin to utilize other observations to begin to formulate explanations. For example, students can observe that plants seem to grow where they have access to sunlight and water or animals live where they have access to water and food. Students can observe interactions among plants and animals like animals eating plants.

Students can observe impacts that humans have on the environments that plants and animals live in. For example, humans may build homes in places where animals live or plants grow or humans may eat plants and animals.

Using systems and system models students can better understand the relationship between plants and animals and the environments in which they live in. At this age, students can be prompted to think about the systems they may be examining (playground, pond, and aquarium) and all the parts in that system. Students can then begin to develop and use models to think about how the parts work together in that system. This line of thinking can assist students as they think about the interactions between plants and animals (including humans). Students can then draw sketches or use manipulatives to represent plants and animals in a system and how they interact to begin to answer questions they may have developed from their observations of plants and animals in their natural environments.

Lesson Level Performance Expectations

- Students can make observations of plants and animals in their environments.
- Students can communicate that animals need food to live and grow.
- Students can communicate that animals get their food from plants or other animals.
- Students can communicate that plants need water and light to live and grow.
- Students can develop a model to show that living things need water, air, and things from the land; and they live where these items they need are.
- Students can raise questions about plants and animals changing their environment.
- Students can use observational data to make claims that things people do to live can affect the world around them.
<table>
<thead>
<tr>
<th>Misconceptions</th>
<th>Accurate Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sunlight is helpful but not critical.</td>
<td>1. Sunlight is essential for plant survival.</td>
</tr>
<tr>
<td>2. Sunlight helps plants grow by keeping them warm.</td>
<td>2. Plants use sunlight to make food.</td>
</tr>
<tr>
<td>3. Soil provides a support structure and food for plants.</td>
<td>3. Some plants grow in soil-free environments. Plants take up water and minerals from soil, but not “food.”</td>
</tr>
<tr>
<td>4. Plants need things provided by people (water, nutrients, light)</td>
<td>While people often care for plants (especially those indoors), plants as a whole are not dependent on people for their needs.</td>
</tr>
</tbody>
</table>

References

Resource Guide

Teacher Resources
Video: [Peep in a Bind](#)
Video: [Sid the Science Kid- Ignatz’s Inertia](#)
Video: [Sid the Science Kid- Slide to the Side](#)
Video: [Sid the Science Kid- The Broken Wheel](#)
Video: [Sid the Science Kid- The Tree House](#)

Professional Development Resources
Lesson Plan: Let’s Use Force
Lesson Plan: Force: Pushes and Pulls

Student Resources
Ebook: [Wind: The Good, The Bad, and the Ugly](#)
Ebook: [Our Senses](#)
Virtual Manipulative: [Pushes and Pulls](#)

Vocabulary
- **Living:** a person or thing that is alive or active
- **Nonliving:** Dead or not alive
- **Mammal:** Warm-blooded animal that feeds their babies and usually has hair
- **Push:** The act of putting pressure on something to get an action
- **Pull:** To make something move towards something else by tugging or dragging
- **Speed:** A way to measure how quickly something is moving
- **Force:** Strength or power
- **Moon:** The celestial body that revolved around the Earth
- **Sun:** The star that is closest to the Earth
- **Day:** A 24-hour period of time or the period of light between sunrise and sunset
- **Star:** Any luminous celestial object seen as a point of light in the sky
- **Orbit:** To move around something in a circle
Vertical Alignment

Earth and Space Science-First Grade

<table>
<thead>
<tr>
<th>1-ESS1-1 Students who demonstrate understanding can:</th>
<th>1-ESS1-2 Students who demonstrate understanding can:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use observations of the sun, moon, and stars to describe patterns that can be predicted.</td>
<td>Make observations at different times of year to relate the amount of daylight and relative temperature to the time of year.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1-ESS3-1 Students who demonstrate understanding can:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.*</td>
<td></td>
</tr>
</tbody>
</table>

Physical Science-First Grade

<table>
<thead>
<tr>
<th>1-PS4-1 Students who demonstrate understanding can:</th>
<th>1-PS4-2 Students who demonstrate understanding can:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate.</td>
<td>Make observations to construct an evidence-based account that objects can be seen only when illuminated.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1-PS4-3 Students who demonstrate understanding can:</th>
<th>1-PS4-4 Students who demonstrate understanding can:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan and conduct an investigation to determine the effect of placing objects made with different materials in the path of a beam of light.</td>
<td>Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance.*</td>
</tr>
</tbody>
</table>

Life Science-First Grade

<table>
<thead>
<tr>
<th>1-LS1-1 Students who demonstrate understanding can:</th>
<th>1-LS1-2 Students who demonstrate understanding can:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.*</td>
<td>Read text and use media to determine patterns in behavior of parents and offspring that help offspring survive.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1-LS3-1 Students who demonstrate understanding can:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Make observations to construct an evidence-based account that young plants and animals are like, but not exactly alike, their parents.</td>
<td></td>
</tr>
</tbody>
</table>