

Teacher Edition: Planning and Pacing Guide

Grade K

Copyright © 2020 by Houghton Mifflin Harcourt Publishing Company

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying or recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner unless such copying is expressly permitted by federal copyright law. Requests for permission to make copies of any part of the work should be submitted through our Permissions website at <https://customercare.hmhco.com/contactus/Permissions.html> or mailed to Houghton Mifflin Harcourt Publishing Company, Attn: Intellectual Property Licensing, 9400 Southpark Center Loop, Orlando, Florida 32819-8647.

Common Core State Standards © Copyright 2010. National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved.

This product is not sponsored or endorsed by the Common Core State Standards Initiative of the National Governors Association Center for Best Practices and the Council of Chief State School Officers.

Printed in the U.S.A.

ISBN 978-0-358-11193-1

1 2 3 4 5 6 7 8 9 10 XXXX 27 26 25 24 23 22 21 20 19 18

4500000000 C D E F G

If you have received these materials as examination copies free of charge, Houghton Mifflin Harcourt Publishing Company retains title to the materials and they may not be resold. Resale of examination copies is strictly prohibited.

Possession of this publication in print format does not entitle users to convert this publication, or any portion of it, into electronic format.

Advocates for Excellence

To develop *Into Math*, we listened to teachers like you, who told us about their unique classroom challenges. Thanks to their voices, *Into Math* is more than just aligned to standards; it was built specifically to help you and your students succeed in the classroom and on high-stakes assessments.

Into Math was developed by a team of esteemed researchers and practitioners. These leaders work tirelessly to evolve instructional practices and advocate for clearer, more holistic, flexible, and active methodology in the classroom.

Edward B. Burger, PhD, is a mathematician who is also the president of Southwestern University in Georgetown, Texas. He is a former Francis Christopher Oakley Third Century Professor of Mathematics at Williams College, and a former vice provost at Baylor University. He has authored or coauthored numerous articles, books, and video series; delivered many addresses and workshops throughout the world; and made many radio and television appearances. He has earned many national honors, including the Robert Foster Cherry Award for Great Teaching. In 2013, he was inducted as one of the first fellows of the American Mathematical Society.



Juli K. Dixon, PhD, is a professor of mathematics education at the University of Central Florida (UCF). She has taught mathematics in urban schools at the elementary, middle, secondary, and post-secondary levels. She is a prolific writer who has published books, textbooks, book chapters, and articles. A sought-after speaker, Dr. Dixon has delivered keynotes and other presentations throughout the United States. Key areas of focus are deepening teachers' content knowledge and communicating and justifying mathematical ideas. She is a past chair of the National Council of Teachers of Mathematics Student Explorations in Mathematics Editorial Panel and a member of the board of directors for the Association of Mathematics Teacher Educators. You can find her on social media at @TheStrokeOfLuck.

Timothy D. Kanold, PhD, is an award-winning international educator, author, and consultant. He is a former superintendent and director of mathematics and science at Adlai E. Stevenson High School District 125 in Lincolnshire, Illinois. He is a past president of the National Council of Supervisors of Mathematics (NCSM) and the Council for the Presidential Awardees of Mathematics (CPAM). He has served on several writing and leadership commissions for National Council of Teachers of Mathematics during the past two decades, including the *Teaching Performance Standards* task force. He presents motivational professional development seminars worldwide with a focus on developing professional learning communities (PLCs) to improve teaching, assessing, and learning of *all* students. He has recently authored nationally recognized articles, books, and textbooks for mathematics education and school leadership, including *What Principals Need to Know About Teaching and Learning Mathematics* and *HEART!: Fully Forming Your Professional Life as a Teacher and Leader*. You can find him on social media at @tkanold.

Matthew R. Larson, PhD, is a past president of the National Council of Teachers of Mathematics (NCTM). Prior to serving as president of NCTM, he was the K-12 mathematics curriculum specialist for Lincoln Public Schools (Nebraska) where he currently serves as associate superintendent for instruction. A prolific speaker and writer, he is the coauthor of more than a dozen professional books. He was a member of the writing teams for the major publications *Principles to Actions: Ensuring Mathematical Success for All* (2014) and *Catalyzing Change in High School Mathematics: Initiating Critical Conversations* (2018). Key areas of focus include access and equity and effective stakeholder communication. He has taught mathematics at the secondary and college levels and held an appointment as an honorary visiting associate professor at Teachers College, Columbia University. You can find him on social media at @mlarson_math.

Steven J. Leinwand is a principal research analyst at the American Institutes for Research (AIR) in Washington, DC, and has nearly 40 years in leadership positions in mathematics education. He is a past president of the National Council of Supervisors of Mathematics and served on the National Council of Teachers of Mathematics Board of Directors. He is the author of numerous articles, books, and textbooks and has made countless presentations with topics including student achievement, reasoning, effective assessment, and successful implementation of standards. You can find him on social media at @steve_leinwand.

Jennifer Lempp is an author and educational consultant. She also currently serves as a coordinator in Fairfax County Public Schools, Virginia. She has taught at the elementary and middle school levels and served as a math coach for many years. She is Nationally Board Certified in Early Adolescence Mathematics and has facilitated professional development at the local, state, and national level on math workshop as a model for differentiated mathematics instruction. You can find her on social media at @Lempp5.

Program Consultants

English Language Development Consultant

Harold Asturias is the director for the Center for Mathematics Excellence and Equity at the Lawrence Hall of Science, University of California. He specializes in connecting mathematics and English language development as well as equity in mathematics education.

Program Consultant

David Dockterman, EdD, operates at the intersection of research and practice. A member of the faculty at the Harvard Graduate School of Education, he provides expertise in curriculum development, adaptive learning, professional development, and growth mindset.

Blended Learning Consultant

Weston Kieschnick, Associate Partner ICLE, a former teacher, principal, instructional development coordinator, and dean of education, Weston Kieschnick has driven change and improved student learning in multiple capacities throughout his educational career. Now, as an experienced instructional coach and associate partner with ICLE, Kieschnick shares his expertise with teachers to transform learning through online and blended models.

STEM Consultants

Michael Despezio has authored many HMH instructional programs for science and mathematics. He has also authored numerous trade books and multimedia programs on various topics and hosted dozens of studio and location broadcasts for various organizations in the US and worldwide. Recently, he has been working with educators to provide strategies for implementing the Next Generation Science Standards.

Marjorie Frank An educator and linguist by training, a writer and poet by nature, Marjorie Frank has authored and designed a generation of instructional materials in all subject areas. Her other credits include authoring science issues of an award-winning children's magazine, writing game-based digital assessments, developing blended learning materials, and serving as instructional designer and coauthor of school-to-work software. She has also served on the adjunct faculty of Hunter, Manhattan, and Brooklyn Colleges.

Bernadine Okoro is a chemical engineer by training and a playwright, novelist, director, and actress by nature. Okoro went from working with patents and biotechnology to teaching in K-12 classrooms. She is a 12-year science educator, Albert Einstein Distinguished Fellow, original author of NGSS and a member of the Diversity and Equity Team. Okoro currently works as a STEM learning advocate and consultant.

Cary I. Sneider, PhD While studying astrophysics at Harvard, Cary Sneider volunteered to teach in an Upward Bound program and discovered his real calling as a science teacher. After teaching middle and high school science, he settled for nearly three decades at Lawrence Hall of Science in Berkeley, California, where he developed skills in curriculum development and teacher education. Over his career, Cary directed more than 20 federal, state, and foundation grant projects and was a writing team leader for the Next Generation Science Standards.

Math Solutions® Program Consultants

Deepa Bharath, MEd

Professional Learning Specialist
Math Solutions
Jupiter, Florida

Nicole Bridge, MEd

Professional Learning Specialist
Math Solutions
Attleboro, Massachusetts

Treve Brinkman

Director of Professional Learning
Math Solutions
Denver, Colorado

Lisa K. Bush, MEd

Sr. Director, Professional Development
Math Solutions
Glendale, Arizona

Carol Di Biase

Professional Learning Specialist
Math Solutions
Melbourne, Florida

Stephanie J. Elizondo, MEd

Professional Learning Specialist
Math Solutions
Ocala, Florida

Christine Esch, MEd

Professional Learning Specialist
Math Solutions
Phoenix, Arizona

Le'Vada Gray, MEd

Director of Professional Learning
Math Solutions
Country Club Hills, Illinois

Connie J. Horgan, MEd

Professional Learning Specialist
Math Solutions
Jerome, Idaho

Monica H. Kendall, EdD

Professional Learning Specialist
Math Solutions
Houston, Texas

Lori Ramsey, MEd

Professional Learning Specialist
Math Solutions
Justin, Texas

Lisa Rogers

Professional Learning Specialist
Math Solutions
Cape Coral, Florida

Derek Staves, EdD

Professional Learning Specialist
Math Solutions
Greeley, Colorado

Sheila Yates, MEd

Professional Learning Specialist
Math Solutions
Sioux Falls, South Dakota

Classroom Advisors

Abbey Len Bobbott

Laguna Elementary School
Scottsdale Unified School District
Scottsdale, Arizona

Rebecca Boden

Grant County Board of Education
Grant County Schools
Williamstown, Kentucky

Nicole Bunger

Centennial Elementary
Higley Unified School District
Gilbert, Arizona

Marsha Campbell

Murray Elementary
Hobbs Municipal Schools
Hobbs, New Mexico

Nichole Gard

Palmyra Elementary
Palmyra R-1 School District
Palmyra, Missouri

Dena Morosin

Shasta Elementary School
Klamath County School District
Klamath Falls, Oregon

Joanna O'Brien

Palmyra Elementary
Palmyra R-1 School District
Palmyra, Missouri

Nora Rowe

Peoria Traditional Elementary
Peoria Unified School District
Peoria, Arizona

Terri Trebilcock

Fairmount Elementary
Jefferson County Public Schools
Golden, Colorado

Table of Contents

Welcome to <i>Into Math</i>	PG8
Content Architecture	
Focus, Coherence, and Rigor	PG10
Creating a Learning Arc	PG11
Lesson Design	PG12
Promoting Conceptual Understanding	PG14
Promoting Perseverance	PG15
Real-World Relevance	PG16
Mathematical Practices and Processes	PG17
Language Development	PG20
Assessments, Data and Reports	
Assess and Act to Accelerate Every Student	PG24
Assessment Is Only as Good as How We Use the Data	PG25
Interim Growth Measure	PG26
Dynamic Reporting	PG27
Module Readiness and Progress	PG28
Data-Driven Grouping	PG29
Lesson Practice and Homework	PG30
Teacher Support	
Supporting Best Practices	PG32
Empowering Teachers	PG34
Ensuring Access and Equity	PG35
Building a Culture of Professional Growth	PG36
Blended Learning That Works	PG37
Fostering Learning Mindsets	PG38
Understanding Mindset	PG39
Unpacking Math Standards	PG40
Progressions and Algebra Readiness	PG41
Supporting Intervention Needs	PG42
Professional Learning References	PG43

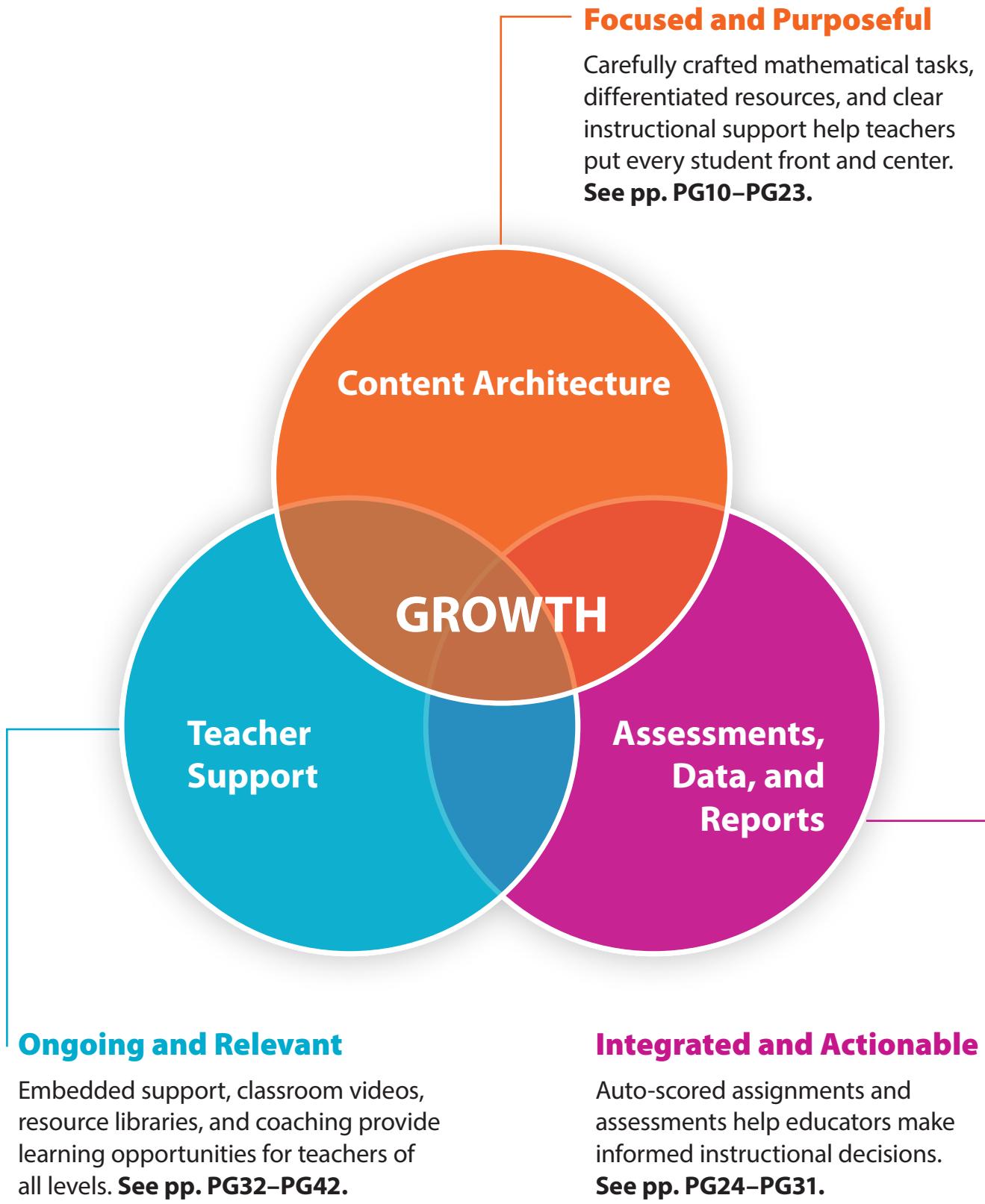
Table of Contents

Pacing Guide	PG46
End-of-Year Options	PG60
Correlations	
Math Standards	PG61
Mathematical Practices and Processes	PG64
Problem Types	PG68
Differentiated Support Using <i>Do The Math</i>	PG74
Manipulatives and Tools	PG75
Unit Performance Assessments	PG77
Into Math Solutions and Components	PG82
Academic Notebooks and Math Journals	
My Learning Summary Anchor Charts	PG85
Interactive Glossary	PG106
Index	PG118

Welcome to

Perseverance Powers Student Growth

Designed from the ground up to meet the high expectations of Mathematics Standards, *Into Math* is the only solution built to track, predict, and propel growth for all your students in kindergarten through grade 12.


The Outcomes You Want

The *Into Math* system produces measurable outcomes:

- **students** who have mastered rigorous standards, equipped with skills to persevere when presented with challenging, real-world problems
- **teachers** who grow as professionals, able to apply current research-based strategies and best practices
- **educators** who leverage data to differentiate and adapt, ensuring success in high-stakes assessments
- **families** that use accessible tools to support learning at home

What Makes *Into Math* Students *Unstoppable*?

The *Into Math* system maximizes student growth by helping teachers deliver high-quality instruction while monitoring every student's success.

Content Architecture

Focus, Coherence, and Rigor

In *Into Math*, the progression of topics forms coherent learning arcs. The learning arcs are designed to build a foundation of conceptual understanding before teaching procedures. Opportunities for application occur throughout. An emphasis is placed on connections between concepts and skills. The learning arcs ensure delivery of rigorous instruction.

Learning Arc

To help you visualize the arc and teach with purpose, *Into Math* has three types of lessons, each with a different focus and containing certain learning task types:

Build Understanding

Conceptual These lessons focus on opportunities for students to make sense of the mathematics and build conceptual understanding with real-world context.

- Spark Your Learning
- Build Understanding

Connect Concepts and Skills

Bridging These lessons focus on having students connect different conceptual representations, approaches, or strategies to more efficient procedures.

- Spark Your Learning
- Build Understanding
- Step It Out

Apply and Practice

Procedural These lessons focus on opportunities for students to develop procedural fluency and to apply concepts and procedures.

- Step It Out

Learning Tasks

Spark Your Learning tasks promote conceptual understanding. During these low floor/high ceiling tasks, students leverage prior learning and select manipulatives or representations that serve as their entry point. Teachers provide just-in-time support, helping students engage in meaningful discourse and learn to persevere. Teachers lead the class to shared understanding in a student-centered environment.

Build Understanding tasks are learning opportunities designed to help students understand lesson concepts. Teachers take a more active role, guiding discussion during whole-class instruction.

Step It Out tasks build upon students' conceptual understanding to promote procedural understanding and fluency. Teachers help students understand why the procedures are efficient and how they can be applied to solve similar problem types.

Creating a Learning Arc

Teaching with Coherence

For students to make the most of their mathematics education, topics should be taught with coherence. This means that topics should be taught as connected ideas rather than within individual silos. Consider strategies for addition. Linking counting strategies with grouping strategies like making a ten in grade 1 supports students to develop fluency with basic facts, setting the stage to make sense of adding and subtracting with regrouping in grade 2.

A benefit of making connections within different mathematical topics is that students have multiple pathways to retrieve what they learned and therefore rely less on rote memorization. For example, students can use counting strategies like *counting on from the larger number*, to recognize that when counting on from a number close to ten, it might be easier to make a group of ten to add (see Figure 1).

Connecting Concepts and Procedures

Rigor describes the important balance between concepts and procedures. While balance is important, so is the order with which concepts and procedures are addressed. Concepts must be taught before procedures; otherwise, there is no motivation to make sense of the mathematics prior to using more efficient processes.

Consider subtracting multi-digit numbers without a deep understanding of place value. If students are taught the procedure to:

- line up the numbers,
- subtract the ones,
- subtract the tens, and
- subtract the hundreds

prior to understanding place value, then students may make the error of subtracting the digit with the lesser value from the digit with the greater value regardless of which "number" is "on top". This confusion often comes from students not understanding that when ones are subtracted from ones, then tens from tens, and then hundreds from hundreds, the values of multi-digit numbers do not change, the numbers are just grouped by place value. Students are less likely to make these errors with procedures when they have an understanding of place value and representing numbers flexibly. The learning arc is complete when concepts are taught first and then those concepts are linked to more efficient processes before the procedures are practiced and applied.

Juli K. Dixon, PhD
Professor, Mathematics Education
University of Central Florida
Orlando, Florida

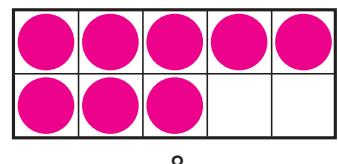
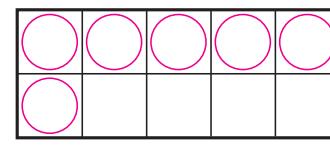
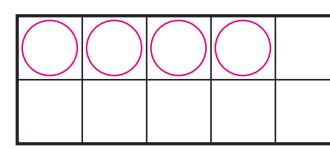
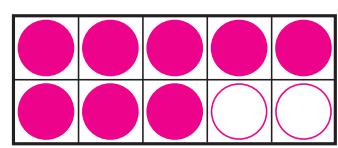


Figure 1 from Grade 1, Lesson 1.4


Step It Out

I Erik reads 6 books.
Kim reads 8 books.
How many books do they read?
A **THINK:** 8 is close to 10. So, start with 8.
Use ● to show $8 + 6$.

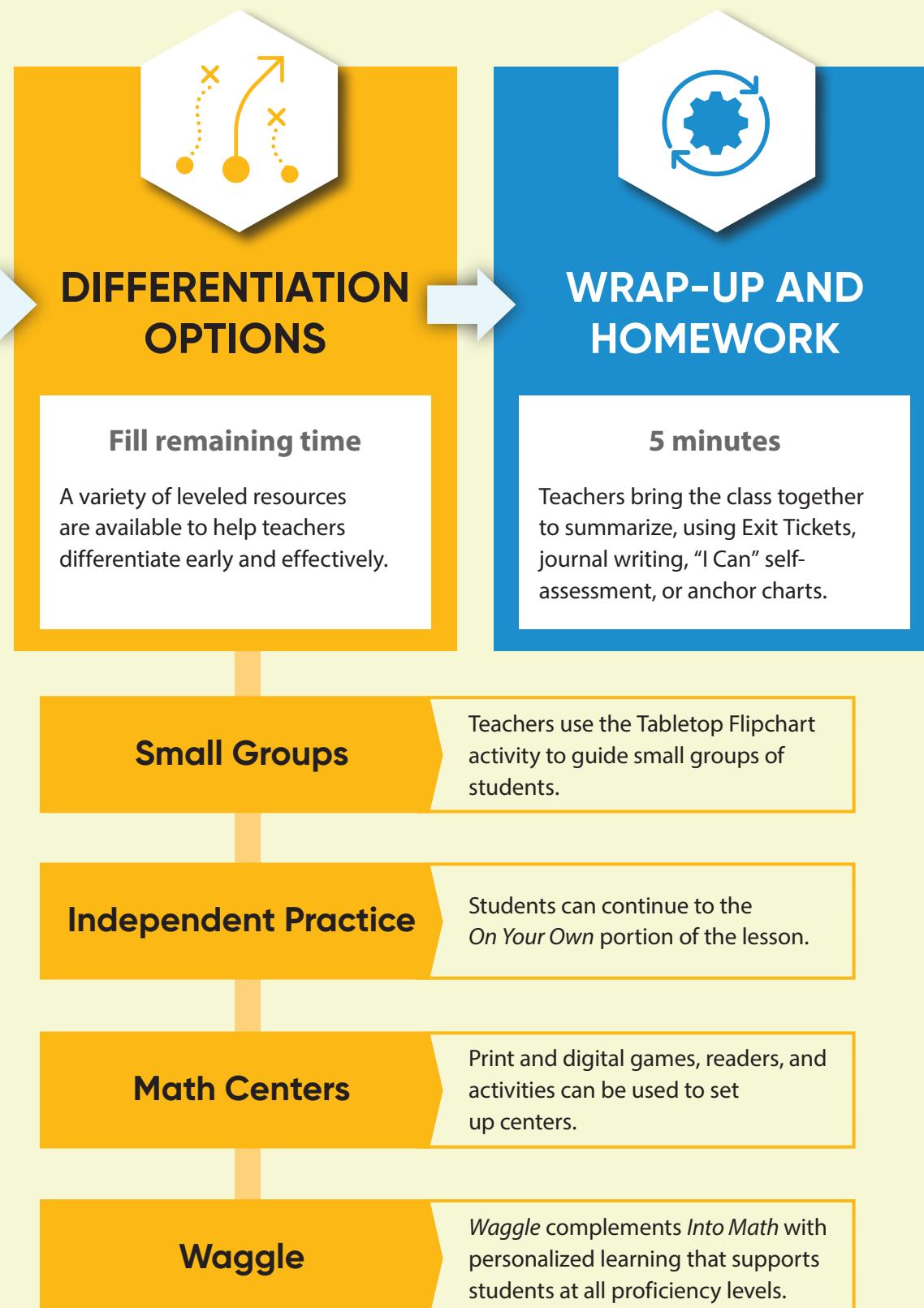



8

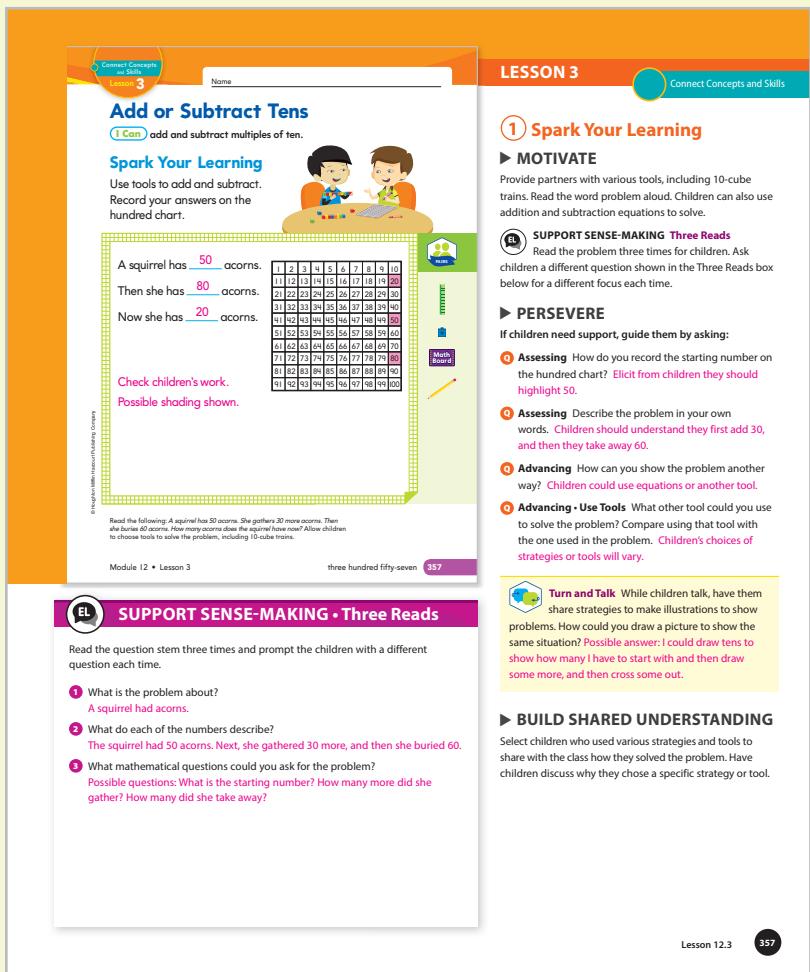
6

B Move some ● to make a ten.

Content Architecture


Lesson Design

Into Math classrooms are different. Lessons are designed to help you incorporate research-based best practices into your instruction. This design is found in the print student books and in the interactive digital lessons, enabling you to utilize either pathway or a blended approach.


The pacing recommendations within each lesson can be modified based on individual preferences and teaching styles. Yearlong pacing recommendations are in the Pacing Guide starting on page PG46.

Content Architecture

Promoting Conceptual Understanding

Not All Tasks Are Equal. The *Spark Your Learning* tasks have been carefully crafted to promote reasoning and problem solving. The tasks can be solved using various solution strategies and have a low floor and a high ceiling to ensure every student can make progress and build understanding.

LESSON 3

① Spark Your Learning

► MOTIVATE
Provide partners with various tools, including 10-cube trains. Read the word problem aloud. Children can also use addition and subtraction equations to solve.

► SUPPORT SENSE-MAKING Three Reads
Read the problem three times for children. Ask children a different question shown in the Three Reads box below for a different focus each time.

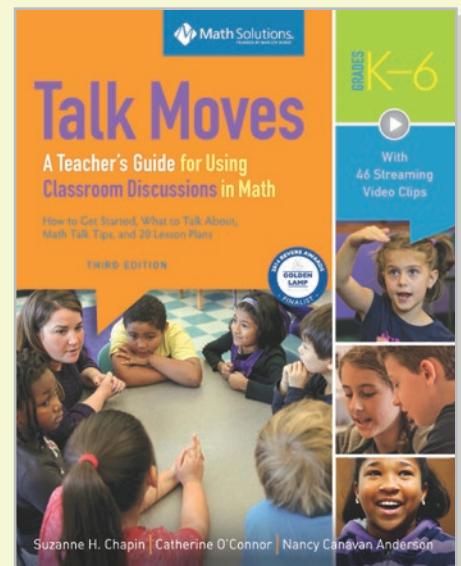
► PERSEVERE
If children need support, guide them by asking:

- Assessing** How do you record the starting number on the hundred chart? *Elicit from children they should highlight 50.*
- Assessing** Describe the problem in your own words. *Children should understand they first add 30, and then they take away 60.*
- Advancing** How can you show the problem another way? *Children could use equations or another tool.*
- Advancing • Use Tools** What other tool could you use to solve the problem? Compare using that tool with the one used in the problem. *Children's choices of strategies or tools will vary.*

► TURN AND TALK While children talk, have them share strategies to make illustrations to show problems. How could you draw a picture to show the same situation? *Possible answer: I could draw tens to show how many I have to start with and then draw some more, and then cross some out.*

► BUILD SHARED UNDERSTANDING
Select children who used various strategies and tools to share with the class how they solved the problem. Have children discuss why they chose a specific strategy or tool.

Teachers begin a **Spark Your Learning** task by setting goals and using language-development routines to help students understand the task, if needed.


Teachers support **productive perseverance** and foster a growth mindset as students work through the task. The Teacher Edition includes **student work samples** and provides support to help teachers correct common errors and assess and advance student understanding.

The **Talk Moves** routines encourage student discourse and also help teachers elicit reasoning and guide students.

A *Spark Your Learning* task is complete when the class comes to shared understanding and the teacher celebrates **student success**.

See It in Action

Professional Learning support includes classroom videos with hints, tips, and commentary from experts and authors.

Promoting Perseverance

Rigorous Tasks

There is little argument that students need to learn to persevere. Where the struggle exists is in determining the pathway to this important outcome. It begins with a good task. Good tasks are rigorous. Providing rigorous tasks sets the stage for students to engage in worthwhile activity around learning mathematics. Good tasks have “low floors” and “high ceilings” so that students have access to the content regardless of their prior achievement.

A rigorous task is one that supports students to do the sense-making. A goal might be to make connections between concepts and procedures, or possibly to determine a solution process when a procedure for the solution has not yet been introduced. Students are expected to explain and justify their thinking. Rigorous tasks afford students the opportunities to develop productive habits of mind around mathematical problem solving.

Juli K. Dixon, PhD
Professor, Mathematics Education
University of Central Florida
Orlando, Florida

Just-in-Time Scaffolding

All too often, with best intentions, teachers or resources undermine the value of a good task by providing scaffolding too early. It is tempting to provide scaffolding to students at the first sign of struggle or even in anticipation of student struggle. However, if the struggle is productive, this scaffolding should be withheld. Instead of providing scaffolding just in case students might need it, scaffolding should be offered just in time, when there is evidence that a student’s struggle is no longer productive.

While the opportunity to develop perseverance is reliant on access to good tasks, it is supported during instruction by effective teaching. For students to develop perseverance, they must engage in productive struggle. This means that scaffolding, on the student page or from the teacher, needs to be managed in a way that supports students to do the sense-making.

Scaffolding should be provided when students’ engagement with the task is no longer productive or when the students’ work is not leading to the learning objective. A key to effective teaching is to know when to provide the scaffolding and when to step aside to allow students to persevere.

Content Architecture

Real-World Relevance

Is your weight on the Moon proportional to your weight on Earth? Am I on track to meet my goal for number of steps walked today? How did people 10,000 years ago incorporate geometric designs into their jewelry? Projects and tasks in *Into Math* are carefully crafted, not only to ensure they have the appropriate level of rigor, but also to ensure students remain engaged and see the relevance of math in the world around them.

Each unit opens with a career-related project that students can work on throughout the unit.

UNIT 4

ADDITION AND SUBTRACTION IN BASE TEN

Module 12: Understand Addition and Subtraction with Tens and Ones
Module 13: Two-Digit Addition and Subtraction

Veterinarian

- Ask children to think about times when they visited a doctor. Explain that pets and other animals visit special doctors called veterinarians.
- Explain that veterinarians work with many different types of animals.
- Say:** If you have a pet, you may have taken it to a veterinarian before. If you did, you probably saw other pets there too. Some veterinarians also work with animals that people do not keep as pets. Sometimes they treat animals in aquariums, zoos, or even the wild.
- Explain that veterinarians have to understand how animals bodies work. They also must understand illnesses that affect the specific types of animals that they work with.

STEM Task:

The first step to child-led inquiry is to have the children ask questions about primary resources. Ask children to generate questions about the picture. If children need help, start by brainstorming a few questions aloud, such as "What is the girl listening to?" and "Which person is the veterinarian?"

Tell children to ask questions only, not to answer them. Then gather the class together, share questions from each group, and select a main question to research together.

Unit 4 Project Card Fruit Pops for Puppies

Use after Lesson 12.

Overview: Children take turns representing teen numbers as 10 plus additional ones.

Materials: craft sticks, rubber bands, "Favorite Fruit Pop Flavors" and "Fruit Pop Party Info Sheet" (Teacher Resource Masters, pp. 8–9)

Assessing Child Performance: Children will represent numbers 11 to 14 as a ten and some ones.

Unit 4: Modules 12–13

Unit 4

Addition and Subtraction in Base Ten

Veterinarian

Do you have a pet? How do you keep your pet healthy? Where might you take your pet if it was ill?

Veterinarians provide regular checkups to ensure that pets stay healthy. They also take care of pets when they are sick.

STEM Task:

Work with a partner. Look at the picture. Ask as many questions as you can.

Unit 4 three hundred forty-five 345

Learning Mindset
Bounce Back: Notices Others

There may be times when our friends need our help. We may notice that they look sad, frustrated, or confused. When we notice the reactions of others, we can help them to solve a problem or complete a task.

Reflect

- Look at the picture. What do you notice about the children in the picture? Describe any clues you see.
- Think of a time when you helped someone else. How did you know they needed help?

346 three hundred forty-six

What to Watch for

Watch for children who regularly have difficulty managing their emotions. For these children:

- incorporate a system that meets their specific emotional needs
- watch for behavior from other children that may trigger difficult emotions for that child specifically
- provide visual reminders of strategies that can be used throughout the day to manage emotions

Watch for children who use negative behavior to receive attention. For these children:

- give them the attention they need when they display the desired behaviors
- intervene quickly if children have difficulty managing their emotions
- look for opportunities to provide them with additional attention when they have successfully managed their emotions

"We have always been able to bounce back."

—Tim Salmon

Addition and Subtraction in Base Ten

mindset works

Cross-curricular tasks are found throughout the program, including STEM problems in each module and STEM-themed unit projects.

Opportunities, strategies, and support to help students focus on mindset are embedded in every lesson and in the unit-level projects.

Mathematical Practices and Processes

Into Math provides a focus on Mathematical Practices and Processes aligned to the lesson's learning goal and the tasks that meet the learning goal.

Each lesson focuses on Mathematical Practices and Processes based on the lesson's learning goal.

Each task references a focused Mathematical Practice and Process and includes probing questions to support student engagement and depth of understanding.

Students choose strategies and tools. The Teacher Edition provides additional support with Use Tools questions.

Students solidify their understanding and choose tools strategically. The Teacher Edition provides additional recommendations for student discourse.

Content Architecture

Mathematical Practices and Processes	Questions to Ask:
<p>Make sense of problems and persevere in solving them.</p> <ul style="list-style-type: none"><i>Spark Your Learning</i> tasks provide low floor/high ceiling, real-world problems accessible to all students. Students make sense of these problems to plan their solution pathways.<i>Build Understanding</i> tasks present problems with some scaffolding, which supports students while they are making sense of problems.<i>Turn and Talk</i> questions foster collaboration by asking students to discuss their solution pathways or to discuss how they know their solution makes sense.	<ul style="list-style-type: none">What is the problem asking?How will you use that information?What other information do you need?What is another way to solve that problem?What can you do if you don't know how to solve a problem?Have you solved a problem similar to this one?How do you know your answer makes sense?
<p>Reason abstractly and quantitatively.</p> <ul style="list-style-type: none"><i>Spark Your Learning</i> tasks provide real-world problems, accessible to all students. Each task is often supported with the language routine <i>Three Reads</i> to help students to reason abstractly and to look at quantities and units.<i>Build Understanding</i> and <i>Step It Out</i> tasks present problems that require quantitative reasoning.<i>Turn and Talk</i> questions ask students to discuss the representation of the problem and the meaning of the quantities and units with the context of the problem and solution.<i>On Your Own</i> and <i>More Practice/Homework</i> include practice problems labeled <i>Reason</i>.	<ul style="list-style-type: none">What quantities are referenced?How are the quantities related?How can you represent this situation?How are the quantities and the units related?What are the correct units for the quantities in the problem?How do you know your answer is reasonable?
<p>Construct viable arguments and critique the reasoning of others.</p> <ul style="list-style-type: none"><i>Connect to Vocabulary</i> provides context and definitions for academic vocabulary.The language routine <i>Critique, Correct, and Clarify</i> has students correct work having a flawed explanation, argument, or solution method.<i>Build Understanding</i> tasks encourage students to describe or explain their reasoning.<i>Turn and Talk</i> questions ask students to discuss a flawed explanation, argument, or solution method.<i>On Your Own</i> and <i>More Practice/Homework</i> include practice problems labeled <i>Construct Arguments and Critique Reasoning</i>.	<ul style="list-style-type: none">Will that method always work? How do you know?What do you think about what the other student said?Who agrees or disagrees, and why?Does anyone have another way of looking at that?What do you think will happen if...?When would that not be true?Does that make sense to you? Why?
<p>Model with mathematics.</p> <ul style="list-style-type: none"><i>Spark Your Learning</i> tasks provide students with opportunities to use mathematics they know to represent and solve a problem.<i>Build Understanding</i> and <i>Step It Out</i> tasks present problems and then have students decide how to model the problems.<i>Turn and Talk</i> questions ask students to describe or explain their models and why they chose a specific mathematical representation.<i>On Your Own</i> and <i>More Practice/Homework</i> include practice problems labeled <i>Model with Mathematics</i>.	<ul style="list-style-type: none">Why is that a good model for this problem?How can you use a simpler problem to help you find the answer?What conclusions can you make from your model?Do your results make sense within the context of the problem?How would you change your model if...?

Mathematical Practices and Processes	Questions to Ask:
<p>Use appropriate tools strategically.</p> <ul style="list-style-type: none"> <i>Unit Openers</i> include a STEM task that has students use mathematics they know to complete a task and then reflect on strategies and tools they used. <i>Spark Your Learning</i> tasks prompt students to choose tools as part of their solution pathways. Students are asked to explain their choices. <i>Build Understanding</i> and <i>Step It Out</i> tasks have students choose tools and describe or explain their choices. <i>Module Review</i> provides an opportunity for students to review the module content and reflect on the full meaning of this practice with a guided discussion. <i>Turn and Talk</i> questions ask students to describe or explain why they chose a specific tool. <i>On Your Own</i> and <i>More Practice/Homework</i> include practice problems labeled <i>Use Tools</i>. 	<ul style="list-style-type: none"> What could you use to help you solve the problem? What strategy could you use to make that calculation easier? How would estimation help you solve that problem? Why did you decide to use...?
<p>Attend to precision.</p> <ul style="list-style-type: none"> <i>Build Understanding</i> and <i>Step It Out</i> tasks provide vocabulary once students have explored the concept at point of learning and often are paired with <i>Connect to Vocabulary</i>. The <i>Interactive Glossary</i> provides opportunities for students to make sense of vocabulary by having students record in their own words or with examples. <i>Step It Out</i> tasks, <i>On Your Own</i>, and <i>More Practice/Homework</i> provide opportunities for students to focus on performing calculations accurately and efficiently. <i>Turn and Talk</i> questions provide opportunities for students to communicate precisely to others by using accurate mathematical terms and definitions. <i>On Your Own</i> and <i>More Practice/Homework</i> include practice problems labeled <i>Attend to Precision</i>. 	<ul style="list-style-type: none"> How do you know your answer is reasonable? How can you use mathematics vocabulary in your explanation? How do you know those answers are equivalent? What does that mean?
<p>Look for and make use of structure.</p> <ul style="list-style-type: none"> <i>Spark Your Learning</i> tasks provide opportunities for students to relate to structures they know as a way to make sense of the problem and find a solution pathway. <i>Build Understanding</i> and <i>Step It Out</i> tasks connect concepts by showing an example and asking students to explain or describe a structure based on what is shown in the example. <i>Turn and Talk</i> questions ask students to identify, describe, or explain a structure they used to solve a problem. <i>On Your Own</i> and <i>More Practice/Homework</i> include practice problems labeled <i>Use Structure</i>. 	<ul style="list-style-type: none"> What rule did you use to make...? Why can you use that property in this problem? How is that like...?
<p>Look for and express regularity in repeated reasoning.</p> <ul style="list-style-type: none"> <i>Spark Your Learning</i> tasks provide opportunities for students to notice repeated calculations and other patterns leading to a general method or shortcut. <i>Build Understanding</i> and <i>Step It Out</i> tasks connect repeated reasoning to a new general method or shortcut. <i>Turn and Talk</i> questions ask students to describe or explain their reasoning. <i>On Your Own</i> and <i>More Practice/Homework</i> include practice problems labeled <i>Use Repeated Reasoning</i>. 	<ul style="list-style-type: none"> How did you discover that pattern? What other patterns can you find? What do you remember about...? What happens when...? What if you...instead of...? What might be a shortcut for...?

Content Architecture

Language Development

Language development and the development of mathematical understanding are interdependent. All students must be able to listen, speak, read, write, and converse to meet the rigorous expectations of standards and become proficient problem solvers.

B How can you write an equation to solve the problem?

Equation: _____

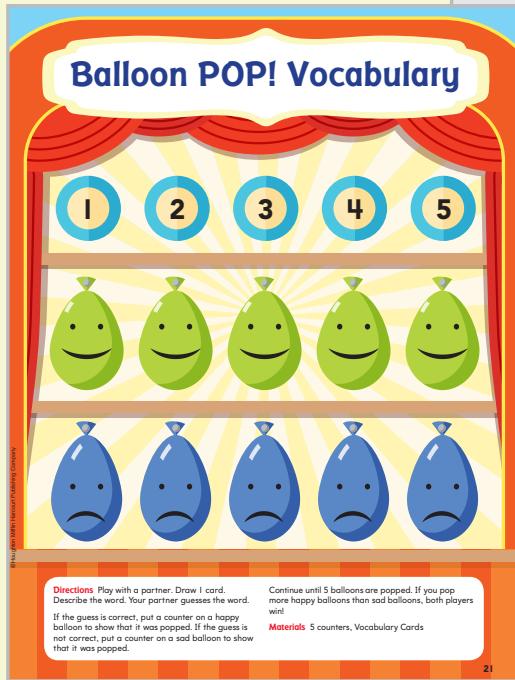
C The shop has _____ sunglasses.

Connect to Vocabulary

equations:

$$80 - 50 = 30$$

$$9 = 6 + 3$$

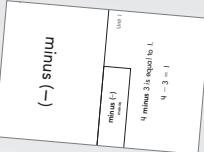

$$90 = 60 + 30$$

Before teaching new vocabulary, *Into Math* ensures that students have an opportunity to first build a foundation of conceptual understanding. Vocabulary emerges once students have the conceptual foundation on which to build meaning.

Turn and Talk Does your answer make sense?

How do you know?

Using the Vocabulary Cards


Academic Vocabulary
Language development is integral to the instruction of *Into Math*. Academic and mathematical language acquisition enhances learning for all children. As children are exposed to and use academic language, they build deeper connections with the mathematical ideas. Use these vocabulary cards as an engaging way to practice vocabulary with your children.

Preparing the Cards
Print the vocabulary cards, and cut them out. The term and definition are on one card. Then fold the cards over so the term is on one side and the definition is on the other. We recommend printing on card stock or laminating them so they are durable and opaque. Each card has a unit number indicated on it.

It's time to use these cards at the end of each unit by mixing together terms with review terms that you would be most useful for your children. We also included a page of blank cards for you to print out and customize.

Playing Games
Included a printable board with a game already written on it. There are also plenty of games you can play without even writing a board. We included some ideas on the next page. We encourage you to bring your own creativity to create ways to use these cards in the classroom!

Using Games

Interactive Glossary

As you learn about each new term, add notes, drawings, sentences in the space next to the definition. Doing so will help you remember what each term means.

Possible summaries:
My Vocabulary Summary

A	
add sumar	<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> $3 + 2 = 5$
Add to find how many altogether.	<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> $2 + 2 = 4$
B	
addend sumando	$1 + 3 = 4$ $(2+3) = 5$
bar graph gráfica de barras	

Glossary

Vocabulary cards can be used with vocabulary games. The eGlossary includes vocabulary terms and definitions translated into ten different languages.

The Interactive Glossary provides space for students to make graphic organizers or drawings for each new vocabulary term.

“We must explicitly teach the language of mathematics in order to give students—especially English learners—access to mathematics.”

Harold Asturias
 Director, Center for Mathematics Excellence and Equity
 Lawrence Hall of Science
 University of California
 Berkeley, California

Math is a second language for ALL students. *Into Math* is built on four design principles from the Stanford Center for Assessment, Learning, and Equity (SCALE). These four design principles promote the use and development of language as an integral part of instruction.¹

1 Support Sense-Making

Scaffold tasks when needed, being sure to amplify (instead of simplify) language for students.

2 Optimize Output

Help students describe their mathematical reasoning and understanding.

3 Cultivate Conversation

Facilitate mathematical conversations among students.

4 Maximize Linguistic and Cognitive Meta-Awareness

Help students evaluate their use of language and see how mathematical ideas, reasoning, and language are connected.

LANGUAGE DEVELOPMENT • Planning for Instruction

1 By giving all children regular exposure to language routines in context, you will provide opportunities for children to listen for, and speak, read, and write about mathematical situations. You will also give children the opportunity to develop understanding of both mathematical language and concepts.

Using Language Routines to Develop Understanding

Use the Professional Learning Cards for the following routines to plan for effective instruction.

Three Reads Lessons 12.1 and 12.3–12.7
 Children read a problem or the teacher reads the problem three times with a specific focus each time.

1st Read What is the problem about?
2nd Read What do each of the numbers describe?
3rd Read What math questions could you ask about the problem?

Stronger and Clearer Each Time Lessons 12.2, 12.3, 12.5, 12.6, 12.7, and 12.8
 Children write their reasoning about a problem, share that reasoning, explain it, listen to feedback, respond to feedback, and then refine their reasoning by writing again.

Compare and Connect Lessons 12.1 and 12.2
 Children listen to a partner’s solution strategy, identify it, and then compare it to and contrast it with their own.

Critique, Correct, and Clarify Lessons 12.4 and 12.7
 Children correct the work in a flawed explanation, argument, or solution method; share with a partner; and refine the sample work.

Connecting Language to Understanding Addition and Subtraction with Tens and Ones
 Watch for children’s use of review terms listed below as they explain their reasoning and make connections with new concepts.

Key Academic Vocabulary

Prior Learning • Review Vocabulary

equation a numerical sentence that shows two quantities are equal
ones the value of a digit in the ones position on a place-value chart
tens a group of ten ones

Linguistic Note

The language in a math textbook can be challenging for English Language Learners. Many mathematics terms have multiple meanings. Taking time to distinguish between the meanings of these terms will help avoid confusion when asking questions about tens and ones.

The Language Routines as well as new and review vocabulary words are summarized on the Language Development page at the beginning of each module.

1) J. Zwiers, et al., *Principles for the Design of Mathematics Curricula: Promoting Language and Content Development* (Stanford, CA: Stanford University, 2017).

Content Architecture

Language Development

The **5 Routines for Language Development** help teachers promote the design principles during instruction with routines that are structured, but adaptable, in a format for amplifying, assessing, and developing students'

language. These Routines provide opportunities for students to listen, speak, and write about mathematical situations with practices that are appropriate and effective for all **language proficiency levels**.

1

Three Reads – To ensure understanding of mathematical questions, students read a problem three times with a specific focus each time.

SUPPORT SENSE-MAKING • Three Reads

Read the problem stem three times and prompt the children with a different question each time.

- 1 What is the problem about?
Meg has some toy rings. She has some and then she gets some more.
- 2 What do each of the numbers describe?
20 is the number of toy rings she gets and 50 is the number of toy rings she has at the end.
- 3 What math questions could you ask about the problem?
Possible questions: How many more rings does she get? How many does she have in all? How many did she start with?

2

Stronger and Clearer Each Time – Students use structure to write their reasoning behind a problem, share and explain their reasoning, listen to and respond to feedback, and then write again to refine their reasoning.

CULTIVATE CONVERSATION

Stronger and Clearer

Have children share their work. Remind children to ask questions of each other that focus on how they can write equations to solve this problem. Did they use addition or subtraction to write the equation? Then, have them refine their answers.

3

Compare and Connect – Meta-awareness is strengthened as students listen to a partner's solution strategy and then identify, compare, and contrast this mathematical strategy.

CONNECT MATH IDEAS, REASONING, AND LANGUAGE Compare and Connect

Point out to children each cube train has 10 cubes. Before beginning the task, have children count forward and back by tens to 100. Have partners share their work and then compare and contrast.

4

Critique, Correct, and Clarify – Students correct sample work having a flawed explanation, argument, or solution method and share with a partner to reflect on and then refine the sample work.

OPTIMIZE OUTPUT

Critique, Correct, and Clarify

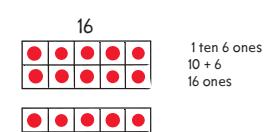
Encourage children to question the thinking of their partner. Discuss how to solve the problem. Children should refine their responses.

5

Collect and Display – Students capture oral words and phrases learned and build a collective reference containing illustrations connected to mathematical concepts and terms within each module.

ANCHOR-CHART OPTION

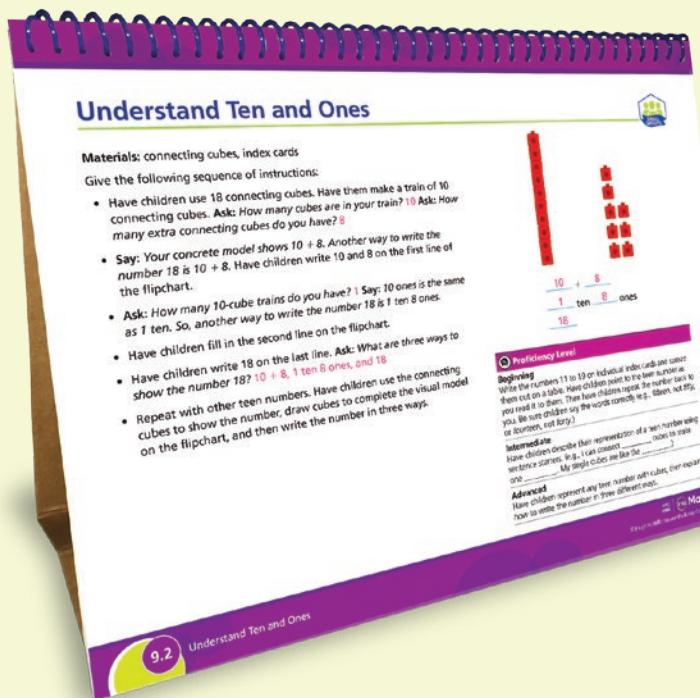
As you progress through the module, build and display an anchor chart.



CONNECT MATH IDEAS, REASONING, AND LANGUAGE Collect and Display

Have children build their own anchor chart in their Practice and Homework Journal.

A completed chart for the module is shown here.


Write Numbers as Tens and Ones

© 2018 Core Knowledge Foundation

Content Architecture

Teacher Tabletop Flipcharts, designed for reteaching and reinforcing each lesson's content with small groups, contain leveled scaffolding and support for English learners. These scaffolding suggestions ensure teachers will maintain the rigor and cognitive complexity level required for mathematical reasoning when supporting English learners.

Three proficiency levels

Proficiency Level

Beginning

Write the numbers 11 to 19 on individual index cards and spread them out on a table. Have children point to the teen number as you read it to them. Then have children repeat the number back to you. Be sure children say the words correctly (e.g., *fifteen*, not *fifty*, or *fourteen*, not *forty*.)

Intermediate

Have children describe their representation of a teen number using sentence starters. (e.g., I can connect _____ cubes to make one _____.) My single cubes are like the _____.)

Advanced

Have children represent any teen number with cubes, then explain how to write the number in three different ways.

Carta a la familia
Módulo 2: Estrategias de resta

Estimada familia:

Durante los próximos 11 días escolares, en nuestra clase de matemáticas aprenderemos a entender y utilizar una serie de estrategias para resolver problemas de resta. En este módulo, también aprenderemos nuevos términos matemáticos. Puede consultar las definiciones de estos términos en el eGlossario.

En ese tiempo, pregunten acerca de estos conceptos. Cuando los estudiantes experimenten con estos conceptos en el aula, les ayudá a encontrarse sentido a las matemáticas y profundizar su comprensión. Si su hijo(a) no logra entender algo, ingrese en Recursos Familiares y use los recursos digitales para aprender juntos.

Lección	Apoyo en línea para recursos familiares
2.1 Representar la resta	Refuerzo interactivo (Lección 2.1)
2.2 Contar hacia atrás	Más práctica/Tarea, Problema 3, Vídeo de Matemáticas al instante
2.3 Contar hacia adelante para restar	Refuerzo interactivo (Lección 2.3)
2.4 Sumar para restar	Refuerzo interactivo (Lección 2.4)
2.5 Usar 10 para restar	Refuerzo interactivo (Lección 2.5)
2.6 Elegir una estrategia para restar	Refuerzo interactivo (Lección 2.6)

Actividad para la casa

Muestre a su hijo(a) dos grupos de objetos pequeños, por ejemplo tazas y platos. Haga que use la operación de resta para comparar cuantos más o cuantos menos. Utilice cantidades y objetos diferentes todos los días.

Family Home Letter
2: Subtraction Strategies

Dear Family,

During the next 11 school days, our math class will be learning subtraction and use a variety of strategies to solve subtraction problems. In this module, we will also be learning new math terms. You can find definitions for these terms in the eGlossary.

Writing the way to explain these concepts. Having me explain it helps me make sense of the concepts and deepens my understanding. If I get stuck, we can go online to solve a problem together. If my child(ren) is not understanding something, encourage them to ask questions and use digital resources to learn together.

Lesson	Family Resources Online Support
Lesson 2: Subtraction Strategies	Interactive Reteach, Lesson 2.1 More Practice/Homework, Problem 3, Math on the Spot Video
Lesson 2.1: Count Back	Interactive Reteach, Lesson 2.2
Lesson 2.2: Count On to Subtract	Interactive Reteach, Lesson 2.3
Lesson 2.3: Use 10 to Subtract	Interactive Reteach, Lesson 2.4
Lesson 2.4: Choose a Strategy to Subtract	Interactive Reteach, Lesson 2.5 Interactive Reteach, Lesson 2.6

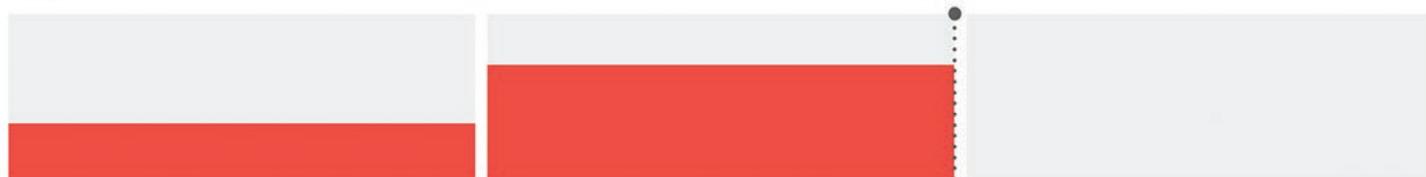
Vocabulary

count back
count on
difference
equation
make a ten
minus (-)
subtract

School Home Letters are available in English, Spanish, Haitian-Creole, and Portuguese.

Assessments, Data, and Reports

Assess and Act to Accelerate Every Student


To help students grow, we must first understand where they are and what they need. Assessment tools embedded throughout *Into Math* monitor individual student progress and help teachers understand where students are tracking at any given point. The snapshot below represents what a student's data profile could look like after using *Into Math* for 95 days.

Administered three times per year, this adaptive assessment provides a Quantile® score and is predictive of performance on high-stakes assessment.

These short assessments diagnose prerequisite skills readiness, inform grouping, and measure progress.

Interim Growth Measure

3x year

Module Readiness and Progress

15–20 per year

TIME TO GROUP

Lesson Practice and Homework

2x per week, 20 min each

TIME TO PRACTICE

Lesson Practice and Homework with try-again problems, embedded hints, and feedback help students apply what they're learning. Lesson-level formative assessments provide data that help teachers differentiate effectively.

Steven J. Leinwand
Principal Research Analyst
American Institutes for Research
Washington, DC

Assessment Is Only as Good as How We Use the Data

Assessment as Evidence Gathering

We know that effective assessments are far more than just tests we use to help us grade students. Instead, effective assessments are powerful vehicles for gathering evidence of readiness to learn (diagnostic), for learning (formative), and of learning (summative). We also know that the strength and usefulness of the evidence we gather depend on the alignment of these assessments with our standards and our learning goals, as well as on the balance among skills, concepts, and applications and among levels of depth of knowledge found in our assessments.

We plan and we teach. That is, we focus most on our curriculum and our instruction. However, the glue that holds much of our work together and that answers the critical questions about how successful we are being with our planning and teaching is our system of assessments.

Making Effective Use of the Evidence We Collect

Consider the questions to which we all seek reliable answers:

- Are my students ready for the material I'm about to teach?
- Is what I hoped to convey understood by my students? How well? What appears to need more reinforcement?
- Have my instructional strategies worked, or do they need adjustment?
- Can my students apply what they have learned?
- Have my students made connections with previously learned skills and concepts?
- Do I have to reteach the material?
- Which students need additional attention?
- What specific interventions are needed?
- Has previously taught material been retained?

We use diagnostic, formative, and summative assessments to gather data that help us answer each of these questions, but it is how these data are used that makes all the difference. For example, teachers regularly adjust their lesson plans and teach prerequisite skills and concepts on the basis of diagnostic assessments. Similarly, teachers celebrate success, group students, and reteach content based on formative assessments. Far too infrequently, teachers use summative assessments to identify class and individual problems and gaps, reteach in different ways, and incorporate additional instruction into upcoming units. Finally, teachers use all of these data to revise teaching activities and pacing.

Assessments, Data, and Reports

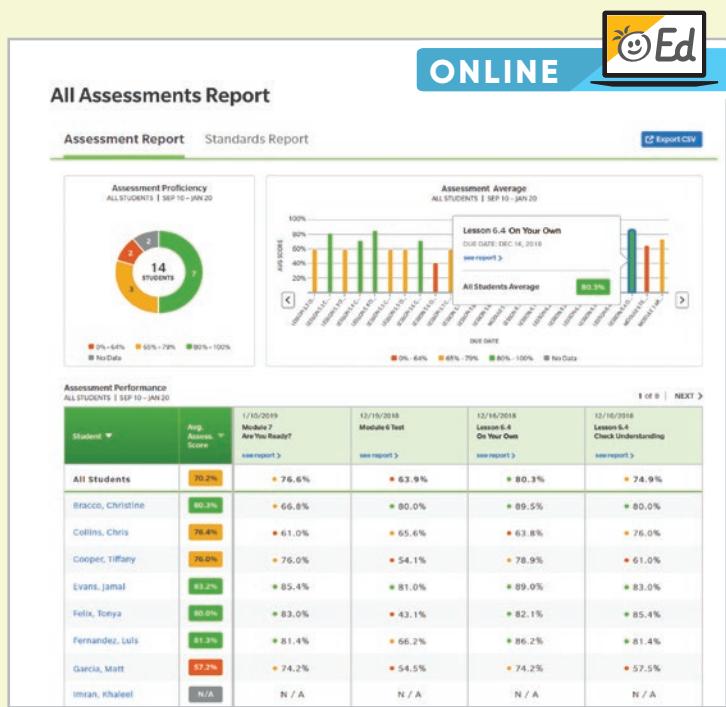

Ed: Your Friend in Learning

Teachers are the key to ensuring student growth. That's why we've designed *Into Math* with teachers' needs front of mind. Ed: Your Friend in Learning is your new friend in teaching, designed specifically to help you regain time and easily plan, create, and implement high-impact instruction all from one simple platform.

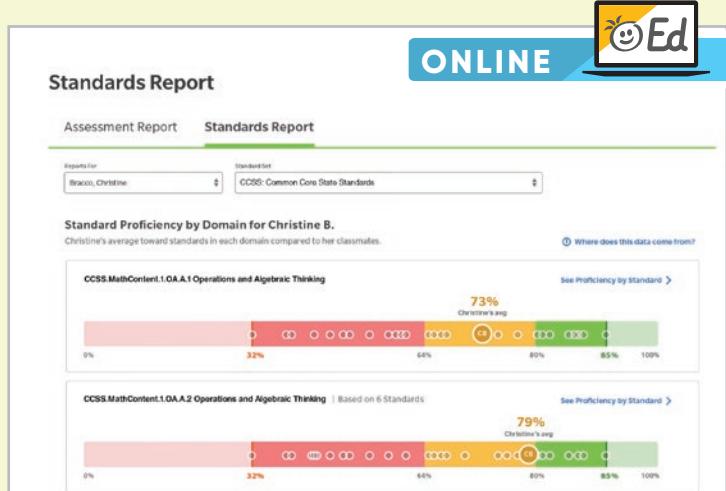
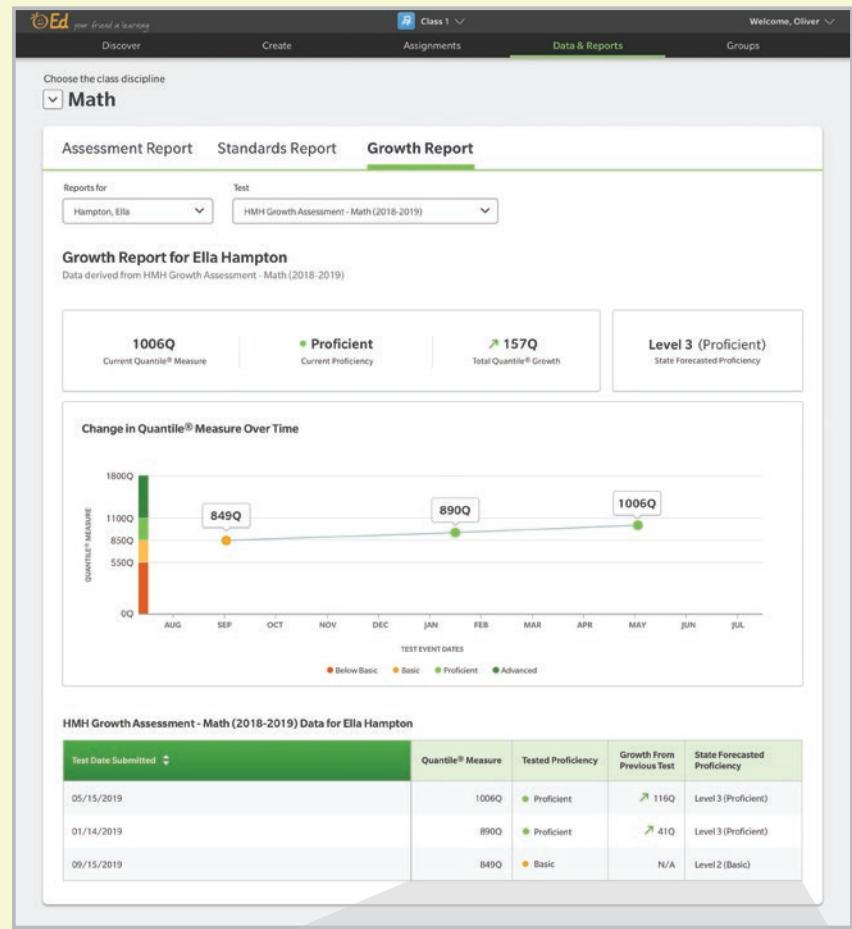
Within *Into Math*, data collection is automated; differentiation is targeted, clear, and easy to use; and professional development is embedded. The experience is both intuitive and customizable for teachers, allowing for simplicity in all areas of instruction.

Interim Growth Measure

This powerful growth measure assessment is designed to be administered in 40 minutes, three times per year. The system utilizes a secure bank of assessments to adapt to each student's ability and maps progress on the Quantile Framework®.



Students can skip questions if needed and access read-aloud support. Feedback that encourages perseverance helps to motivate students.

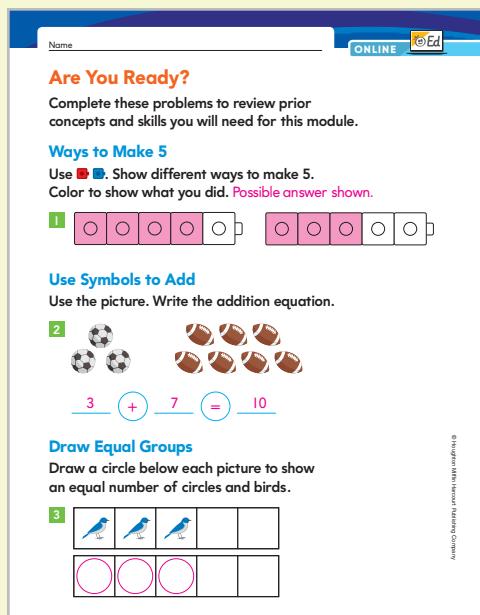
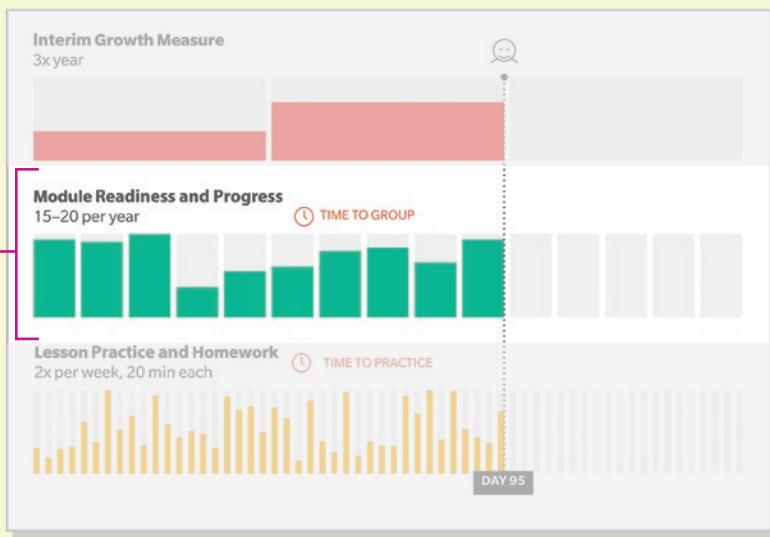


Assessments, Data, and Reports

Dynamic Reporting

Teachers can drill down into data for deeper insights into student performance. Multiple reports and views enable teachers to select those that work best for them, including charts, detailed comparisons, and totals.

Assignment reports show detailed results for each assignment, including an item analysis view.

Standards reports show progress toward mastery of each of the Mathematics Standards.



Quantile® Measure	Tested Proficiency	Growth From Previous Test	State Forecasted Proficiency
1006Q	Proficient	116Q	Level 3 (Proficient)
890Q	Proficient	41Q	Level 3 (Proficient)
849Q	Basic	N/A	Level 2 (Basic)

Growth Reports help identify intervention needs and are linked to recommendations and groupings.

Assessments, Data, and Reports

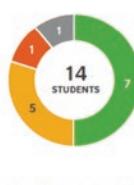
Module Readiness and Progress

Whether you use the autoscored digital assessments or the paper-and-pencil versions in the Assessment Guide, the module assessments make it easy for teachers to leverage data. A variety of reports available on Ed: Your Friend in Learning give you unparalleled insight into student performance.

The module *Are You Ready?* is a diagnostic assessment of important prerequisite skills for the upcoming module. A Data-Driven Intervention chart is available in the Teacher Edition.

The Module Review in the Student Edition helps prepare students for the Module Test. The Module Test is a summative assessment for monitoring student progress. Intervention recommendations are provided for students who need extra support.

Assessments, Data, and Reports


Data-Driven Grouping

One of the most valuable and time-saving tools for teachers is the online Recommend Groups feature. It synthesizes data from assessments and places students into leveled groups. You can easily modify the recommended groups yourself as needed.

Single Assessment Drilldown

Module 7 Are You Ready?

Assessment Proficiency
ALL STUDENTS | DUE DATE: JAN 10, 2018

0% - 64% 65% - 79% 80% - 100% No Data

For Review

Item	System Scored Items	Standards
Item 1	Bracco, Christine ✓ 4	✓ 4 ✗ 9
Item 4	Evans, Jamal ✓ 4	✓ 4 ✗ 9
Item 7	Fernandez, Luis ✓ 8	✓ 8 ✗ 5
Item 8	Ramirez Thomas, Gabrie... ✓ 6	✓ 6 ✗ 7

% = average class proficiency

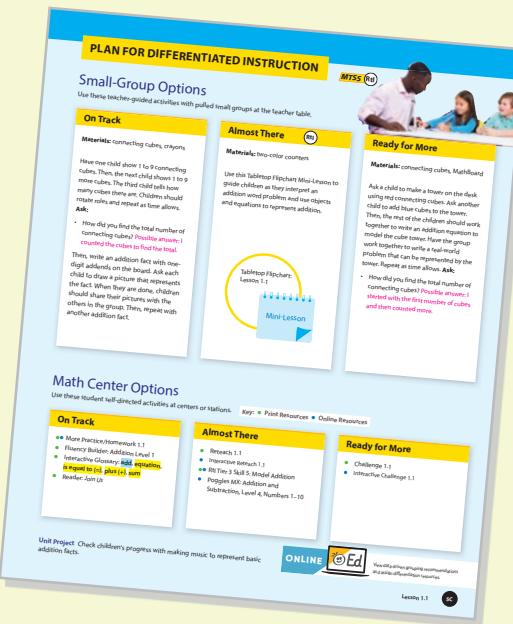
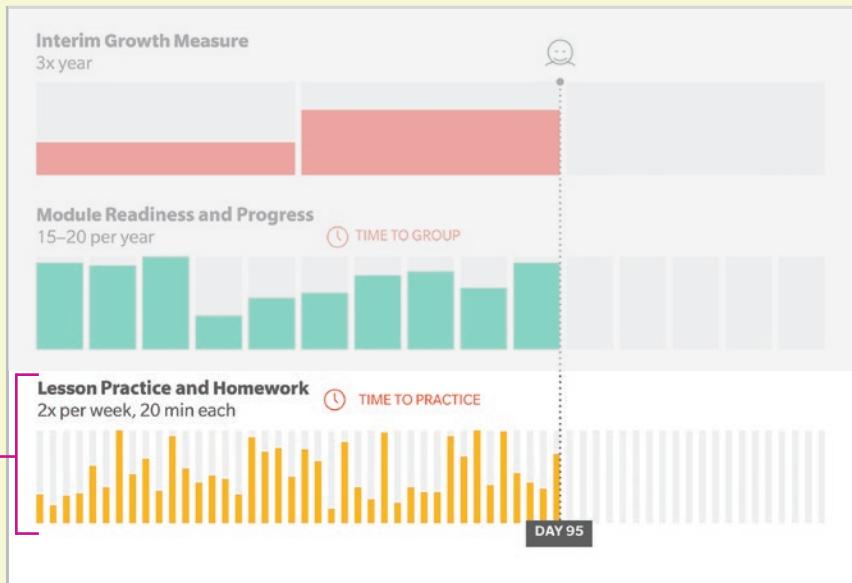
Assessment Performance
ALL STUDENTS | DUE DATE: JAN 10, 2018

Student	Assess. Score	Time Spent	Times Opened	ITEM 1 show item >	ITEM 2 show item >	ITEM 3 show item >	ITEM 4 show item >
All Students	77.3%	24 min. avg.	1 avg.	✓ 4 ✗ 9	3 / 5 avg. score	✓ 9 ✗ 4	✓ 4 ✗ 9
Bracco, Christine	80.0%	25 min	1	✓	4 / 5	✓	✗
Collins, Chris	67.0%	20 min	2	✗	3 / 5	✓	✗
Cooper, Tiffany	26.0%	22 min	1	✗	2 / 5	✗	✓
Evans, Jamal	100.0%	15 min	1	✓	5 / 5	✓	✓
Felix, Tonya	85.4%	28 min	1	✗	3 / 5	✓	✗

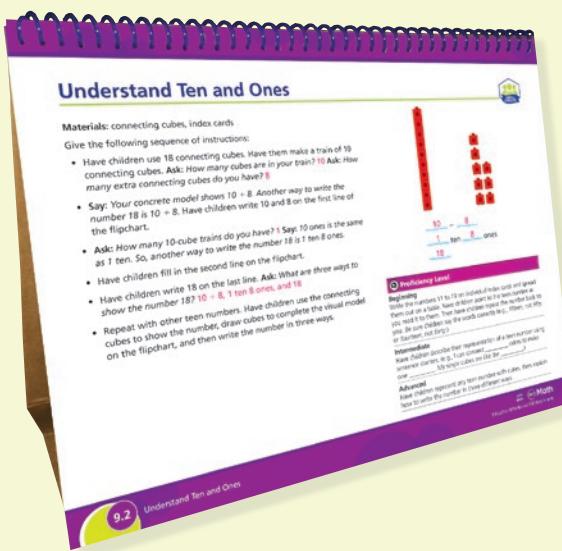
1 of 2 | NEXT >

From your groups, assign differentiated resources based on student performance.

Group Set 1



Based on Benchmark 1 Assessment | Created 4/15/2018 | Edit Groups

Group	Students	Score
Group 1	Bracco, Christine Krynski, Theo Palermo, Justin Evans, Jamal	99% 97% 94% 91%
Group 2	Felix, Tonya Imran, Khaleel Fernandez, Luis	82% 84% 79%
Group 3	Kramer, Liz Collins, Chris Cooper, Tiffany Garcia, Matt	74% 72% 70% 69%

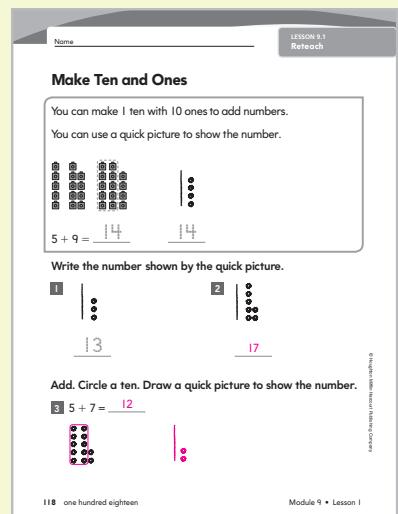

Assessments, Data, and Reports

Lesson Practice and Homework

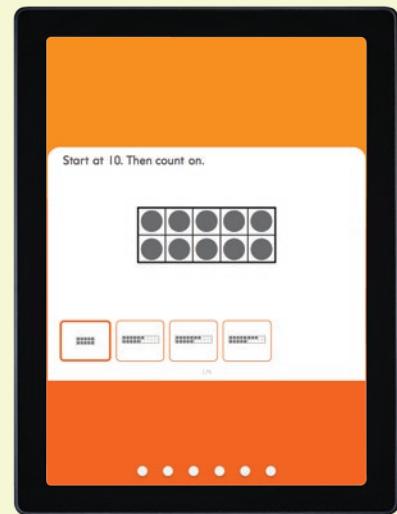
MAKING SURE EVERY STUDENT GROWS Lesson-level formative assessments and the *Into Math* system reports help teachers differentiate, ensuring every student feels appropriately challenged and makes progress toward lesson goals.

TEACHER EDITION The Teacher Edition shows the variety of differentiated resources available for each lesson.

FLIPCHART Teachers can work with students who have not yet mastered lesson content in small groups using the Tabletop Flipchart Mini-Lesson. It provides an alternative approach to help students who are *Almost There* master lesson content. Small-group activities for students who are *On Track* or *Ready for More* are printed in the Teacher Edition.

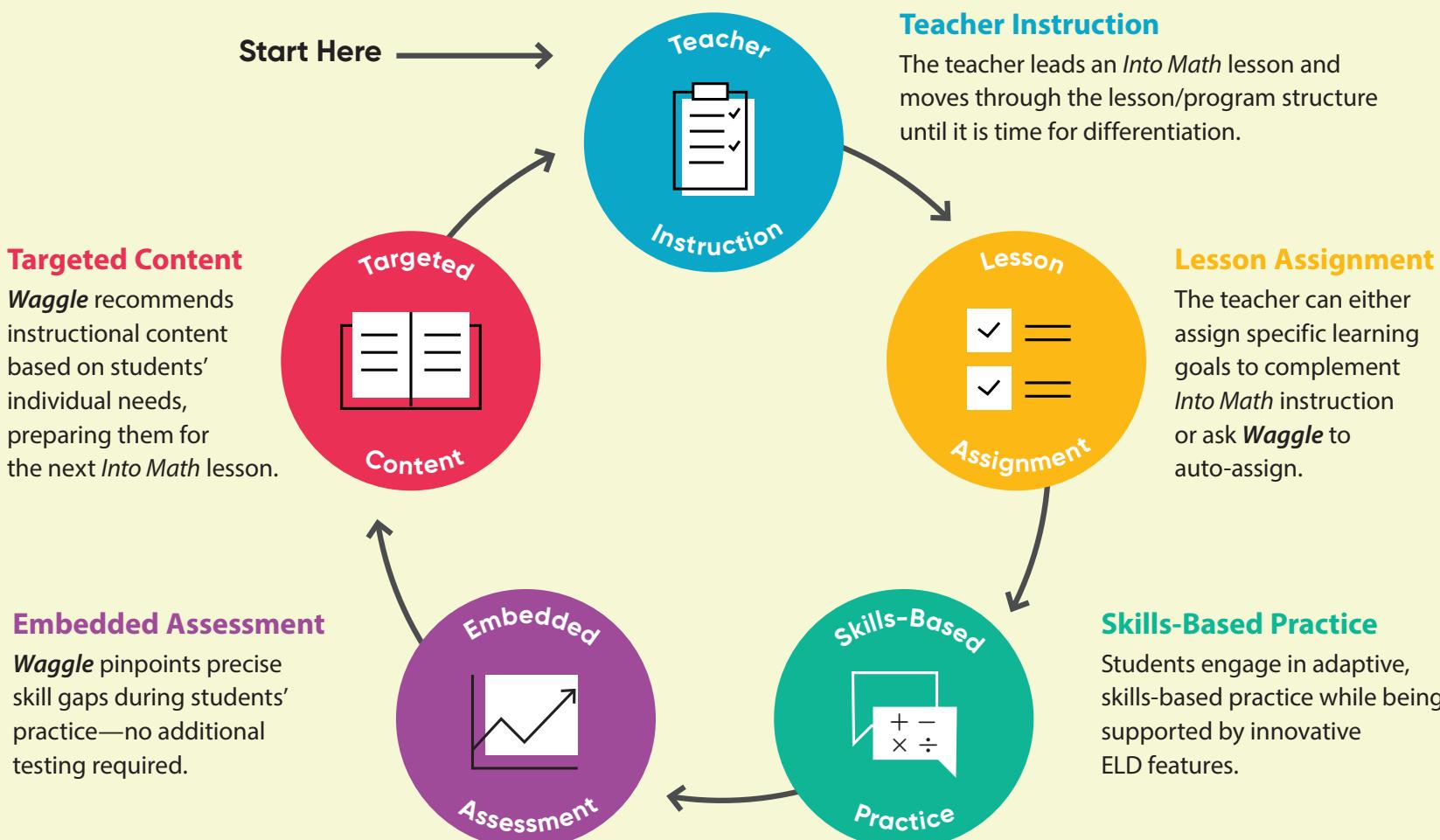


MATH CENTER KIT
The differentiated centers kit contains additional resources for use in math centers. These resources include games, readers, standards practice, fluency builders, and projects.


Assessments, Data, and Reports

LEVERAGE THE POWER OF STUDENT DATA

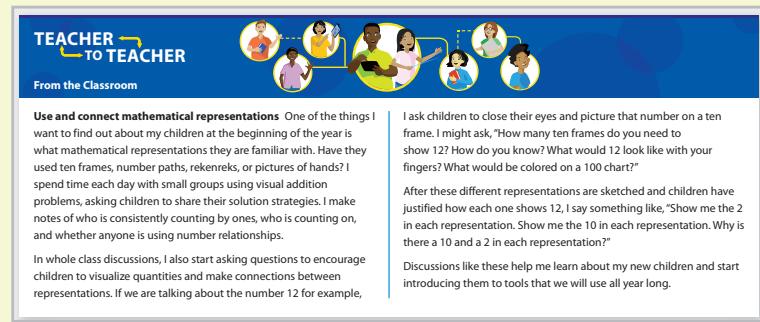
Interactive versions of Reteach, Challenge, Additional Practice, Fluency, RtI Tier 2, and RtI Tier 3 worksheets can be assigned online, and teachers can see student results in reports.


Reteach Worksheet

Interactive RtI Tier 3

EMPOWER STUDENTS WITH WAGGLE™

Waggle can supplement your *Into Math* instruction by providing adaptive, targeted student practice.



Teacher Support

Supporting Best Practices

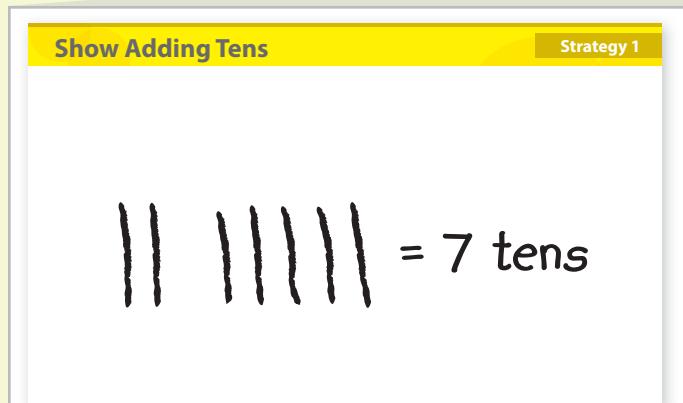
Into Math classrooms maximize student growth by providing teachers with content designed around research-based, effective teaching practices, such as those described in *Principles to Actions* (NCTM, 2014).¹

- Establish mathematics goals to focus learning.
- Implement tasks that promote reasoning and problem solving.
- Use and connect mathematical representations.
- Facilitate meaningful mathematical discourse.
- Pose purposeful questions.
- Build procedural fluency from conceptual understanding.
- Support productive struggle in learning mathematics.
- Elicit and use evidence of student thinking.

TEACHER → TO TEACHER
From the Classroom

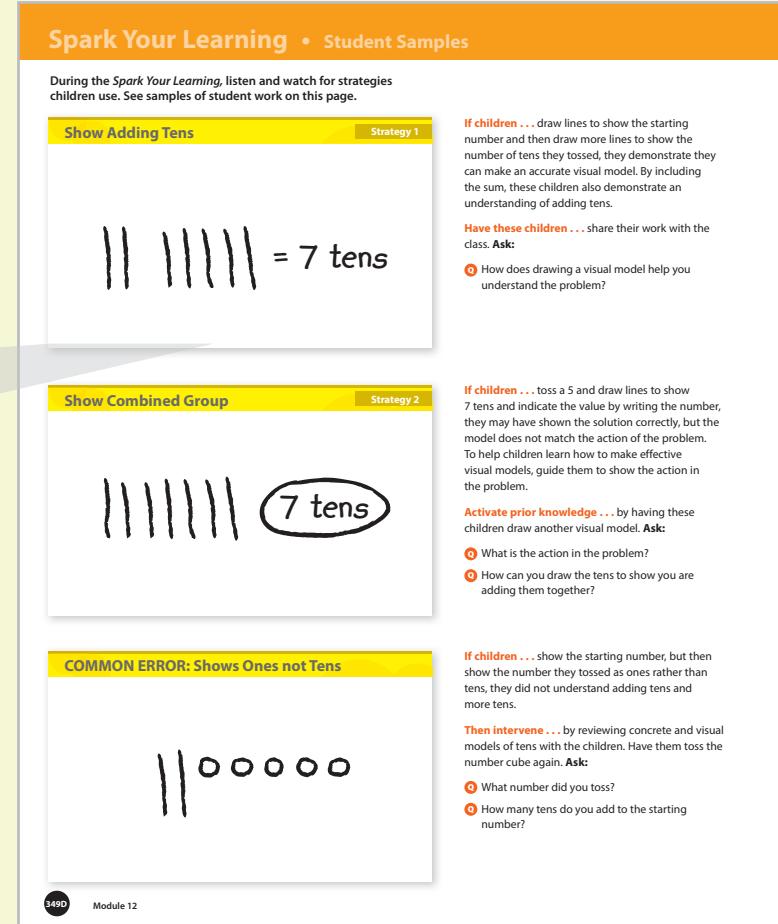
Use and connect mathematical representations One of the things I want to find out about my children at the beginning of the year is what mathematical representations they are familiar with. Have they used ten frames, number paths, rekenreks, or pictures of hands? I spend time each day with small groups using visual addition problems, asking children to share their solution strategies. I make notes of who is consistently counting by ones, who is counting on, and whether anyone is using number relationships.

In whole class discussions, I also start asking questions to encourage children to visualize quantities and make connections between representations. If we are talking about the number 12 for example, I ask children to close their eyes and picture that number on a ten frame. I might ask, "How many ten frames do you need to show 12? How do you know? What would 12 look like with your fingers? What would be colored on a 100 chart?"


After these different representations are sketched and children have justified how each one shows 12, I say something like, "Show me the 10 in each representation. Show me the 10 in each representation. Why is there a 10 and a 2 in each representation?"

Discussions like these help me learn about my new children and start introducing them to tools that we will use all year long.

Teacher to Teacher tips, aligned to the NCTM Effective Mathematics Teaching Practices, were written by educators for educators.


1) National Council of Teachers of Mathematics, *Principles to Actions: Ensuring Mathematical Success for All* (Reston, VA: NCTM, 2014).

Student work samples help teachers understand student thinking behind possible solution pathways.

Show Adding Tens Strategy 1

|| | | | | | | = 7 tens

Spark Your Learning • Student Samples

During the Spark Your Learning, listen and watch for strategies children use. See samples of student work on this page.

Show Adding Tens Strategy 1

|| | | | | | | = 7 tens

Show Combined Group Strategy 2

|| | | | | | | 7 tens

COMMON ERROR: Shows Ones not Tens

|| 0 0 0 0 0

If children ... draw lines to show the starting number and then draw more lines to show the number of tens they tossed, they demonstrate they can make an accurate visual model. By including the sum, these children also demonstrate an understanding of adding tens.

Have these children ... share their work with the class. **Ask:**

- How does drawing a visual model help you understand the problem?

If children ... toss a 5 and draw lines to show 7 tens and indicate the value by writing the number, they may have shown the solution correctly, but the model does not match the action of the problem. To help children learn how to make effective visual models, guide them to show the action in the problem.

Activate prior knowledge ... by having these children draw another visual model. **Ask:**

- What is the action in the problem?
- How can you draw the tens to show you are adding them together?

If children ... show the starting number, but then show the number they tossed as ones rather than tens, they did not understand adding tens and more tens.

Then intervene ... by reviewing concrete and visual models of tens with the children. Have them toss the number cube again. **Ask:**

- What number did you toss?
- How many tens do you add to the starting number?

Carefully crafted tasks, student-centered learning, small groups, and hands-on manipulatives play important roles in an *Into Math* classroom. The *Into Math* Teacher Edition contains point-of-use support to help teachers facilitate learning and implement research-based best practices into their instruction.

Every module includes a professional learning video that features a teacher or HMH author working with real students who are engaging with actual content from the program. The videos include modeling and discussion of effective teaching practices and also feature the Language Routines and Talk Moves strategies.

② Learn Together

Build Understanding

Task 1 **Use Structure** Encourage children to use place value to show tens visually and solve a simpler equivalent equation. $3 + 4 = 7$, $3 \text{ tens} + 4 \text{ tens} = 7 \text{ tens}$, and $30 + 40 = 70$

CONNECT TO VOCABULARY
Have children use the Interactive Glossary during this conversation to record their understanding.

CONNECT MATHEMATICAL IDEAS, REASONING, AND LANGUAGE **Connect and Connect**
Before beginning the task, have children define the word *equation* in their own words.

Sample Guided Discussion

① What do you need to do to solve the problem? Possible answer: I add the two numbers.

Turn and Talk While children talk, listen to verify they use appropriate language to explain their reasoning. Possible answer: $3 + 4 = 7$, and 7 tens is equal to 70, so $30 + 40 = 70$.

Build Understanding

Task 2 **Build Understanding** The Beach Shop has 30 adult sunglasses and 40 child sunglasses. How many sunglasses does the shop have?

How can you show the problem?

Check children's work:
Possible drawing:

3 tens + 4 tens = 7 tens

How can you write an equation to solve the problem?
Equation: $30 + 40 = 70$

The shop has 70 sunglasses.

Turn and Talk Does your answer make sense? How do you know? See possible answer at the left.

300 three hundred fifty

Module 12 • Lesson 1

③ Check Understanding

Formative Assessment

Use formative assessment to determine if your children are successful with this lesson's learning objective.

Children who successfully complete the Check Understanding can continue to the *On Your Own* practice.

For children who missed the Check Understanding problem, work in a puffed small group using the Tabletop Reportchart Mini Lesson.

④ Differentiation Options

Differentiated instruction for all children using small-group mini-lessons and math center activities on page 49c.

Retain

Challenge

Adapt the Digital Click
Understanding to determine:

- success with the learning objective
- items to review
- knowledge and differentiation resources

ONLINE **Ed**

Lesson 12.1

Leveled Questions and Sample Guided Instruction features help teachers ask questions that facilitate student understanding without giving away the answer.

Teacher Support

Empowering Teachers

Into Math is designed to provide opportunities for each and every student to grow. Formative assessment and effective differentiation are critical to student success. However, care must be taken not to turn classrooms into unintentional tracking systems, which often create gates instead of gateways. Access to effective teaching and learning, a high-quality curriculum, and high expectations promote equitable math classrooms.

Professional Learning Cards help teachers effectively implement the Talk Moves and Language Routines, ensuring student reasoning and discourse play a key role in instruction.

Talk Moves

- Adding On
- Reasoning
- Repeating
- Revoicing
- Turn and Talk
- Waiting

Language Routines

- Three Reads
- Critique, Correct, and Clarify
- Stronger and Clearer Each Time
- Compare and Connect

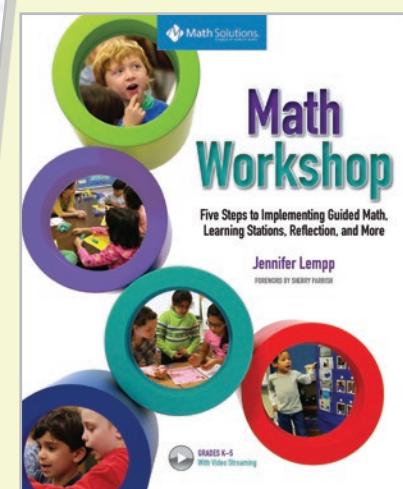
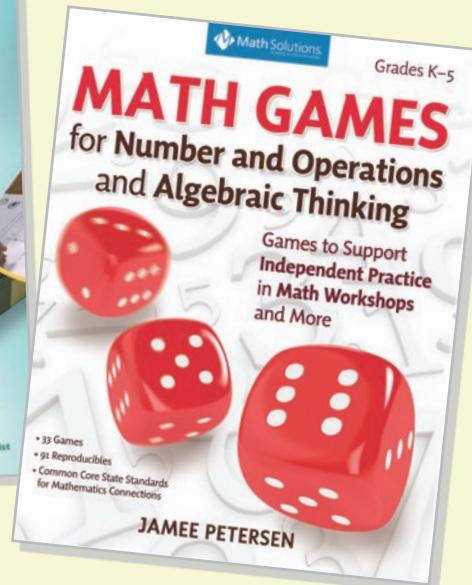
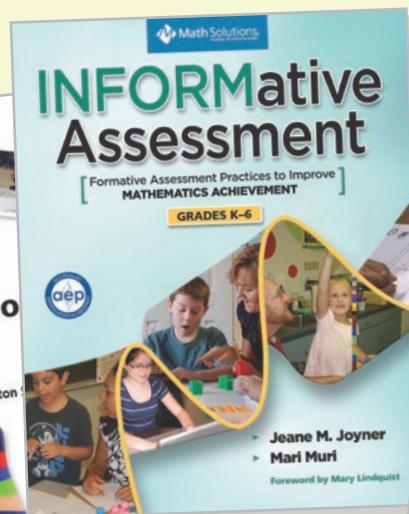
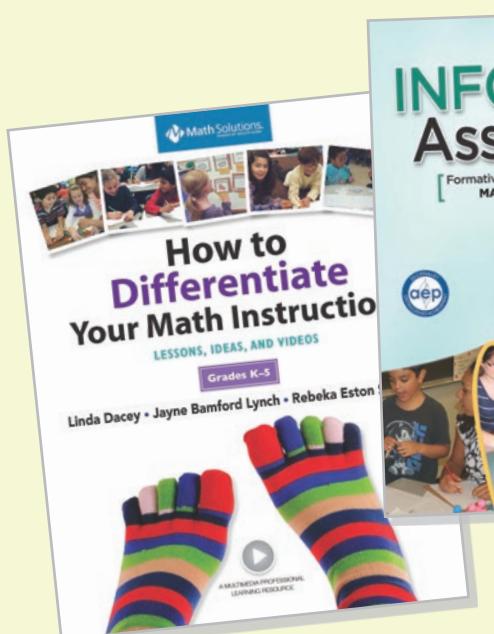
Integrating Talk Moves Into Instruction

Purpose 1 Wait Time • Turn and Talk • Reasoning • Talk Moves

Purpose 2 Repeating

Purpose 3 Reasoning: Why Do You Think That?

Purpose 4 Reasoning: Do You Agree or Disagree? Adding On





Integrating Language Routines Into Instruction

Purpose 1 Compare and Connect

Purpose 2 Routine

Purpose 3 Wait Time

Purpose 4 Turn and Talk

Math Solutions professional learning publications, available to enhance your professional library, are referenced in the *Into Math* Teacher Edition.

Matthew R. Larson, PhD
Past President, National Council
of Teachers of Mathematics
Lincoln Public Schools
Lincoln, Nebraska
Math Solutions Senior Fellow

Ensuring Access and Equity

Access

Access and equity are a guiding principle of effective mathematics programs in which each and every student has access to effective instruction, high expectations, high-quality curriculum, and the support necessary to learn mathematics at a deep level (NCTM, 2014). *Into Math* provides the structure and resources needed to effectively differentiate instruction and support student learning.

The *Into Math* curriculum is rigorous and supports students' conceptual understanding, procedural fluency, and reasoning and problem-solving abilities through an intentional lesson and module design. *Into Math*'s frequent and embedded data checkpoints—linked to targeted instructional supports in print, digital, small-group, and math center options—are designed to ensure that each and every student has access to *Into Math*'s high-quality curriculum.

Equitable Instructional Practices

Mathematics teaching involves more than helping students acquire concepts and skills; it also includes supporting students in coming to see themselves as capable of learning, participating in, and becoming users of mathematics. Implementing equitable instructional practices can improve students' classroom experience, learning outcomes, and disposition toward mathematics.

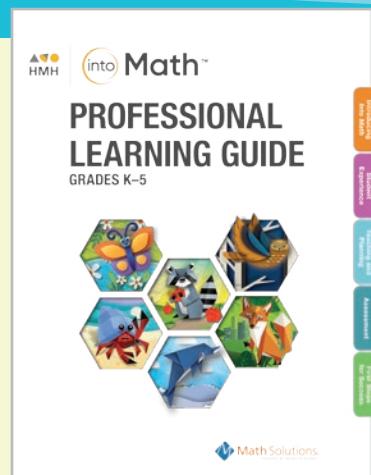
The mathematics teaching practices included in *Into Math* provide an instructional framework for cultivating students' confidence and belief in their ability to learn and use mathematics. For example, the tasks in Spark Your Learning are designed as "low-floor/high-ceiling" tasks that all students can access but that can also be extended to provide challenge. These tasks motivate learning, focus on building students' conceptual understanding to help ensure procedural fluency, encourage the use of multiple representations, and help students develop a positive disposition toward mathematics and themselves as learners.

Similarly, Turn and Talk prompts position students as mathematically competent and capable of sharing their thinking and participating in mathematical arguments. Through discourse, students realize that their thinking serves an important role in learning mathematics and cultivate their confidence as learners¹, which, in turn, improves the learning outcomes of each and every student.

Turn and Talk How does knowing $6 + 4 = 10$ help you find $10 - 6 = \blacksquare$? Explain.

¹) D. Huinker & V. Bill, *Taking Action: Implementing Effective Mathematics Teaching Practices in K–Grade 5*, ed. M. S. Smith (Reston, VA: NCTM, 2017).

Teacher Support


Building a Culture of Professional Growth

A blend of in-person and online support with Math Solutions® coaches fosters a culture of professional growth and inspires a culture of math achievement with every student, in every classroom, every day.

Coaches from Math Solutions® will work side by side with teachers to develop instructional practices that promote reasoning and problem-solving skills. Our goal is to support teachers as they create learning environments where students are encouraged to become fearless problem solvers.

Math Solutions® Partner with Math Solutions® to deepen your practice to meet the learning needs of each and every student and effectively maneuver the challenges you face in your classroom every day.

During the *Getting Started with Into Math* session, teachers receive a Professional Learning Guide. The Professional Learning Guide is also available on Ed: Your Friend in Learning.

Getting Started Modules can be accessed anywhere and anytime on Ed: Your Friend in Learning.

The single greatest determinant for success in a classroom is the teacher. Math Solutions® coaches partner with you as you make critical decisions that impact student learning.

Weston Kieschnick
Associate Partner
International Center for
Leadership in Education
Littleton, Colorado

Blended Learning That Works

Purposeful Technology Use + Old-School Wisdom

We know that digital tools and future-focused learning environments are critical when preparing our students for the real world. But what about the tried-and-true teaching strategies that have always driven real and measurable learning? Where do these fit in?

The Bold School Framework for Strategic Blended Learning™ puts teachers back into the digital learning equation. Its practical yet powerful approach shows how purposeful technology use combined with old-school wisdom can elevate instruction and enhance learning.

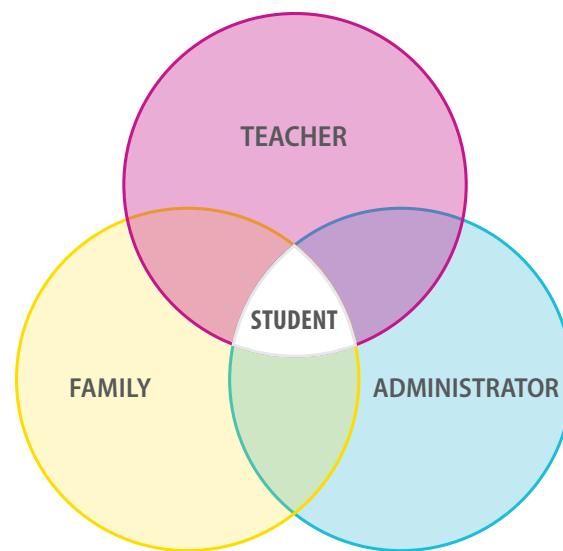
Effective 21st-century learning blends sound pedagogical practices with digital elements to create engaging rigorous and relevant experiences. As educators, we are accountable for the learning outcomes and career readiness of our students. Technology and digital tools, when implemented strategically to enhance—not replace—sound pedagogy, create effective and efficient blended learning experiences for students. Here's how it works.

Bold School Framework for Strategic Blended Learning™	
Step 1	Identify Desired Academic Outcome(s)
Step 2	Select a Goal-Aligned Instructional Strategy That Works
Step 3	Choose Digital Tool(s)
Step 4	Plan Blended Instruction
Step 5	Self-Assess Your Plans and Progress with a Framework

The goal of using technology isn't just to use technology—it's student achievement. We must approach blended learning with greater intention than just "What am I going to do with (insert tech tool here) today?" With this mindset, every teacher can support students through the power of digital learning.

Fostering Learning Mindsets

Through a partnership with Mindset Works®, *Into Math* incorporates the latest research, strategies, and practices to build a community of resilient, curious learners.


- Introduce the learning mindsets—growth mindset, relevance, belonging, and purpose—to help students better understand their self perception and attitudes toward learning.
- Establish the tenets of growth mindset, so that each student understands that he or she has the capacity to learn and grow.
- Target the research-based stances and skills that are key to student agency, engagement, and academic success.

Connect with Families and Community

Engaging with families and the community is critical to student success in school. *Into Math* provides resources to help teachers interact with families throughout the school year.

- **Math on the Spot** video tutorials provide instruction of the math concepts covered and allow for family involvement in their child's learning. The write-in format of the Student Edition gives families a front-row seat to their child's thinking and progress over time, encouraging a strong home–school connection.
- **School Home Letters** inform families about the skills, strategies, and topics students are encountering at school, extending rich dialogue beyond the classroom.

David Dockterman, EdD
Lecturer, Harvard Graduate
School of Education
Cambridge, Massachusetts

Understanding Mindset

Into Math fosters a growth mindset by explicitly teaching students that intelligence is not a fixed trait, but rather hard work and determination are crucial factors in raising academic achievement. Students often believe that their ability to excel in mathematics is fixed. Carol Dweck, a psychologist at Stanford University and leading researcher in student motivation and development, highlights the academic benefits of adopting a “growth” mindset rather than a “fixed” mindset.

Growth Mindset

Growth mindset is the idea that intelligence and abilities can be developed through dedication and work. “This view creates a drive towards learning and a resilience that is essential for great accomplishment. Virtually all great people have had these qualities.”¹ Instruction and classroom community can foster a growth mindset by explicitly teaching that effort has a meaningful impact on learning.² Students with a growth mindset believe:

- Practice and effort are key elements in developing intelligence.
- Persistence and perseverance are important factors in triumphing over setbacks and failures.
- Mistakes and struggle are part of the learning process.

Fixed Mindset

Students who have a fixed mindset believe that intelligence and abilities are fixed traits that cannot be developed. Students who view their intelligence as fixed from birth are more likely to experience decreased confidence and performance when faced with challenges.³ Students with a fixed mindset

- believe intelligence is a fixed quantity that you either possess or lack,
- put in less effort and give up easily, and
- fear failure and are less likely to take risks.

Teaching Growth Mindset

Feedback and classroom discourse can have a lasting impact on how students view intelligence.⁴ By adopting a growth mindset and productive learning strategies, students are more likely to step up to challenges and persevere through and bounce back from adversity. Use the following strategies:

- Teach that intelligence and abilities are developed.
- Praise students’ efforts and strategies rather than their intelligence.
- Use “mistakes” or incorrect answers as teachable moments.

1) C. Dweck, *Mindset: The New Psychology of Success*. (New York, NY: Penguin Random House, 2006).

2) L.S. Blackwell, K.H. Trzesniewski, C.S. Dweck, “Theories of Intelligence Predict Achievement Across an Adolescent Transition: A Longitudinal Study and an Intervention,” *Child Development* 78, no. 1 (January–February 2007): 246–263.

3) Blackwell, Trzesniewski, Dweck, “Theories of Intelligence . . .,” 246–263.

4) M. Malmivuori, “Affect and Self-Regulation,” *Educational Studies in Mathematics* 63, no. 2 (October 2006): 149–164.

Teacher Support

Unpacking Math Standards

Into Math is built on a carefully crafted Learning Spine based on the Mathematics Standards, with a coherent progression from kindergarten through algebra and beyond. The *Into Math* system allows for easy access forward or backward across the K–12 Mathematical Progressions, providing teachers with the tools to navigate prerequisite and follow-on concepts and skills.

12.1 Represent Adding Tens

Build Understanding

LESSON FOCUS AND COHERENCE

Mathematics Standards

- Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten.

Mathematical Practices and Processes (MP)

- Reason abstractly and quantitatively.
- Model with mathematics.
- Look for and make use of structure.

I Can Objective

I can add multiples of ten with multiples of ten.

Mathematical Progressions

Prior Learning	Current Development	Future Connections
Children: <ul style="list-style-type: none">composed and decomposed numbers 11 to 19 into tens and ones. (GrK, 17.1–17.4)used drawings and equations to show how to compose and decompose numbers. (GrK, 17.1–17.4)	Children: <ul style="list-style-type: none">add two-digit numbers with a multiple of ten, within 100.use concrete models, drawings, and strategies to solve and reason problems.understand how to add two-digit numbers with multiples of ten. (Gr2, 14.1–14.4)	Children: <ul style="list-style-type: none">will use addition and subtraction within 100 to solve various problem types. (Gr2, 15.1–15.3)will solve addition and subtraction problems using drawings and equations with a symbol for the unknown number. (Gr2, 14.1–14.4)

UNPACKING MATH STANDARDS

Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten.

What It Means to You

In this lesson, only a portion of the standard is taught. Children learn to add two-digit numbers with tens, by adding tens with tens. Children practice the concept by solving word problems using concrete models and visual models, and then write matching equations.

Before children can attain proficiency with addition and subtraction, they require plenty of experiences - modeling and solving various problem types with the unknown quantity in various positions in the equation.

Lesson 12.1

The Learning Arc within modules or across modules carefully sequences instruction, allowing for students to first build understanding of concepts, then to bridge their understanding by making connections between concepts, and finally to move to procedural fluency through application and practice.

Every lesson includes support that addresses the focus and coherence within the *Into Math* curriculum, derived directly from the Mathematics Standards. Clear progressions along the path to algebra provide insight into Prior Learning and Future Connections and the point-of-use tools necessary to differentiate instruction based on student data.

MODULE 12

PLANNING

UNDERSTAND ADDITION AND SUBTRACTION WITH TENS AND ONES

Introduce and Check for Readiness

- Module Opener
- Are You Ready?

Represent Adding Tens

Learning Objective: Add tens to decade numbers.
Online Professional Learning Video
Review Vocabulary: equations, tens, ones

Represent Subtracting Tens

Learning Objective: Subtract tens from decade numbers.

Add or Subtract Tens

Learning Objective: Add and subtract multiples of ten from decade numbers. Write and solve equations that match the word problems.

Use a Hundred Chart to Add

Learning Objective: Use a hundred chart to add ones and tens to a two-digit number and write the equation that matches the problem.
Online Professional Learning Video

Represent Addition with Tens and Ones

Learning Objective: Use concrete models to add multiples of ten or ones to two-digit numbers and write equations to solve the problem.

Represent Make Ten to Add

Learning Objective: Add a two-digit number and a one-digit number by making a ten using concrete models and visual models and write an equation to show the problem.

Represent Make Ten to Add with a Visual Model

Learning Objective: Use an open number line to add tens and ones to two-digit numbers by making a ten and write an equation to show the problem.

Use Mental Math to Find 10 Less and 10 More

Learning Objective: Use mental math to find 10 less than and 10 more than a number.

Assessment

- Module 12 Test (Forms A and B)
- Unit 4 Performance Task after Module 13

dataO checkpoint

See the entire scope and sequence in the Planning and Pacing Guide.

Module 12

Build Understanding **Connect Concepts and Skills** **Apply and Practice**

Timothy D. Kanold, PhD
Mathematics Educator
Chicago, Illinois

Progressions and Algebra Readiness

Algebra Readiness in 2020 and Beyond

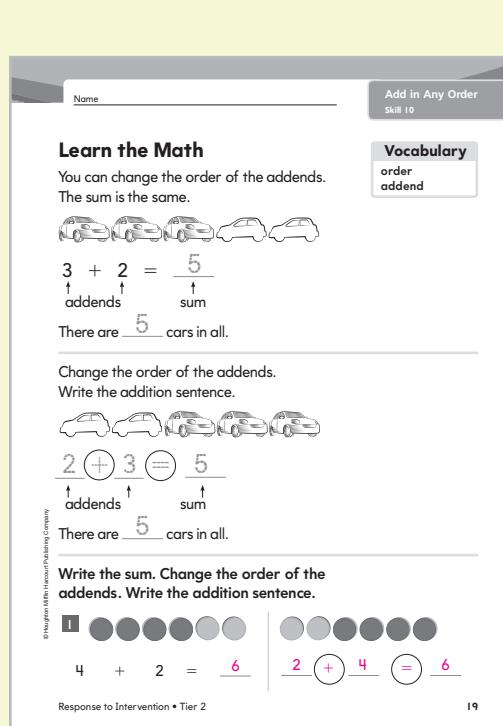
Algebra as a course of study today is integrated around four progressions of elementary and middle school content leading to the algebra course: Number and Operations, Operations and Algebraic Thinking, Statistics and Probability, and Functions.

	Grades K–5	Grades 6–7	Grade 8 and Algebra
1	Number and Operations Base Ten	The Number System Extended	Expand to Numbers Not Rational
2	Operations and Algebraic Thinking	Writing, Interpreting, and Using Expressions and Equations	Modeling with and Solving Linear Equations and Systems
3	Measurement and Data	Statistics and Probability Variability, Inferences, and Chance	Statistics and Probability Bivariate Data, Lines of Best Fit
4	Number and Operations Fractions	Analyze and Apply Ratios and Proportional Relationships	Functions Define, Evaluate, and Compare

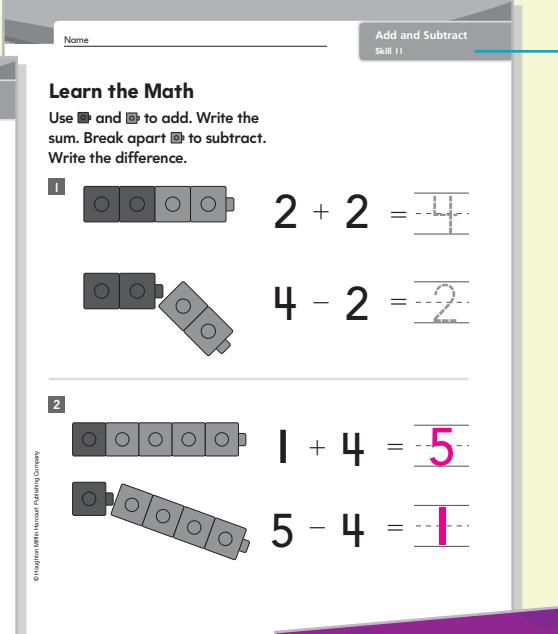
The Operations and Algebraic Thinking progression strand is unique to the K–5 preparation for the algebra readiness curriculum.

The Operations and Algebraic Thinking Progression

Operations and Algebraic Thinking is a K–5 progression that feeds directly into the middle school progression for linear expressions and equations.


At grade levels K–2, this progression focuses on counting, place value, and addition and subtraction of whole numbers. The emphasis is on representing and solving Add To, Take From, Put Together/Take Apart, and Compare problem situations for addition and subtraction. This work will help students to “see” multiplication as groups of objects and as represented by a rectangular array or model in Grades 3–5. Conceptual building blocks are developed for the eventual multiplication of whole numbers.

At grade levels 3–5, this progression expands into the conceptual student understanding needed for students to “see” patterns, properties, and expressions in problem situations—the early foundations of what will become known as algebra. These progressions include multiplication and division problem situations with equal groups, arrays, area, and comparisons. Third graders focus on fluency when multiplying and dividing within 100, fourth graders analyze shape and number patterns, and fifth graders use problem situations that allow them to both write and interpret numerical expressions based on earlier student work with whole numbers.


Teacher Support

Supporting Intervention Needs

Into Math provides the supports teachers need to ensure each and every student succeeds. Data informs teachers' use of differentiated Small-Group and Math Center options in every lesson. *Into Math* includes intervention content for use in a core classroom.

Learn the Math
You can change the order of the addends. The sum is the same.

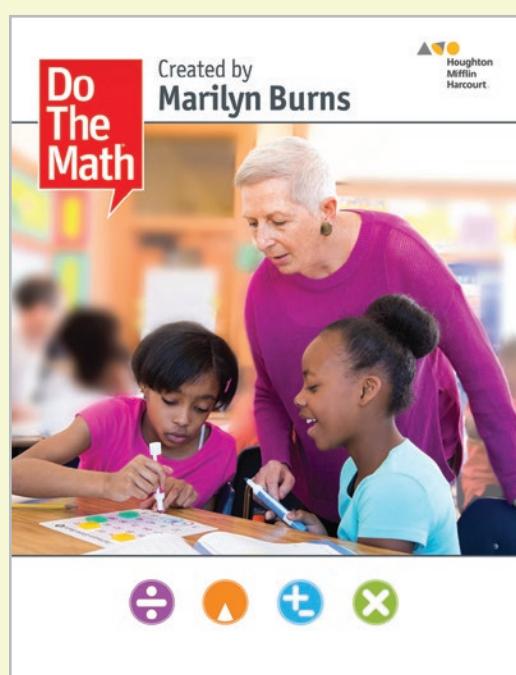
 $3 + 2 = 5$
addends sum
There are 5 cars in all.

Change the order of the addends. Write the addition sentence.

 $2 + 3 = 5$
addends sum
There are 5 cars in all.

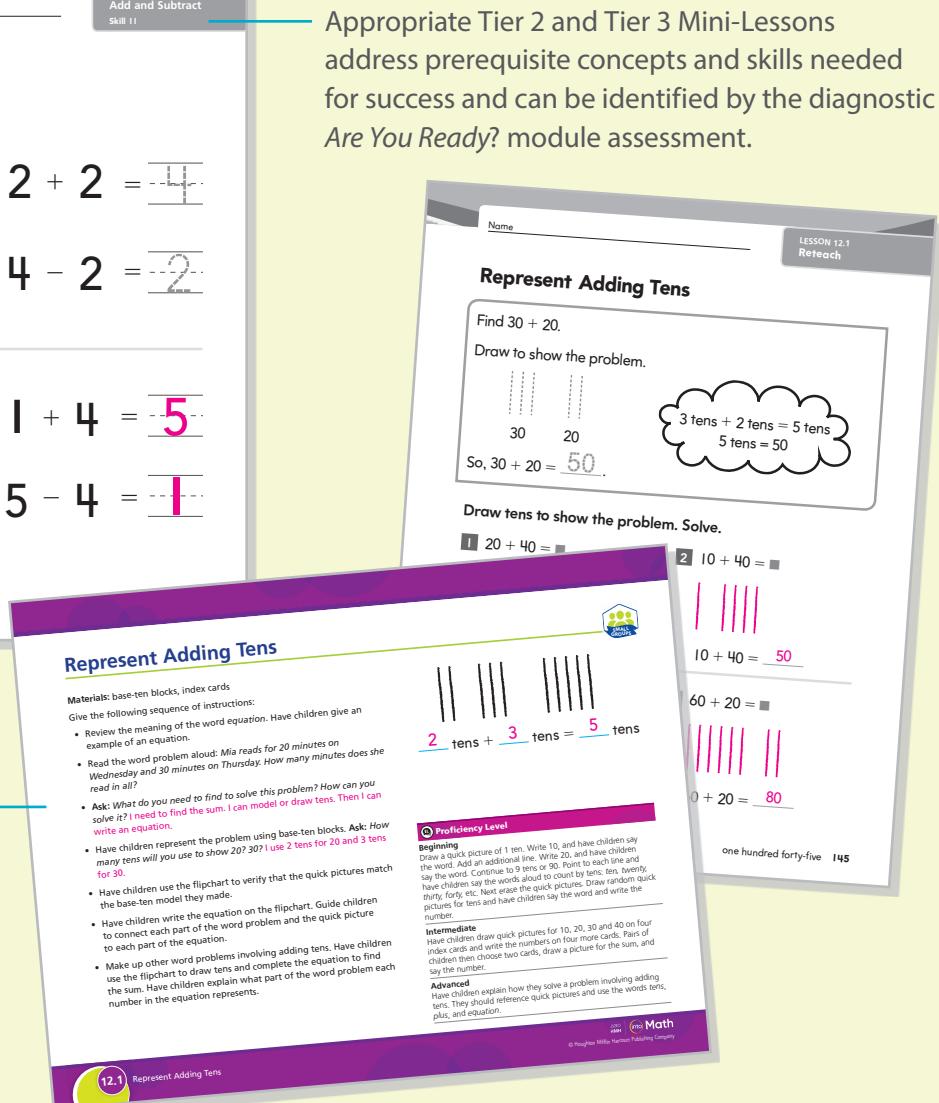
Write the sum. Change the order of the addends. Write the addition sentence.

 $4 + 2 = 6$ $2 + 4 = 6$



Learn the Math
Use \square and \square to add. Write the sum. Break apart \square to subtract. Write the difference.

1 $2 + 2 = \underline{\hspace{2cm}}$
 $4 - 2 = \underline{\hspace{2cm}}$


2 $1 + 4 = \underline{\hspace{2cm}}$
 $5 - 4 = \underline{\hspace{2cm}}$

Every lesson includes a Teacher Tabletop Flipchart Mini-Lesson and a lesson Reteach to support students' Tier 1 needs.

Do The Math
Created by Marilyn Burns
Houghton Mifflin Harcourt

÷ ▲ + ×

Represent Adding Tens
Find $30 + 20$. Draw to show the problem.

 $30 + 20 = 50$
So, $30 + 20 = 50$

Draw tens to show the problem. Solve.

1 $20 + 40 = \underline{\hspace{2cm}}$

2 $10 + 40 = \underline{\hspace{2cm}}$

10 + 40 = 50

60 + 20 = $\underline{\hspace{2cm}}$

0 + 20 = 80

Proficiency Level

Beginning
Give a quick picture of 1 ten. Write 10, and have children say the word. Add an additional line. Write 20, and have children say the word. Add an additional line. Write 30, and have children say the word. Add an additional line. Write 40, and have children say the word. Next, say the words aloud to count by tens: twenty, thirty, forty, etc. Next, erase the quick picture. Draw random quick pictures for tens and have children say the word and write the number.

Intermediate
Have children draw quick pictures for 10, 20, 30 and 40 on four index cards and write the numbers on four more cards. Pairs of children then choose two cards, draw a picture for the sum, and say the sum.

Advanced
Have children explain how they solve a problem involving adding tens. They should reference quick pictures and use the words tens, plus, and equals.

HMH also offers robust Intervention Solutions for students who need targeted and intensive intervention. Developed by Marilyn Burns, *Do the Math* has thirteen modules that are organized into four topics—Addition and Subtraction, Multiplication, Division, and Fractions. These modules provide carefully scaffolded instruction to build conceptual understanding and develop numerical reasoning. See pages PG72–PG73.

- grades 1 and up
- can be used during core instruction or in a separate instruction block
- effective and easily managed instruction with embedded assessments
- includes digital resources
- six weeks of 30-minute lessons in each module

Professional Learning References

Foundational Research

Hattie, J., Fisher, D., & Frey, N. (2017). *Visible Learning for Mathematics: What Works Best to Optimize Student Learning*. Thousand Oaks, CA: Corwin.

National Council of Teachers of Mathematics (NCTM). (2014). *Principles to Actions: Ensuring Mathematical Success for All*. Reston, VA: NCTM.

National Research Council. Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). *Adding It Up: Helping Children Learn Mathematics*. Washington, DC: National Academy Press.

National Research Council. (2005). *How Students Learn: Mathematics in the Classroom*. Washington, DC: National Academies Press.

Schielack, J., Charles, R., Clements, D., Duckett, P., Fennell, F. (Skip)., Lewandowski, S., Trevino, E., Zbiek, R.M., (2006). *Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics*. Reston, VA: NCTM.

Curriculum Design and Standards

Common Core Standards Writing Team. (2013). *Progressions for the Common Core State Standards Mathematics*

National Board for Professional Teaching Standards. (2010, preface rev. 2015, 2016). *Mathematics Standards for Teachers of Students Ages 11–18+*. Arlington, VA: National Board for Professional Teaching Standards.

National Governors Association Center for Best Practices, Council of Chief State School Officers. (2012). *Common Core State Standards: K-8 Publisher's Criteria for the Common Core State Standards for Mathematics*. Washington, DC: National Governors Association Center for Best Practices, Council of Chief State School Officers.

Mathematics Knowledge for Teaching

Ball, D.L., Thames, M. H., & Phelps, G. (2008). Content knowledge for Teaching: What Makes It Special?. *Journal of Teacher Education*, 59(5), 389-407.

Chapin, S. H., O'Connor, C., & Anderson, N. C. (2013). *Classroom Discussions in Math: A Teacher's Guide for Using Talk Moves to Support the Common Core and more, Grades K-6* (3rd edition). Sausalito, CA: Math Solutions.

Chapin, S.H., & Johnson, A. (2000). *Math Matters: Understanding the Math You Teach. Grades K-6*. Sausalito, CA: Math Solutions.

Dean, C.B., Hubbell, E.R., Pitler, H., & Stone, B.J. (2nd ed., 2012). *Classroom Instruction that Works: Research-Based Strategies for Increasing Student Achievement*. Alexandria, VA: Association for Supervision and Curriculum Development.

Dixon, J.K., Nolan, E.C., Adams, T.L., Brooks, L.A., Howse, T.D. (2016). *Making Sense of Mathematics for Teaching Grades K-2*. Bloomington, IN: Solution Tree Press.

Dixon, J.K., Nolan, E.C., Adams, T.L., Tobias, J.M., Barmoha, G. (2016). *Making Sense of Mathematics for Teaching Grades 3-5*. Bloomington, IN: Solution Tree Press.

Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking Pedagogical Content Knowledge: Conceptualizing and Measuring Teachers' Topic-Specific Knowledge of Students. *Journal for Research in Mathematics Education*, 39(4), 372-400.

Huinker, D., & Bill, V. Smith, M.S. (Ed), (2017). *Taking Action: Implementing Effective Mathematics Teaching Practices in K-Grade 5*. Reston VA: NCTM.

Ma, L. (2nd ed., 2010). *Knowing and Teaching Elementary Mathematics: Teachers' Understanding of Fundamental Mathematics in China and the United States*. New York, NY: Routledge.

Nolan, E.C., Dixon, J.K., Roy, G.J., Andreasen, J.B. (2016). *Making Sense of Mathematics for Teaching Grades 6-8*. Bloomington, IN: Solution Tree Press.

Nolan, E.C., Dixon, J.K., Safi, F., Haciomeroglu, E.S. (2016). *Making Sense of Mathematics for Teaching High School*. Bloomington, IN: Solution Tree Press.

Petersen, J. (2013). *Math Games for Number and Operations and Algebraic Thinking: Games to Support Independent Practice in Math Workshops and More, Grades K-5*. Sausalito, CA: Math Solutions.

Schoenfeld, A. H. (2014). What Makes for Powerful Classrooms, and How Can We Support Teachers in Creating Them? A Story of Research and Practice, Productively Intertwined. *Educational Researcher*, 43(8), 404-412.

Shulman, L. S. (1986/2013). Those Who Understand: Knowledge Growth in Teaching. *The Journal of Education*, 193(3), 1-11.

Smith, M.S., & Stein, M.K. (2nd ed., 2018). *Five Practices for Orchestrating Productive Mathematical Discussion*. Thousand Oaks, CA: Corwin.

Steele, M., & Raith, M.L. Smith, M.S. (Ed), (2017). *Taking Action: Implementing Effective Mathematics Teaching Practices in Grades 6-8*. Reston VA: NCTM.

Differentiation

Dacey, L., Lynch, J. B., & Salemi, R. E. (2013). *How to Differentiate Your Math Instruction: Lessons, Ideas, and Videos with Common Core Support*. Sausalito, CA: Math Solutions.

Small, M. (3rd ed., 2017). *Good Questions: Great Ways to Differentiate Mathematics Instruction in the Standards-Based Classroom*. New York, NY: Teachers College Press.

English Language Learners

Council of the Great City Schools. (2014). *A Framework for Raising Expectations and Instructional Rigor for English Language Learners*.

National Council of Teachers of Mathematics (NCTM). Civil, M., & Turner, E. (Eds), (2014). *The Common Core State Standards in Mathematics for English Language Learners: Grades K-8*. Alexandria, VA: TESOL Press.

Zwiers, J., Dieckmann, J., Rutherford-Quach, S., Daro, V., Skarin, R., Weiss, S., & Malamut, J. (2017). *Principles for the Design of Mathematics Curricula: Promoting Language and Content Development*. Stanford, CA: Stanford University.

Continued on next page →

Professional Learning References

Equity

Aguirre, J., Mayfield-Ingram, K., Martin, D. (2013). *The Impact of Identity in K-8 Mathematics: Rethinking Equity-Based Practices*. Reston, VA: The National Council of Teachers of Mathematics.

Boaler, J., & Staples, M. (2008). Creating Mathematical Futures through an Equitable Teaching Approach: The Case of Railside School. *Teachers College Record*, 110(3), 608-645.

Flores, A. (2007). Examining Disparities in Mathematics Education: Achievement Gap or Opportunity Gap?. *High School Journal*, 91(1), 29-42.

Howard, T. C. (2010). *Why Race and Culture Matter in Schools: Closing the Achievement Gap in America's Classrooms* (2009). New York, NY: Teachers College Press.

Larson, M. R., & Andrews, D. (2015). One District's Journey to Promote Access and Equity. *New England Mathematics Journal*, XLVII, 31-40.

Leinwand, S. (2009). *Accessible Mathematics: 10 Instructional Shifts that Raise Student Achievement*. Portsmouth, NH: Heinemann.

Learning Mindset

Boaler, Jo (2016). *Mathematical Mindsets: Unleashing Students' Potential through Creative Math, Inspiring Messages and Innovative Teaching*. San Francisco, CA: Jossey-Bass.

Dockterman, D., & Blackwell, L. (2014). Growth Mindset in Context: Content and Culture Matter Too. *International Center for Leadership in Education*, 1-4.

Dweck, C. S. (2006). *Mindset: The New Psychology of Success*. New York, N.Y.: Penguin Random House.

Digital Learning Environment

Delgado, A.J., Wardlow, L., McKnight, K., & O'Malley, K. (2015). Educational Technology: A Review of the Integration, Resources, and Effectiveness of Technology in K-12 Classrooms. *Journal of Information Technology Education: Research*, 14, 397-416.

Imbriale, R. (2013). Blended Learning. *Principal Leadership*, 13(6), 30-34.

Kieschnick, W. (2017). International Center for Leadership in Education, Inc. *Bold School: Old School Wisdom + New School Technologies = Blended Learning that Works*. Rexford, NY.

Mayer, R. E. (2013). Multimedia Learning. In *Educational Psychology Handbook: International Guide to Student Achievement*, J. Hattie & E. Anderman (Eds.). 396-398. New York, N.Y.: Routledge.

Modern Teacher. (2016). *Digital Convergence: The Path Toward the K-12 Modern Learning Environment*. Denver, CO: Modern Teacher.

Public Impact. (2013). *A Better Blend: A Vision for Boosting Student Outcomes with Digital Learning*. Chapel Hill, NC: Public Impact.

Ross, S.M., Morrison, G.R., & Lowther, D.L. (2010). Educational Technology Research Past and Present: Balancing Rigor and Relevance to Impact School Learning. *Contemporary Educational Technology*, 1(1), 17-35.

Schneider, M.C., Egan, K.L., & Julian, M.W. (2013). Classroom Assessment in the Context of High-Stakes Testing. In *SAGE Handbook of Research on Classroom Assessment*, J. McMillan (Ed.). 55-70. Thousand Oaks, CA: SAGE.

U.S. Department of Education, Office of Planning, Evaluation, and Policy Development. (2009). *Evaluation of Evidence-Based Practices in Online Learning: A Meta-Analysis and Review of Online Learning Studies*. Washington, DC: U.S. Department of Education.

Assessment, Data, & Reports

Black, P., & Wiliam, D. (1998). Inside the Black Box: Raising Standards through Classroom Assessment. *Phi Delta Kappan*, 80(2), 139-144.

Popham, W. J. (8th ed., 2018). *Classroom Assessment: What Teachers Need to Know*. London: Pearson.

Stiggins, R. (2008). *Assessment Manifesto: A Call for the Development of Balanced Assessment Systems*. Portland, OR: ETS Assessment Training Institute.

Professional Learning

Darling-Hammond, L., Wei, R.C., Andree, A., Richardson, N., & Orphanos, S. (2009). *Professional Learning in the Learning Profession: A Status Report on Teacher Development in the United States and Abroad*. Oxford, OH: National Staff Development Council.

Dixon, J. K., Egendoerfer, L. A., & Clements, T. (2009). Do They Really Need to Raise Their Hands? Challenging a Traditional Social Norm in a Second Grade Mathematics Classroom. *Teaching and Teacher Education*, 25(8), 1067-1076.

Garet, M.S., Porter, A.C., Desimone, L., Birman, B.F., & Yoon, K.S. (2001). What Makes Professional Development Effective? Results from a National Sample of Teachers. *American Educational Research Journal*, 38(4), 915-945.

Hargreaves, A., & Fullan, M. (2013). The Power of Professional Capital: With an Investment in Collaboration, Teachers become Nation Builders. *Journal of Staff Development*, 34(3), 36-39.

Kanold, T.D., Kanold-McIntyre, J., Larson, M.R., Barnes, B., Schuhl, S., & Toncheff, M. (2018). *Mathematics Instruction & Tasks in a PLC at Work*. Bloomington, IN: Solution Tree Press.

Kelemanik, G., Lucenta, A., & Janssen Creighton, S. (2016). *Routines for Reasoning: Fostering the Mathematical Practices in All Students*. Portsmouth, NH: Heinemann.

Knight, J. (2007). *Instructional Coaching: A Partnership Approach to Improving Instruction*. Thousand Oaks, CA: Corwin.

Leinwand, S. (2nd ed., 2012) *Sensible Mathematics*. Portsmouth, NH: Heinemann.

Sweeney, D. (2011) *Student-Centered Coaching*. Thousand Oaks, CA: Corwin Press.

Notes & Reflections

Lesson	Mathematics Standards, Grade K	Pacing
Unit 1 COUNT SEQUENCE AND NUMBERS TO 5		
Module 1: Represent Numbers to 5 with Objects		
Lesson 1.1 Represent 1 and 2	<ul style="list-style-type: none"> When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. Count to answer “how many?” questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects. 	1 day
Lesson 1.2 Represent 3 and 4	<ul style="list-style-type: none"> When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. Count to answer “how many?” questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects. 	1 day
Lesson 1.3 Represent 5	<ul style="list-style-type: none"> When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. Count to answer “how many?” questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects. 	1 day
Lesson 1.4 Represent 0	<ul style="list-style-type: none"> When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. Count to answer “how many?” questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects. 	1 day
Lesson 1.5 Ways to Make 5	<ul style="list-style-type: none"> Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., $5 = 2 + 3$ and $5 = 4 + 1$). 	1 day

- Major
- Supporting
- Additional

In addition to the core instructional pacing, HMH recommends the following:

- 3 days per year for the Growth Measure assessments
- 2 days per module for the Module Opener, Are You Ready?, Module Review, and Module Test
- 1 day per unit for the Performance Task

Using these recommendations, the total pacing for Grade K is 162 days.

Lesson	Mathematics Standards, Grade K	Pacing
Module 2: Represent Numbers to 5 with a Written Numeral		
Lesson 2.1 Count and Write 0 and 1	<ul style="list-style-type: none"> ■ Write numbers from 0 to 20. Represent a number of objects with a written numeral 0–20 (with 0 representing a count of no objects). ■ When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. 	1 day
Lesson 2.2 Count and Write 2 and 3	<ul style="list-style-type: none"> ■ Write numbers from 0 to 20. Represent a number of objects with a written numeral 0–20 (with 0 representing a count of no objects). ■ When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. ■ Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. 	1 day
Lesson 2.3 Count and Write 4 and 5	<ul style="list-style-type: none"> ■ Write numbers from 0 to 20. Represent a number of objects with a written numeral 0–20 (with 0 representing a count of no objects). ■ When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. ■ Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. 	1 day
Lesson 2.4 Count and Write Numbers to 5	<ul style="list-style-type: none"> ■ Write numbers from 0 to 20. Represent a number of objects with a written numeral 0–20 (with 0 representing a count of no objects). ■ When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. ■ Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. 	1 day
Lesson 2.5 Count and Order to 5	<ul style="list-style-type: none"> ■ Understand that each successive number name refers to a quantity that is one larger. ■ When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. 	1 day

Pacing Guide

Lesson	Mathematics Standards, Grade K	Pacing
Module 3: Matching and Counting Numbers to 5		
Lesson 3.1 Identify a Greater Number of Objects Within 5	<ul style="list-style-type: none"> ■ Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies. 	1 day
Lesson 3.2 Identify a Lesser Number of Objects Within 5	<ul style="list-style-type: none"> ■ Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies. 	1 day
Lesson 3.3 Match Equal Groups of Objects Within 5	<ul style="list-style-type: none"> ■ Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies. 	1 day
Lesson 3.4 Compare Groups Within 5 by Counting	<ul style="list-style-type: none"> ■ Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies. 	1 day
Lesson 3.5 Compare Groups Within 5 by Matching	<ul style="list-style-type: none"> ■ Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies. 	1 day
Lesson 3.6 Compare Numbers Within 5	<ul style="list-style-type: none"> ■ Compare two numbers between 1 and 10 presented as written numerals. 	1 day
Module 4: Classify, Count, and Sort Objects		
Lesson 4.1 Classify and Count by Color	<ul style="list-style-type: none"> <input type="checkbox"/> Classify objects into given categories; count the numbers of objects in each category and sort the categories by count. 	1 day
Lesson 4.2 Classify and Count by Shape	<ul style="list-style-type: none"> <input type="checkbox"/> Classify objects into given categories; count the numbers of objects in each category and sort the categories by count. 	1 day
Lesson 4.3 Classify and Count by Size	<ul style="list-style-type: none"> <input type="checkbox"/> Classify objects into given categories; count the numbers of objects in each category and sort the categories by count. 	1 day
Lesson 4.4 Classify, Count, and Sort by Count	<ul style="list-style-type: none"> <input type="checkbox"/> Classify objects into given categories; count the numbers of objects in each category and sort the categories by count. 	1 day
Module 5: Add To and Take From Within 5		
Lesson 5.1 Act Out Addition Problems Within 5	<ul style="list-style-type: none"> ■ Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. ■ Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	1 day
Lesson 5.2 Act Out Subtraction Problems Within 5	<ul style="list-style-type: none"> ■ Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. ■ Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	1 day

Lesson	Mathematics Standards, Grade K	Pacing
Lesson 5.3 Solve Add To Problems Within 5	<ul style="list-style-type: none"> Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	2 days
Lesson 5.4 Solve Take From Problems Within 5	<ul style="list-style-type: none"> Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	2 days
Lesson 5.5 Write Addition Equations Within 5	<ul style="list-style-type: none"> Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	2 days
Lesson 5.6 Write Subtraction Equations Within 5	<ul style="list-style-type: none"> Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	2 days
Lesson 5.7 Solve Result Unknown Word Problems Within 5	<ul style="list-style-type: none"> Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Fluently add and subtract within 5. 	2 days

Module 6: Put Together and Take Apart Within 5

Lesson 6.1 Represent Addition Problems Within 5 Using Objects and Drawings	<ul style="list-style-type: none"> Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	1 day
Lesson 6.2 Represent Subtraction Problems Within 5 Using Objects and Drawings	<ul style="list-style-type: none"> Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	1 day
Lesson 6.3 Solve Put Together Problems Within 5	<ul style="list-style-type: none"> Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	2 days

Module continued on next page →


Pacing Guide

Lesson	Mathematics Standards, Grade K	Pacing
Module 6: Put Together and Take Apart Within 5		
Lesson 6.4 Solve Take Apart Problems Within 5	<ul style="list-style-type: none"> ■ Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. ■ Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	2 days
Lesson 6.5 Represent Addition Using Mental Images	<ul style="list-style-type: none"> ■ Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. ■ Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	2 days
Lesson 6.6 Represent Subtraction Using Mental Images	<ul style="list-style-type: none"> ■ Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. ■ Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	2 days
Lesson 6.7 Solve Word Problems Within 5	<ul style="list-style-type: none"> ■ Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. ■ Fluently add and subtract within 5. 	2 days
Unit 2 COUNT SEQUENCE AND NUMBERS TO 10		
Module 7: Represent Numbers 6 to 10 with Objects		
Lesson 7.1 Represent 6 and 7	<ul style="list-style-type: none"> ■ When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. ■ Count to answer “how many?” questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects. 	1 day
Lesson 7.2 Represent 8 and 9	<ul style="list-style-type: none"> ■ When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. ■ Count to answer “how many?” questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects. 	1 day
Lesson 7.3 Represent 10	<ul style="list-style-type: none"> ■ When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. ■ Count to answer “how many?” questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects. 	1 day

Lesson	Mathematics Standards, Grade K	Pacing
Module 8: Represent Numbers 6 to 10 with a Written Numeral		
Lesson 8.1 Count and Write 6 and 7	<ul style="list-style-type: none"> ■ Write numbers from 0 to 20. Represent a number of objects with a written numeral 0–20 (with 0 representing a count of no objects). ■ Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. ■ When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. 	1 day
Lesson 8.2 Count and Write 8 and 9	<ul style="list-style-type: none"> ■ Write numbers from 0 to 20. Represent a number of objects with a written numeral 0–20 (with 0 representing a count of no objects). ■ Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. ■ When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. 	1 day
Lesson 8.3 Count and Write 10	<ul style="list-style-type: none"> ■ Write numbers from 0 to 20. Represent a number of objects with a written numeral 0–20 (with 0 representing a count of no objects). ■ Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. ■ When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. 	1 day
Lesson 8.4 Count and Order to 10	<ul style="list-style-type: none"> ■ Understand that each successive number name refers to a quantity that is one larger. ■ When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. 	1 day
Module 9: Use the Count Sequence to Count to 100		
Lesson 9.1 Count to 100 by Ones	<ul style="list-style-type: none"> ■ Count to 100 by ones and by tens. 	1 day
Lesson 9.2 Count to 100 by Tens	<ul style="list-style-type: none"> ■ Count to 100 by ones and by tens. 	1 day
Lesson 9.3 Count Forward from a Given Number	<ul style="list-style-type: none"> ■ Count forward beginning from a given number within the known sequence (instead of having to begin at 1). 	1 day

Pacing Guide

Lesson	Mathematics Standards, Grade K	Pacing
Module 10: Compare Numbers to 10		
Lesson 10.1 Identify a Greater Number of Objects Within 10	<ul style="list-style-type: none"> ■ Understand that each successive number name refers to a quantity that is one larger. ■ Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies. 	1 day
Lesson 10.2 Identify a Lesser Number of Objects Within 10	<ul style="list-style-type: none"> ■ Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies. 	1 day
Lesson 10.3 Match Equal Groups of Objects Within 10	<ul style="list-style-type: none"> ■ Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies. 	1 day
Lesson 10.4 Compare Groups Within 10 by Counting	<ul style="list-style-type: none"> ■ Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies. 	1 day
Lesson 10.5 Compare Groups Within 10 by Matching	<ul style="list-style-type: none"> ■ Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies. 	1 day
Lesson 10.6 Compare Numbers Within 10	<ul style="list-style-type: none"> ■ Compare two numbers between 1 and 10 presented as written numerals. 	1 day
Module 11: Add To and Take From Within 10		
Lesson 11.1 Act Out Addition Problems Within 10	<ul style="list-style-type: none"> ■ Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. ■ Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	1 day
Lesson 11.2 Act Out Subtraction Problems Within 10	<ul style="list-style-type: none"> ■ Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. ■ Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	1 day
Lesson 11.3 Solve Add To Problems Within 10	<ul style="list-style-type: none"> ■ Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. ■ Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	2 days
Lesson 11.4 Solve Take From Problems Within 10	<ul style="list-style-type: none"> ■ Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. ■ Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	2 days

Lesson	Mathematics Standards, Grade K	Pacing
Lesson 11.5 Write Addition Equations Within 10	<ul style="list-style-type: none"> ■ Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. ■ Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	2 days
Lesson 11.6 Write Subtraction Equations Within 10	<ul style="list-style-type: none"> ■ Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. ■ Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	2 days
Lesson 11.7 Solve Result Unknown Word Problems Within 10	<ul style="list-style-type: none"> ■ Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. ■ Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	2 days
Module 12: Put Together and Take Apart Within 10		
Lesson 12.1 Represent Addition Problems Within 10 Using Objects and Drawings	<ul style="list-style-type: none"> ■ Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. ■ Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	1 day
Lesson 12.2 Represent Subtraction Problems Within 10 Using Objects and Drawings	<ul style="list-style-type: none"> ■ Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. ■ Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	1 day
Lesson 12.3 Solve Put Together Problems Within 10	<ul style="list-style-type: none"> ■ Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. ■ Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	2 days
Lesson 12.4 Solve Take Apart Problems Within 10	<ul style="list-style-type: none"> ■ Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. ■ Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	2 days

Pacing Guide

Lesson	Mathematics Standards, Grade K	Pacing
Module 12: Put Together and Take Apart Within 10		
Lesson 12.5 Solve Word Problems Within 10	<ul style="list-style-type: none"> ■ Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. ■ Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. 	2 days
Module 13: Ways to Make Numbers to 10		
Lesson 13.1 Ways to Make 6 and 7	<ul style="list-style-type: none"> ■ Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., $5 = 2 + 3$ and $5 = 4 + 1$). ■ Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. 	1 day
Lesson 13.2 Ways to Make 8	<ul style="list-style-type: none"> ■ Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., $5 = 2 + 3$ and $5 = 4 + 1$). ■ Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. 	1 day
Lesson 13.3 Ways to Make 9	<ul style="list-style-type: none"> ■ Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., $5 = 2 + 3$ and $5 = 4 + 1$). ■ Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. 	1 day
Lesson 13.4 Ways to Make 10	<ul style="list-style-type: none"> ■ Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., $5 = 2 + 3$ and $5 = 4 + 1$). ■ Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. 	1 day
Lesson 13.5 Make 10 from a Given Number	<ul style="list-style-type: none"> ■ For any number from 1 to 9, find the number that makes 10 when added to the given number, e.g., by using objects or drawings, and record the answer with a drawing or equation. 	1 day

Lesson	Mathematics Standards, Grade K	Pacing
UNIT 3 GEOMETRY		
Module 14: Analyze and Compare Three-Dimensional Shapes		
Lesson 14.1 Identify and Describe Spheres	<ul style="list-style-type: none"> ○ Correctly name shapes regardless of their orientations or overall size. ○ Identify shapes as two-dimensional (lying in a plane, "flat") or three-dimensional ("solid"). □ Analyze and compare two- and three-dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/"corners") and other attributes (e.g., having sides of equal length). 	1 day
Lesson 14.2 Identify and Describe Cubes	<ul style="list-style-type: none"> ○ Correctly name shapes regardless of their orientations or overall size. ○ Identify shapes as two-dimensional (lying in a plane, "flat") or three-dimensional ("solid"). □ Analyze and compare two- and three-dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/"corners") and other attributes (e.g., having sides of equal length). 	1 day
Lesson 14.3 Identify and Describe Cylinders	<ul style="list-style-type: none"> ○ Correctly name shapes regardless of their orientations or overall size. ○ Identify shapes as two-dimensional (lying in a plane, "flat") or three-dimensional ("solid"). □ Analyze and compare two- and three-dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/"corners") and other attributes (e.g., having sides of equal length). 	1 day
Lesson 14.4 Identify and Describe Cones	<ul style="list-style-type: none"> ○ Correctly name shapes regardless of their orientations or overall size. ○ Identify shapes as two-dimensional (lying in a plane, "flat") or three-dimensional ("solid"). □ Analyze and compare two- and three-dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/"corners") and other attributes (e.g., having sides of equal length). 	1 day
Lesson 14.5 Build Shapes	<ul style="list-style-type: none"> □ Model shapes in the world by building shapes from components (e.g., sticks and clay balls) and drawing shapes. 	1 day
Module 15: Describe Positions of Objects		
Lesson 15.1 Use <i>Above</i> and <i>Below</i> to Describe Position	<ul style="list-style-type: none"> ○ Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as <i>above</i>, <i>below</i>, <i>beside</i>, <i>in front of</i>, <i>behind</i>, and <i>next to</i>. 	1 day
Lesson 15.2 Use <i>Next To</i> and <i>Beside</i> to Describe Position	<ul style="list-style-type: none"> ○ Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as <i>above</i>, <i>below</i>, <i>beside</i>, <i>in front of</i>, <i>behind</i>, and <i>next to</i>. 	1 day

Pacing Guide

Lesson	Mathematics Standards, Grade K	Pacing
Module 15: Describe Positions of Objects		
Lesson 15.3 Use <i>In Front Of</i> and <i>Behind</i> to Describe Position	<ul style="list-style-type: none"> <input checked="" type="radio"/> Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as <i>above</i>, <i>below</i>, <i>beside</i>, <i>in front of</i>, <i>behind</i>, and <i>next to</i>. 	1 day
Module 16: Analyze and Compare Two-Dimensional Shapes		
Lesson 16.1 Identify and Describe Circles	<ul style="list-style-type: none"> <input checked="" type="radio"/> Correctly name shapes regardless of their orientation or overall size. <input type="checkbox"/> Analyze and compare two- and three-dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/"corners") and other attributes (e.g., having sides of equal length). <input type="checkbox"/> Model shapes in the world by building shapes from components (e.g., sticks and clay balls) and drawing shapes. 	1 day
Lesson 16.2 Identify and Describe Squares	<ul style="list-style-type: none"> <input checked="" type="radio"/> Correctly name shapes regardless of their orientation or overall size. <input type="checkbox"/> Analyze and compare two- and three-dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/"corners") and other attributes (e.g., having sides of equal length). <input type="checkbox"/> Model shapes in the world by building shapes from components (e.g., sticks and clay balls) and drawing shapes. 	1 day
Lesson 16.3 Identify and Describe Triangles	<ul style="list-style-type: none"> <input checked="" type="radio"/> Correctly name shapes regardless of their orientation or overall size. <input type="checkbox"/> Analyze and compare two- and three-dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/"corners") and other attributes (e.g., having sides of equal length). <input type="checkbox"/> Model shapes in the world by building shapes from components (e.g., sticks and clay balls) and drawing shapes. 	1 day
Lesson 16.4 Identify and Describe Rectangles	<ul style="list-style-type: none"> <input checked="" type="radio"/> Correctly name shapes regardless of their orientation or overall size. <input type="checkbox"/> Analyze and compare two- and three-dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/"corners") and other attributes (e.g., having sides of equal length). 	1 day
Lesson 16.5 Identify and Describe Hexagons	<ul style="list-style-type: none"> <input checked="" type="radio"/> Correctly name shapes regardless of their orientation or overall size. <input type="checkbox"/> Analyze and compare two- and three-dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/"corners") and other attributes (e.g., having sides of equal length). 	1 day
Lesson 16.6 Compose Simple Shapes	<ul style="list-style-type: none"> <input type="checkbox"/> Compose simple shapes to form larger shapes. 	1 day

Lesson	Mathematics Standards, Grade K	Pacing
Lesson 16.7 Compare Two-Dimensional and Three-Dimensional Shapes	<ul style="list-style-type: none"> <input checked="" type="checkbox"/> Identify shapes as two-dimensional (lying in a plane, "flat") or three-dimensional ("solid"). <input type="checkbox"/> Analyze and compare two- and three-dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/"corners") and other attributes (e.g., having sides of equal length). 	1 day
Unit 4 NUMBER AND OPERATIONS IN BASE TEN		
Module 17: Place Value Foundations: Represent Numbers to 20		
Lesson 17.1 Compose Ten Ones and Some More Ones to 14	<ul style="list-style-type: none"> <input checked="" type="checkbox"/> Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. <input checked="" type="checkbox"/> Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects. <input checked="" type="checkbox"/> Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (e.g., $18 = 10 + 8$); understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones. 	1 day
Lesson 17.2 Compose Ten Ones and Some More Ones to 15	<ul style="list-style-type: none"> <input checked="" type="checkbox"/> Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. <input checked="" type="checkbox"/> Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects. <input checked="" type="checkbox"/> Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (e.g., $18 = 10 + 8$); understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones. 	1 day

Pacing Guide

Lesson	Mathematics Standards, Grade K	Pacing
Module 17: Place Value Foundations: Represent Numbers to 20		
Lesson 17.3 Compose Ten Ones and Some More Ones to 19	<ul style="list-style-type: none"> ■ Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. ■ Count to answer “how many?” questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects. ■ Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (e.g., $18 = 10 + 8$); understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones. 	1 day
Lesson 17.4 Represent Numbers to 20	<ul style="list-style-type: none"> ■ Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. ■ Count to answer “how many?” questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects. ■ Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (e.g., $18 = 10 + 8$); understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones. 	1 day
Module 18: Place Value Foundations: Represent Numbers to 20 with a Written Numeral		
Lesson 18.1 Count and Write 11 to 14	<ul style="list-style-type: none"> ■ Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (e.g., $18 = 10 + 8$); understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones. ■ Write numbers from 0 to 20. Represent a number of objects with a written numeral 0–20 (with 0 representing a count of no objects). 	1 day
Lesson 18.2 Count and Write 15	<ul style="list-style-type: none"> ■ Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (e.g., $18 = 10 + 8$); understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones. ■ Write numbers from 0 to 20. Represent a number of objects with a written numeral 0–20 (with 0 representing a count of no objects). 	1 day

Lesson	Mathematics Standards, Grade K	Pacing
Lesson 18.3 Count and Write 16 to 19	<ul style="list-style-type: none"> ■ Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (e.g., $18 = 10 + 8$); understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones. ■ Write numbers from 0 to 20. Represent a number of objects with a written numeral 0–20 (with 0 representing a count of no objects). 	1 day
Lesson 18.4 Count and Write 20	<ul style="list-style-type: none"> ■ Write numbers from 0 to 20. Represent a number of objects with a written numeral 0–20 (with 0 representing a count of no objects). ■ Count to answer “how many?” questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects. 	1 day
Unit 5 MEASUREMENT		
Module 19: Length and Height		
Lesson 19.1 Describe Attributes of Length and Height	<ul style="list-style-type: none"> ○ Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. 	1 day
Lesson 19.2 Compare and Describe Lengths	<ul style="list-style-type: none"> ○ Directly compare two objects with a measurable attribute in common, to see which object has “more of”/“less of” the attribute, and describe the difference. 	1 day
Lesson 19.3 Compare and Describe Heights	<ul style="list-style-type: none"> ○ Directly compare two objects with a measurable attribute in common, to see which object has “more of”/“less of” the attribute, and describe the difference. 	1 day
Module 20: Weight		
Lesson 20.1 Describe Attributes of Weight	<ul style="list-style-type: none"> ○ Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. 	1 day
Lesson 20.2 Compare and Describe Weights	<ul style="list-style-type: none"> ○ Directly compare two objects with a measurable attribute in common, to see which object has “more of”/“less of” the attribute, and describe the difference. 	1 day
Lesson 20.3 Describe More Than One Attribute of an Object	<ul style="list-style-type: none"> ○ Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. 	1 day

End-of-Year Options

Getting Ready Lessons

A variety of end-of-year options are available for teachers who aim to complete core instruction before a high-stakes assessment is administered. Utilizing standards reports or the recommendations tool, you can find and review content that students did not master or retain. Or, you can use the Getting Ready lessons. These lessons present on-grade-level content that is essential for setting a foundation for success with next year's content.

Getting Ready For Grade 2

LESSON 1

Algebra • Ways to Expand Numbers

LESSON AT A GLANCE

This lesson builds on place value and prepares children for expanded notation.

Essential Question

How can you write a two-digit number in different ways?

Lesson Objective

Write two-digit numbers in expanded form.

Materials

MathBoard

TEACH AND TALK >

Have children count the first set of base-ten models.

1 How many tens are there? 8 How many ones? 7

2 What number does 8 tens stand for? 80

What number does 7 ones stand for? 7

3 What number is 80 plus 7? 87

Have children complete Exercise 2. Use Turn and Talk to ensure that children understand that the 7 in the number 72 represents 7 tens or 70.

PRACTICE > MathBoard

Check Understanding

Look at Exercise 1. Explain how you will write the number in different ways. First, I will write how many tens (3) and how many ones (5). Then, I will write 3 tens as 30 and 5 ones as 5, or $30 + 5$. I will write the number with the 3 as the tens digit and the 5 as the ones digit, or 35.

Name _____

LESSON 1
Getting Ready

Algebra • Ways to Expand Numbers

Essential ? How can you write a two-digit number in different ways?

There are different ways to think about a number.

$$\begin{array}{r} 8 \text{ tens } 7 \text{ ones} \\ 80 + 7 \\ 87 \end{array}$$

8 tens and 7 ones is the same as 80 plus 7.

Turn and Talk Does the 7 in the number 72 show 7 or 70? Explain.

Check Understanding

Write how many tens and ones.

Write the number in two different ways.

<small>1</small>		<small>3 tens 5 ones</small>	<small>30 + 5</small>	<small>35</small>
<small>2</small>		<small>5 tens 3 ones</small>	<small>50 + 3</small>	<small>53</small>

Activity: Counting and Writing

GR2 two

GR: Practice, p. GRP1

Algebra • Ways to Expand Numbers

LESSON 1 Practice

Algebra • Ways to Expand Numbers

Write how many tens and ones. Write the number in two different ways.

1 5 tens 8 ones 50 + 8 58

2 6 tens 9 ones 60 + 9 69

3 5 tens 10 ones 50 + 10 60

4 6 tens 0 ones 60 + 0 60

5 4 tens 5 ones 40 + 5 45

6 2 tens 5 ones 20 + 5 25

7 6 tens 3 ones 60 + 3 63

GR: Reteach, p. GRR1

The Getting Ready lessons include teacher support and student assessments.

Name _____

LESSON 1 Practice

Algebra • Ways to Expand Numbers

Write how many tens and ones.

Write the number in two different ways.

<small>1</small>		<small>5 tens 8 ones</small>	<small>50 + 8</small>	<small>58</small>
<small>2</small>		<small>6 tens 4 ones</small>	<small>60 + 4</small>	<small>64</small>

Concepts and Skills

Follow the rule to complete each table.

Add 3	
2	5
4	7
6	9
8	11

Subtract 7	
10	3
12	5
13	6
14	7

Add 6	
10	16
9	15
8	14
7	13

Subtract 6	
15	9
14	8
13	7
12	6

GR23A twenty-three

Name _____

LESSONS 1-11
Getting Ready Test
PAGE 1

Choose the correct answer.

1 What does the 2 in 352 mean?
 2 hundreds
 2 tens
 2 ones
 2 thousands

2 There are 17 children at the playground. 2 more children join them. How many children are there now?
 17

Name _____

LESSON 1
Reteach

Algebra • Ways to Expand Numbers

You can write a number different ways.

Count the tens. Count the ones.

1 4 tens 5 ones

2 4 tens is the same as 40
5 ones is the same as 5
40 + 5 is the same as 45

Write how many tens and ones. Write the number two different ways.

<small>1</small>		<small>2 tens 6 ones</small>	<small>20 + 6</small>	<small>26</small>
<small>2</small>		<small>6 tens 3 ones</small>	<small>60 + 3</small>	<small>63</small>

Getting Ready for Grade 2

one GRR1

Search by state standard for standard-specific resources on Ed, Your Friend in Learning.

Standards and Mathematical Practices and Processes

Standards	Student Edition Lessons
Domain COUNTING AND CARDINALITY	
Cluster: Know number names and the count sequence.	
Count to 100 by ones and by tens.	9.1, 9.2
Count forward beginning from a given number within the known sequence (instead of having to begin at 1).	9.3
Write numbers from 0 to 20. Represent a number of objects with a written numeral 0–20 (with 0 representing a count of no objects).	2.1, 2.2, 2.3, 2.4, 8.1, 8.2, 8.3, 18.1, 18.2, 18.3, 18.4
Cluster: Count to tell the number of objects.	
Understand the relationship between numbers and quantities; connect counting to cardinality.	
<ul style="list-style-type: none"> When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. 	1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4, 2.5, 7.1, 7.2, 7.3, 8.1, 8.2, 8.3, 8.4
<ul style="list-style-type: none"> Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. 	1.5, 2.2, 2.3, 2.4, 8.1, 8.2, 8.3, 13.1, 13.2, 13.3, 13.4, 17.1, 17.2, 17.3, 17.4
<ul style="list-style-type: none"> Understand that each successive number name refers to a quantity that is one larger. 	2.5, 8.4, 10.1
Count to answer “how many?” questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1–20, count out that many objects.	1.1, 1.2, 1.3, 1.4, 7.1, 7.2, 7.3, 17.1, 17.2, 17.3, 17.4, 18.4
Cluster: Compare numbers.	
Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies.	3.1, 3.2, 3.3, 3.4, 3.5, 10.1, 10.2, 10.3, 10.4, 10.5
Compare two numbers between 1 and 10 presented as written numerals.	3.6, 10.6
Domain OPERATIONS AND ALGEBRAIC THINKING	
Cluster: Understand addition as putting together and adding to, and understand subtraction as taking apart and taking from.	
Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations.	5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 12.1, 12.2, 12.3, 12.4, 12.5
Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.	5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 12.1, 12.2, 12.3, 12.4, 12.5

Correlations

Standards	Student Edition Lessons
Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., $5 = 2 + 3$ and $5 = 4 + 1$).	1.5, 13.1, 13.2, 13.3, 13.4
For any number from 1 to 9, find the number that makes 10 when added to the given number, e.g., by using objects or drawings, and record the answer with a drawing or equation.	13.5
Fluently add and subtract within 5.	5.7, 6.7
Domain NUMBER AND OPERATIONS IN BASE TEN	
Cluster: Work with numbers 11–19 to gain foundations for place value.	
Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (e.g., $18 = 10 + 8$); understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones.	17.1, 17.2, 17.3, 17.4, 18.1, 18.2, 18.3
Domain MEASUREMENT AND DATA	
Cluster: Describe and compare measurable attributes.	
Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object.	19.1, 20.1, 20.3
Directly compare two objects with a measurable attribute in common, to see which object has “more of”/“less of” the attribute, and describe the difference.	19.2, 19.3, 20.2
Cluster: Classify objects and count the number of objects in each category.	
Classify objects into given categories; count the numbers of objects in each category and sort the categories by count.	4.1, 4.2, 4.3, 4.4
Domain GEOMETRY	
Cluster: Identify and describe shapes.	
Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as <i>above</i> , <i>below</i> , <i>beside</i> , <i>in front of</i> , <i>behind</i> , and <i>next to</i> .	15.1, 15.2, 15.3
Correctly name shapes regardless of their orientations or overall size.	14.1, 14.2, 14.3, 14.4, 16.1, 16.2, 16.3, 16.4, 16.5
Identify shapes as two-dimensional (lying in a plane, “flat”), or three-dimensional (“solid”).	14.1, 14.2, 14.3, 14.4, 16.7
Cluster: Analyze, compare, create, and compose shapes.	
Analyze and compare two- and three-dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/“corners”) and other attributes (e.g., having sides of equal length).	14.1, 14.2, 14.3, 14.4, 16.1, 16.2, 16.3, 16.4, 16.5, 16.7

Standards	Student Edition Lessons
Model shapes in the world by building shapes from components (e.g., sticks and clay balls) and drawing shapes.	14.5, 16.1, 16.2, 16.3
Compose simple shapes to form larger shapes.	16.6

Go online to search for resources by standard.

Planning and Pacing Guide

Correlations

Mathematical Practices and Processes	Student Edition Lessons
<p>Into Math covers all Mathematical Practice and Process standards as an integral part of instruction and practice. For a summary of how the program features address each Mathematical Practice and Process standard see PG18-PG19. These pages include probing <i>Questions to Ask</i> that support each Mathematical Practice and Process standard.</p>	
<p>Make sense of problems and persevere in solving them.</p> <p>Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.</p>	In every lesson. Some examples include 2.1, 3.4, 4.2, 6.5, 10.5, 14.1, 17.2, 19.2, 20.3
<p>Reason abstractly and quantitatively.</p> <p>Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to <i>decontextualize</i>—to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents—and the ability to <i>contextualize</i>, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.</p>	1.1, 1.2, 1.3, 1.4, 1.5, 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.4, 3.5, 4.1, 4.2, 4.3, 4.4, 5.1, 5.2, 5.5, 5.6, 5.7, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 7.1, 7.2, 7.3, 8.1, 8.2, 8.3, 8.4, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 11.5, 11.7, 12.2, 12.3, 12.4, 12.5, 13.1, 13.2, 13.3, 13.4, 17.1, 17.2, 17.3, 17.4, 18.1, 18.2, 18.3, 18.4, 19.2, 19.3
<p>Construct viable arguments and critique the reasoning of others.</p> <p>Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.</p>	19.1, 19.2, 19.3, 20.1, 20.2, 20.3

Mathematical Practices and Processes	Student Edition Lessons
<p>Model with mathematics.</p> <p>Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.</p>	5.3, 5.4, 5.5, 5.6, 5.7, 6.4, 6.5, 6.7, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 12.1, 12.5, 13.5
<p>Use appropriate tools strategically.</p> <p>Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.</p>	In every Spark Your Learning, Module Review, and the following lessons: 2.5, 3.1, 3.2, 4.1, 4.2, 4.3, 6.1, 6.2, 6.4, 7.3, 8.4, 11.1, 11.2, 11.3, 11.4, 11.6, 12.2, 12.3, 12.4, 14.5

Correlations

Mathematical Practices and Processes	Student Edition Lessons
<p>Attend to precision.</p> <p>Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.</p>	1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4, 3.3, 3.4, 3.5, 3.6, 4.4, 6.3, 9.3, 10.1, 10.2, 10.3, 10.5, 11.5, 13.5, 14.1, 14.2, 14.3, 14.4, 14.5, 15.1, 15.2, 15.3, 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7, 17.1, 17.2, 17.3, 17.4, 18.4, 19.1, 19.2, 20.1, 20.2, 20.3
<p>Look for and make use of structure.</p> <p>Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well remembered $7 \times 5 + 7 \times 3$, in preparation for learning about the distributive property. In the expression $x^2 + 9x + 14$, older students can see the 14 as 2×7 and the 9 as $2 + 7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5 - 3(x - y)^2$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.</p>	1.5, 2.5, 3.3, 9.1, 9.2, 9.3, 13.1, 13.2, 13.3, 13.4, 13.5, 14.4, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7, 18.1, 18.2, 18.3, 18.4
<p>Look for and express regularity in repeated reasoning.</p> <p>Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1, 2) with slope 3, middle school students might abstract the equation $(y - 2)/(x - 1) = 3$. Noticing the regularity in the way terms cancel when expanding $(x - 1)(x + 1)$, $(x - 1)(x^2 + x + 1)$, and $(x - 1)(x^3 + x^2 + x + 1)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.</p>	3.6, 9.2, 12.1, 13.4

Teacher Notes

Notes & Reflections

Jennifer Lempp
Educational Consultant
Alexandria, Virginia

Problem Solving Structures

Introducing Students to a Variety of Structures

We all want the same for students, to be independent problem solvers and thinkers. The types of problems we provide and the way we present them can ultimately support or hinder students. Most students are not given the opportunity to truly reason with a variety of word problems. Rather, students are often given problems that closely resemble the first problem below. The problem contains two numbers that you act upon in some way. The answer to the problem is unknown. However, students should be exposed to problems that have the start or the change unknown as well.

Let's consider these two problems:

- Anna has 7 books checked out from the library. She returns 4 books. How many books does Anna still have to return?
- Anna reads 7 books, and Jon reads 4 books. How many more books does Anna read than Jon?

Both problems could be solved using the equation $7 - 4 = \underline{\hspace{2cm}}$. However, as students begin to translate story problems, the context of these problems varies quite a bit. The first can be considered a "take away" problem and the second a "compare" problem. If we always refer to subtraction as "take away," then we are removing the true context of the mathematics that exists in the world around us.

Various problem structures exist for addition, subtraction, multiplication, and division. Students do not need to be able to identify these structures, but it's important that teachers know the variety of structures and expose students to them.

Don't Steal the Struggle

The context within word problems helps to support mathematical thinking. Many teachers may shy away from problem solving, seeing it as more complex than a "numbers only" problem. However, students do not need to master the skill of computation in order to solve problems. In fact, the context used in problem solving can often help students make sense of the numbers, making the students more successful.

When introducing a word problem, don't be tempted to model a similar problem first and then give students a problem that simply contains different numbers. This results in stealing the students' struggle and takes away the opportunity for thinking and reasoning. Moreover, students should be encouraged to solve problems using whatever strategy or technique that they wish. It is also important to note that teachers should not teach "key words" to students as a system of support for students. Students are often told that words like "altogether" and "in all" are supposed to signal to students that they are to add, while words like "how many more" mean they are to subtract. However, key words can lead students to choose the wrong operation. Teaching key words takes away the thinking and sends the message that there is no reasoning necessary—that math is just about numbers and is not even a part of our real life. What is most important is their reasoning and why they chose to solve it in the way they did. The strategies used by students provide teachers with a great deal of information about where a student is and where to go next with him or her.

Addition and Subtraction Problem Situations—Add To/Take From

Add To/Take From problems have three components. There is an initial quantity—the **start**. The **change** is the action upon that initial quantity. The outcome of the action upon the initial quantity is the **result**.

	RESULT UNKNOWN	INTO MATH EXAMPLES
ADD TO	A problem in which the start and change (what is <i>added to</i> the start) are given in the problem. The result (the outcome of performing the action) of the change is not known and is what the students determine.	Two birds are sitting on a branch. One more bird flies in to join them. How many birds are sitting on the branch now? $2 + 1 = \square$ Example from Lesson 5.3, Problem 3 • Additional Lessons 5.1, 5.7, 11.1
TAKE FROM	A problem in which the start and change (what is <i>taken from</i> the start) are given in the problem. The result (the outcome of performing the action) of the change is not known and is what the students determine.	Two kittens are playing in some leaves. One kitten goes to sleep. How many kittens are still playing in the leaves? $2 - 1 = \square$ Example from Lesson 5.4, Problem 3 • Additional Lessons 5.7, 11.2, 11.7

Problem Types

Addition and Subtraction Problem Situations—Add To/Take From

Add To/Take From problems have three components. There is an initial quantity—the **start**. The **change** is the action upon that initial quantity. The outcome of the action upon the initial quantity is the **result**.

	CHANGE UNKNOWN	INTO MATH EXAMPLES
ADD TO	A problem in which the start and result (the outcome of the performing action) are given in the problem. The change (what is added to the start) is not known and is what the students determine.	<p> There are two lions. Then some lions join them. There are four lions now. How many lions joined them?</p> <p>$2 + \square = 4$</p> <p>Example from Lesson 5.5, Problem 7 • Additional Lesson 5.5</p>
TAKE FROM	A problem in which the start and result (the outcome of the performing action) are given in the problem. The change (what is taken from the start) is not known and is what the students determine.	<p> Three horses are grazing in a field. Some horses leave. One horse is grazing now. How many horses leave?</p> <p>$3 - \square = 1$</p> <p>Example from Lesson 5.6, Problem 7 • Additional Lesson 5.6</p>

Addition and Subtraction Problem Situations—Put Together/Take Apart

In a *Put Together/Take Apart* problem, both quantities are already present. Unlike an *Add To/Take From* problem, these problems do not involve a change in the situation. The **total** is unknown or one or both of the **quantities** (or **groups**) are unknown.

PUT TOGETHER/ TAKE APART	TOTAL UNKNOWN	INTO MATH EXAMPLES
	ADDEND UNKNOWN	INTO MATH EXAMPLES
	<p>A problem in which the two groups/quantities are known. The total is not known and is what the students determine.</p>	<p> There are seven orange flowers and three yellow flowers in the field. How many total flowers are there?</p> $7 + 3 = \square$ <p>Example from Lesson 12.1, Problem 5 • Additional Lessons 6.3, 6.7, 12.3</p>
	<p>A problem in which one of the two groups/quantity is known and the total is also known. The other group/quantity is not known and is what the students determine.</p>	<p> There are four toys on the floor. Two are toy cars and the rest are toy planes. How many toys are planes?</p> $4 - \square = 2$ <p>Example from Lesson 6.4, Problem 7 • Additional Lessons 12.2, 12.4, 12.5</p>

Notes & Reflections

Notes & Reflections

Differentiated Support Using *Do The Math*

Do The Math can be implemented with *Into Math* core instruction during the Differentiated Options block or as a separate instruction block. Depending on student level, *Do The Math* instruction can be provided as Tier 1, 2, or 3 support.

Do The Math as Tier 1 Support *Do The Math* Addition & Subtraction modules provide Tier 1 supports for the following **Kindergarten** skills as shown in the table below.

Kindergarten Skills	Addition & Subtraction Modules			
	Number Core	A	B	C
Understand addition as joining.	X			
Represent addition with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations.	X	X		
Record each composition for a number from 11 to 19 from ones by a drawing or equation (e.g., $18 = 10 + 8$).	X			
For any number from 1 to 9, find the number that makes 10 when added to the given number.	X	X		
Fluently add within 5.	X			
Compose numbers from 11 to 19 from ten ones and some further ones.	X	X		
Understand that 10 ones is 1 ten.	X	X		
Add within 10.	X	X		
Solve addition word problems within 10.	X	X		
Understand subtraction as taking away.	X			
Represent subtraction with objects, fingers, mental image, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations.	X			
Fluently subtract within 5.	X			
Subtract within 10.	X			
Solve subtraction word problems with 10.	X			

More information on implementation models, Tiered recommendations, and additional lessons that connect to core content are provided in the *Do The Math* Core Connections Guide, included in the *Do The Math* Teacher Bookcase.

Manipulatives and Tools

Into Math provides opportunities for students to choose manipulatives and tools to help them make sense of mathematics and connect to mathematical representations. Giving students the opportunity to choose a manipulative or tool for a task provides a teacher insight into students' understanding of connections they are making with prior learning.

The tables below will help you plan which manipulatives and tools to have available for students during lesson instruction.

● Manipulative Kit ● Basic Manipulative Kit ● Teacher Resource Masters

Module	Manipulatives and Tools by Lesson
Module 1: Represent Numbers to 5 with Objects	<ul style="list-style-type: none"> ● ● connecting cubes Lessons 1.1–1.5 ● ● two-color counters Lessons 1.1–1.5
Module 2: Represent Numbers to 5 with a Written Numeral	<ul style="list-style-type: none"> ● ● connecting cubes Lessons 2.1–2.3, 2.5 ● ● two-color counters Lessons 2.1–2.3, 2.5
Module 3: Matching and Counting Numbers to 5	<ul style="list-style-type: none"> ● ● connecting cubes Lessons 3.1–3.6 ● ● two-color counters Lessons 3.1–3.6
Module 4: Classify, Count, and Sort Objects	<ul style="list-style-type: none"> ● ● connecting cubes Lessons 4.1, 4.2, and 4.4 ● ● plane shapes Lessons 4.2 and 4.4 ● ● two-color counters Lessons 4.1 and 4.3
Module 5: Add To and Take From Within 5	<ul style="list-style-type: none"> ● ● connecting cubes Lessons 5.1, 5.3–5.7 ● ● two-color counters Lessons 5.1–5.7
Module 6: Put Together and Take Apart Within 5	<ul style="list-style-type: none"> ● ● connecting cubes Lessons 6.1–6.6 ● Dominoes Lesson 6.5–6.6 ● Dot Cards Lessons 6.5–6.6 ● Dot Plates Lessons 6.5–6.6 ● ● two-color counters Lessons 6.1–6.6
Module 7: Represent Numbers 6 to 10 with Objects	<ul style="list-style-type: none"> ● ● connecting cubes Lessons 7.1–7.3 ● Ten Frames Lessons 7.1–7.3 ● ● two-color counters Lessons 7.1–7.3
Module 8: Represent Numbers 6 to 10 with a Written Numeral	<ul style="list-style-type: none"> ● ● connecting cubes Lesson 8.4 ● ● pattern blocks Lesson 8.3 ● ● two-color counters Lessons 8.1–8.4

Manipulatives and Tools

● Manipulative Kit ● Basic Manipulative Kit ● Teacher Resource Masters

Module	Manipulatives and Tools by Lesson
Module 9: Use the Count Sequence to Count to 100	<ul style="list-style-type: none"> ● Corn Maze Puzzle Lesson 9.1 ● Count by Tens Puzzle Lesson 9.2
Module 10: Compare Numbers to 10	<ul style="list-style-type: none"> ● ● connecting cubes Lessons 10.1–10.5 ● ● two-color counters Lessons 10.1–10.5
Module 11: Add To and Take From Within 10	<ul style="list-style-type: none"> ● ● connecting cubes Lessons 11.1–11.6 ● ● two-color counters Lessons 11.1–11.6
Module 12: Put Together and Take Apart Within 10	<ul style="list-style-type: none"> ● ● connecting cubes Lessons 12.1–12.4 ● ● two-color counters Lessons 12.1–12.4
Module 13: Ways to Make Numbers to 10	<ul style="list-style-type: none"> ● ● connecting cubes Lessons 13.1–13.5 ● ● two-color counters Lessons 13.1–13.5
Module 14: Analyze and Compare Three-Dimensional Shapes	<ul style="list-style-type: none"> ● Cone Pattern Lesson 14.4 ● Cube Pattern Lesson 14.2 ● Cylinder Pattern Lesson 14.3 ● solid shapes Lessons 14.1–14.5
Module 15: Describe Positions of Objects	<ul style="list-style-type: none"> ● solid shapes Lessons 15.1–15.3
Module 16: Analyze and Compare Two-Dimensional Shapes	<ul style="list-style-type: none"> ● Pattern Blocks Lesson 16.6 ● ● plane shapes Lessons 16.1, 16.2, and 16.7 ● Semantic Map Lesson 16.1
Module 17: Place Value Foundations: Represent Numbers to 20	<ul style="list-style-type: none"> ● ● connecting cubes Lessons 17.1–17.4 ● ● two-color counters Lessons 17.1–17.3
Module 18: Place Value Foundations: Represent Numbers to 20 with a Written Numeral	<ul style="list-style-type: none"> ● ● connecting cubes Lessons 18.1–18.4 ● Ten Frames Lessons 18.1–18.4 ● ● two-color counters Lessons 18.1–18.4

Unit 1 Performance Assessment

Count on It

Task Summary The Unit 1 Performance Assessment will have students:

- Write numbers from 0 to 5 and count objects in successive order.
- Represent a number of objects with a written numeral from 0 to 5.
- Solve addition and subtraction word problems.
- Understand that each successive number refers to one larger.
- Compare two numbers between 1 and 5.
- Classify objects into given categories.

Unit 1 Performance Task

Name _____

Count on It

Check children's tracings and drawings.

1. Trace each number. Draw balloons to show that number. Circle the number that is 1 greater than 4.

2. Color the squares red. Color the circles blue.

3. How many squares and circles are there in all? Write the number sentence.

4. How many more squares are there than circles? Write a number sentence.

Directions:
1. Trace each number. Draw balloons to show that number. Circle the number that is 1 greater than 4.

Kindergarten • Unit 1 • Performance Task

123

Unit 1 Performance Task

Name _____

2. Color the squares red. Color the circles blue.

3. How many squares and circles are there in all? Write the number sentence.

4. How many more squares are there than circles? Write a number sentence.

Directions:
2. Color the squares red. Color the circles blue.
3. How many squares and circles are there in all? Write the number sentence.
4. How many more squares are there than circles? Write a number sentence.

124

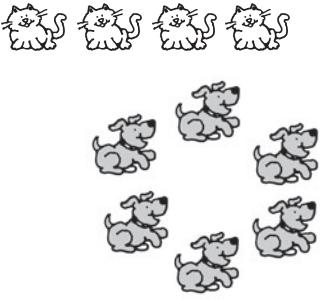
If students encounter difficulties in completing any of the tasks, use the information below to aid in interpreting student performance and to identify suggestions for follow-up and intervention.

Item	Content Focus	DOK	Intervene with
1	Write numerals from 0 to 20. Represent a number of objects with a written numeral 0–20.	1	Reteach 2.1 Reteach 2.2 Reteach 2.4
2	Classify objects into given categories.	1	Reteach 4.2
3	Represent addition with equations.	2	Reteach 5.5
4	Represent subtraction with equations.	2	Reteach 5.6

Additional teacher support and a scoring rubric can be found in your Assessment Guide.

Unit 2 Performance Assessment

Ella's Collage


Task Summary The Unit 2 Performance Assessment will have students:

- Write numbers from 0 to 10.
- Count to answer “how many?” questions about as many as 10 things arranged in a rectangular array or a circle.
- Identify whether the number of objects in one group is greater than the number of objects in another group.
- Represent addition with equations and solve addition word problems.

Name _____

Unit 2 Performance Task

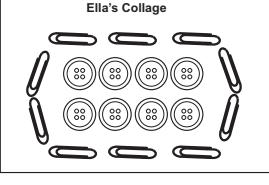
Ella's Collage

Possible answer:

1. $4 + 6 = 10$

2. **Possible answer:**

$3 + 7 = 10$


Directions:
Ella puts pictures of cats and dogs in a collage. Look at the collage.
1. How many cats and dogs does Ella's collage have in all? Write an equation. 2. What other combination of cat and dog pictures can Ella use to make a collage with the same number of pictures in all? Write an equation.

128

Unit 2 Performance Task

Name _____

Ella's Collage

3

8 **10**

4

5

1	2	3	4	5	6	7	8	10
---	---	---	---	---	---	---	---	----

9

Directions:
Ella makes a collage out of buttons and paper clips.
3. How many buttons did Ella use? Write the number. How many paper clips did Ella use? Write the number.
4. Does Ella use more buttons or paper clips? Circle the object that she uses more.
5. Ella is making a chart showing numbers from 1 to 10. Write the number that is missing.

Kindergarten • Unit 2 • Performance Task

129

If students encounter difficulties in completing any of the tasks, use the information below to aid in interpreting student performance and to identify suggestions for follow-up and intervention.

Item	Content Focus	DOK	Intervene with
1	Solve addition word problems within 10.	2	Reteach 6.3
2	Add within 10 to solve problems with both addends unknown.	2	Reteach 13.2 Reteach 13.3 Reteach 13.4
3	Count to answer “how many?” questions about as many as 20 things.	2	Reteach 7.4
4	Compare two numbers between 1 and 10 presented as written numerals.	2	Reteach 10.6
5	Count to 100 by ones.	1	Reteach 9.1

Additional teacher support and a scoring rubric can be found in your Assessment Guide.

Unit 3 Performance Assessment

Shape Safari

Task Summary The Unit 3 Performance Assessment will have students:

- Describe objects in the environment using names of shapes, and describe the relative positions of these objects.
- Correctly name shapes regardless of their orientations or overall size.
- Analyze and compare two- and three-dimensional shapes.
- Compose simple shapes to form larger shapes.

Name _____

Unit 3 Performance Task

Shape Safari

Y

R

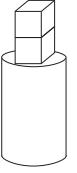
X

G

B

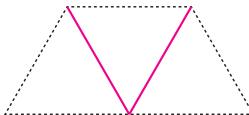
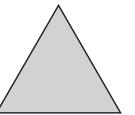
Directions:
Neymar is going on a Shape Safari. Help Neymar identify the shapes.
1. Color the cone blue. Color the cube yellow. Color the sphere green. Color the cylinder red.
Put an X on the shapes that do not have a curved surface.

Kindergarten • Unit 3 • Performance Task


133

Unit 3 Performance Task

Name _____



2

3 Check students' drawings.

4 _____ Sides

4 _____ Vertices

Directions:
Neymar moves on to the next part of the Shape Safari. To complete the Safari, help Neymar:
2. Circle the set that shows a cone above a cube. 3. Draw a square. Tell how many sides and vertices it has.
4. Use the pattern block to form the larger shape. Color the blocks to show how you made the larger shape.

134

If students encounter difficulties in completing any of the tasks, use the information below to aid in interpreting student performance and to identify suggestions for follow-up and intervention.

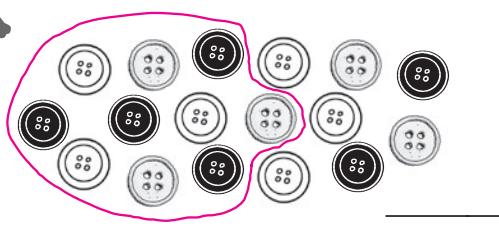
Item	Content Focus	DOK	Intervene with
1	Correctly name shapes regardless of their orientation or overall size.	1	Reteach 14.1
2	Describe the relative positions of shapes.	2	Reteach 15.1
3	Analyze and compare two-dimensional shapes.	2	Reteach 16.1 Reteach 16.3
4	Compose simple shapes to form larger shapes.	2	Reteach 16.6

Additional teacher support and a scoring rubric can be found in your Assessment Guide.

Unit 4 Performance Assessment

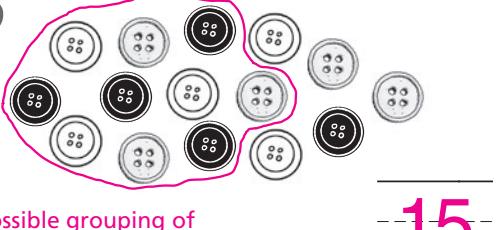
Buttons and Flowers

Task Summary The Unit 4 Performance Assessment will have students:


- Write numbers from 0 to 20.
- Represent a number of objects with a written numeral.
- Compose and decompose numbers from 11 to 19 into ten ones and some further ones.
- Understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones.

Name _____

Unit 4 Performance Task


Buttons and Flowers

1. Possible grouping of ten is shown.

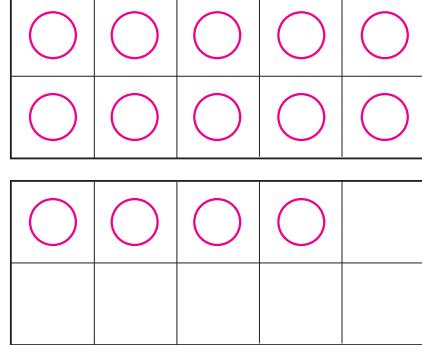
17

2. Possible grouping of ten is shown.

15

Directions:
Yoshi and Neela collect buttons.
1–2. For each set, circle 10 buttons, count how many in all, and write the number.

138


Name _____

Unit 4 Performance Task

3. Possible answer: 14

4. Possible answer. Check children's drawings.

5. $10 + 4 = 14$

Directions:
3. Yoshi and Neela are picking flowers. They pick more than 10 flowers but no more than 19 flowers. Write a number that could be the number of flowers they pick. 4. Place counters in the ten frames to show that number. Draw the counters. 5. Complete the number sentence to show how to make that number.

Kindergarten • Unit 4 • Performance Task

139

If students encounter difficulties in completing any of the tasks, use the information below to aid in interpreting student performance and to identify suggestions for follow-up and intervention.

Item	Content Focus	DOK	Intervene with
1	Write numbers from 0 to 20. Represent a number of objects with a written numeral 0–20.	1	Reteach 18.3 Reteach 18.4
2	Write numbers from 0 to 20. Represent a number of objects with a written numeral 0–20.	1	Reteach 18.3 Reteach 18.4
3	Represent a number of objects with a written numeral 0–20.	2	Reteach 18.1
4	Compose and decompose 11 to 19 into ten ones and some further ones.	2	Reteach 17.3
5	Compose and decompose 11 to 19 into ten ones and some further ones.	2	Reteach 17.4

Additional teacher support and a scoring rubric can be found in your Assessment Guide.

Unit 5 Performance Assessment

Weight, Length, and Height

Task Summary The Unit 5 Performance Assessment will have students:

- Describe measurable attributes of objects, such as length or weight.
- Directly compare two objects with a measurable attribute in common to see which object has “more of”/“less of” the attribute.
- Describe the difference between two objects in regard to a measurable attribute.

Name _____

Unit 5 Performance Task

Weight, Length, and Height

1

Answers will vary.
Check children's answers.

lighter heavier

Directions:
1. Hold the classroom object pictured above in your hand. Find an object in the classroom that is heavier. Draw the object. Draw a picture of a classroom object that is lighter. Draw lines to match the words to the objects you drew.

Kindergarten • Unit 5 • Performance Task 143

Unit 5 Performance Task Name _____

2

Answers will vary.
Check children's answers.

longer shorter

3

Answers will vary.
Check children's answers.

taller shorter

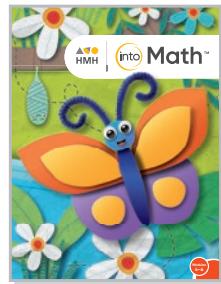
Directions:
2. Draw a pencil that is shorter or longer than the crayon. Circle the word that matches the object you drew.
3. Draw a plant that is taller or shorter than the first plant. Circle the word that matches the plant you drew.

144

If students encounter difficulties in completing any of the tasks, use the information below to aid in interpreting student performance and to identify suggestions for follow-up and intervention.

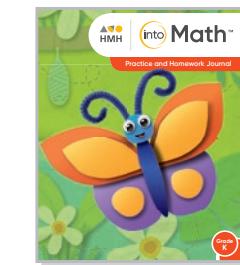
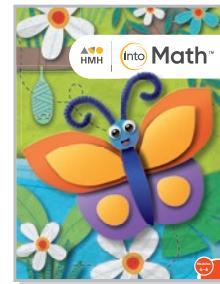
Item	Content Focus	DOK	Intervene with
1	Directly compare two objects with a measurable attribute in common, to see which object has “more of” the attribute, and describe the difference.	2	Reteach 20.2
2	Directly compare two objects with a measurable attribute in common, to see which object has “more of” the attribute, and describe the difference.	2	Reteach 19.2
3	Directly compare two objects with a measurable attribute in common, to see which object has “more of” the attribute, and describe the difference.	2	Reteach 19.3

Additional teacher support and a scoring rubric can be found in your Assessment Guide.


Into Math Solutions and Components

Core Materials

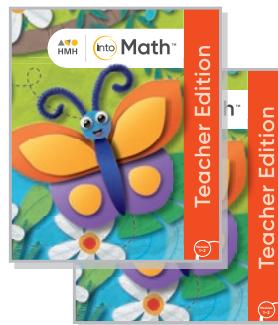
Student Materials



ONLINE

- Access all program materials
- Complete and submit assignments and assessments
- Assign Interactive Practice with Hints, Corrective Feedback, and Try Again support
- Track progress

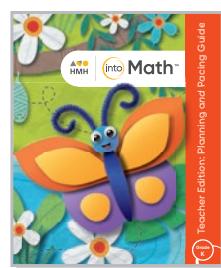
Student Edition*

Multi-volume: write-in, consumable


Practice and Homework Journal*

One volume: write-in, consumable

Teacher Materials


ONLINE

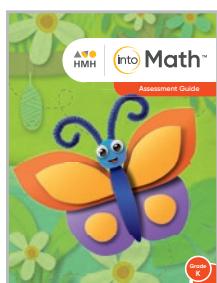
- Access all program materials
- Plan lessons
- Assign materials
- View reports
- Group students and get recommendations
- Access immediate scores / item analysis
- Access reports on standards and skills

Teacher Edition

Conveniently sized for at-home planning

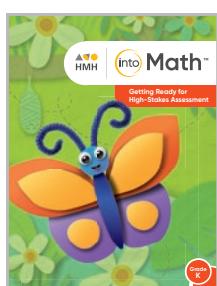
Planning and Pacing Guide

Correlations, resources, and pacing


Module Support Videos

Classroom videos featuring learning tasks, Language Routines, Talk Moves, and differentiation

Assessments


ONLINE

- Access and assign Math Growth Measure interim assessment
- Access and assign digital assessments and reports

Assessment Guide*

Secure assessment masters for teachers, including Form A and Form B for every module

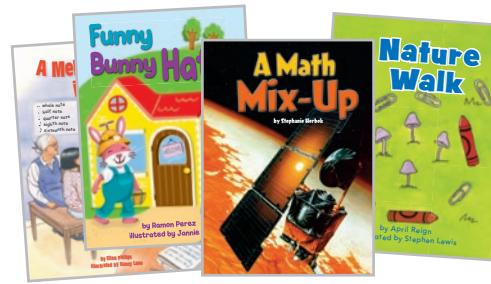
Getting Ready for High Stakes Assessment*

High Stakes Assessment readiness practice for every Math Standard, with three half-length Practice Tests

*All print and digital student-facing materials are available in Spanish.

Digital and interactive versions of resources are available on Ed: Your Friend in Learning.

Differentiation and Support Materials


ONLINE

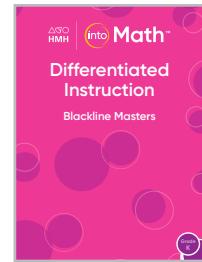
- Math Center Activities
- Fluency Checks
- Digital Readers
- Poggles Digital Game
- Multilingual Glossary
- Digital Toolbox
- Math on the Spot tutorial videos
- School Home Letters

MathBoard

Write-on / wipe-off

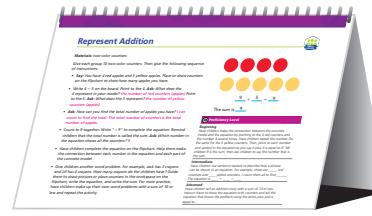
Readers

With Lexile® scores

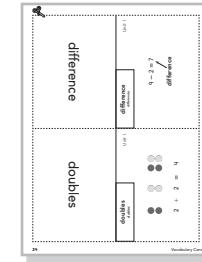


Unit Project Cards

Featuring STEM and careers


ONLINE

- Math Center Activities
- Interactive Reteach, Challenge, Additional Practice, and RtI
- Interactive Fluency Checks
- Digital Readers
- Poggles Digital Game
- Getting Ready for High Stakes Assessment Checks
- MTSS/RtI Tier 2 and Tier 3 Materials


Differentiated Instruction*

Reteach, Challenge, Additional Practice, Fluency

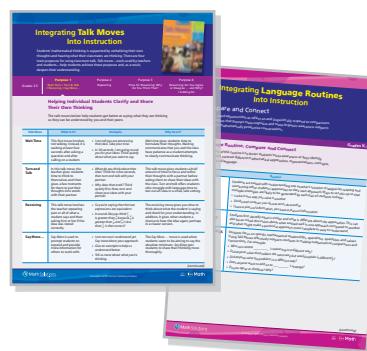

Tabletop Flipchart

Mini-lessons for reteaching to targeted small groups

Vocabulary Cards and Games*

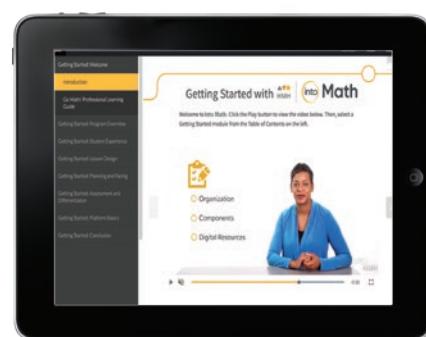
Meaningful and fun activities

Classroom Manipulatives Kit
Hands-on materials



Differentiated Centers
Math Center organizers

Professional Learning and Implementation Support


ONLINE

- Getting Started Module
- Professional Learning Guide provided during implementation training

Professional Learning Cards

Feature Talk Moves and Language Routines

Getting Started Module and Professional Learning Guide
Implementation support

Academic Notebooks and Math Journals

Into Math has a variety of options to help students summarize learning. The Practice and Homework Journal includes several page types that students can add to Academic Notebooks or Math Journals.

Interactive Glossary

As you learn about each new term, add notes, drawings, or sentences in the space next to the definition. Doing so will help you remember what each term means.

A	Possible summaries: My Vocabulary Summary
add sumar Add to find how many altogether. $3 + 2 = 5$	 $2 + 2 = 4$
addend sumando $1 + 3 = 4$ addend	 $2 + 3 = 5$
B	
bar graph gráfica de barras Kind of Flower	 Sports We Like

Glossary J27

Interactive Glossary

Possible summaries:
My Vocabulary Summary

C	Possible summaries: My Vocabulary Summary
cent (c) centavo A penny has a value of 1 cent (1¢). 1 cent is the value of a penny.	
circle círculo 	
cone cono 	has a curved surface and a flat surface
count back contar hacia atrás 8 – 1 = 7 Start at 8. Count back 1. You are on 7.	Count back 2. $7 - 2 = 5$

Glossary J28

Students should add to their Interactive Glossary throughout the year as they develop understanding for each term. See the complete Interactive Glossary on pp. PG106–PG117.

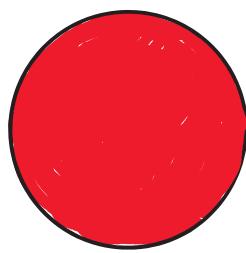
Students can use the My Learning Summary pages to create their own Anchor Charts.

Name _____

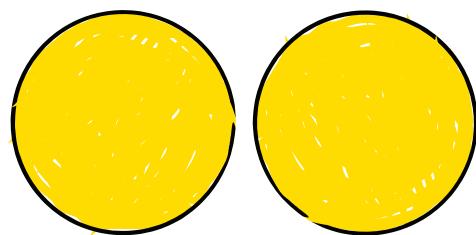
Module I
Addition Strategies

My Learning Summary

Module I Learning Summary J9

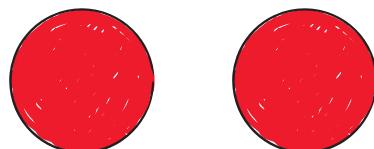

Interactive Standards		Student Edition Lessons	My Progress
Cluster: Understand and apply properties of operations and the relationship between addition and subtraction.			
Apply properties of operations as strategies to add and subtract.	3.1, 3.2, 3.3, 3.4, 3.5		
Understand subtraction as an unknown-addend problem.	2.4, 4.1		
Cluster: Add and subtract within 20.			
Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).	1.2, 2.2, 2.3		
Add and subtract within 20, demonstrating fluency for addition and subtraction within 10. Use strategies such as counting on; making ten (e.g., $8 + 6 = 8 + 2 + 4 = 10 + 4 = 14$); decomposing a number leading to a ten (e.g., $13 - 4 = 13 - 3 - 1 = 10 - 1 = 9$); using the relationship between addition and subtraction (e.g., knowing that $8 + 4 = 12$, one knows $12 - 8 = 4$); and creating equivalent but easier or known sums (e.g., adding $6 + 7$ by creating the known equivalent $6 + 6 + 1 = 12 + 1 = 13$).	1.3, 1.4, 1.5, 1.6, 1.7, 2.4, 2.5, 2.6, 3.7, 4.1, 4.2, 4.3, 4.4, 4.7, 13.5		
Cluster: Work with addition and subtraction equations.			
Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false.	3.6, 11.3		
Determine the unknown whole number in an addition or subtraction equation relating to three whole numbers.	2.4, 4.1, 4.5, 4.6		

Mathematics Standards J3


Use the Interactive Standards Chart to record mastery of each standard.

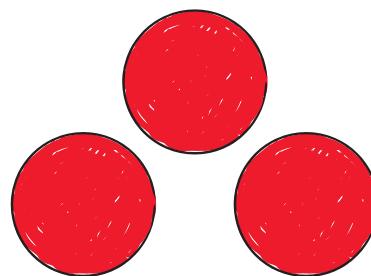
Anchor Charts can be developed throughout a module and placed on the classroom wall.

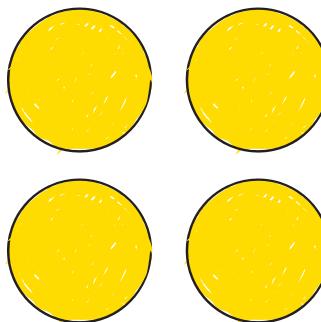
Represent 1 and 2



1

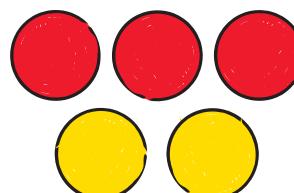
2


Represent 0

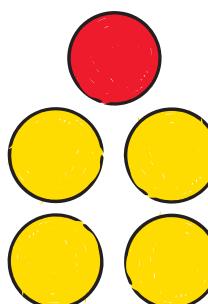

2

0

Represent 3 and 4



3



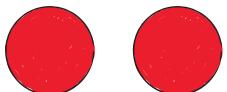
4

Ways to Make 5

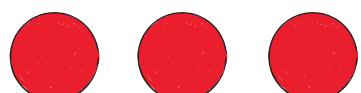
3 and 2

1 and 4

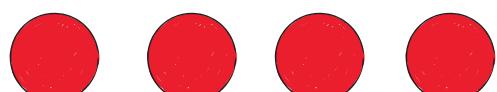
Count and Write 0 to 5


0

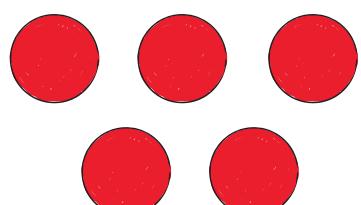
zero


1

one

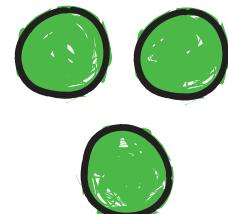
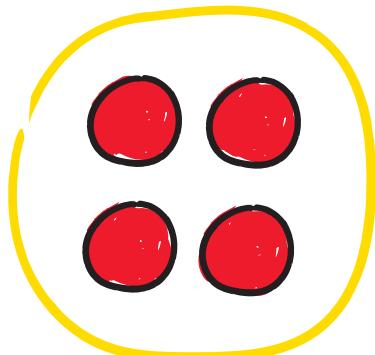

2

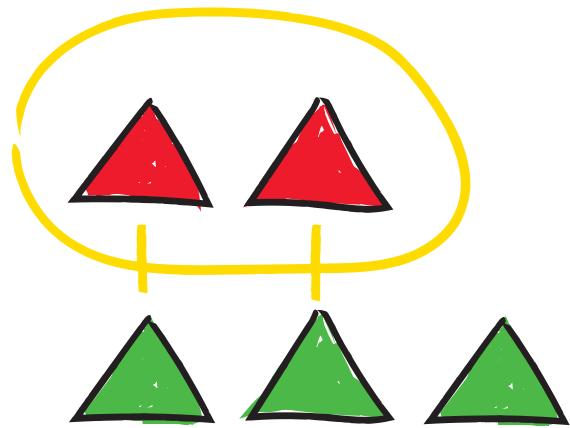
two


3

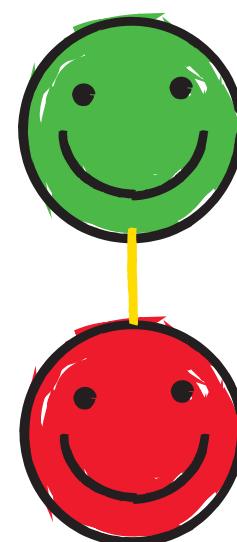
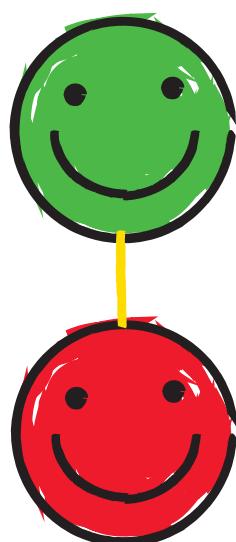
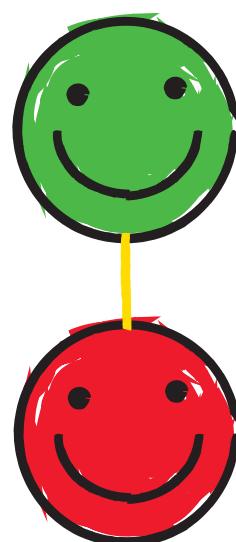
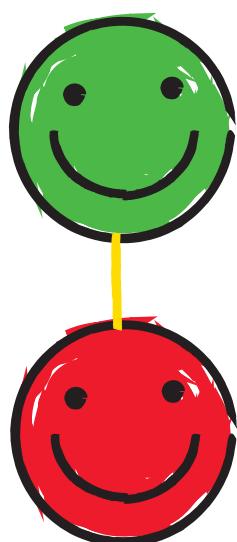
three

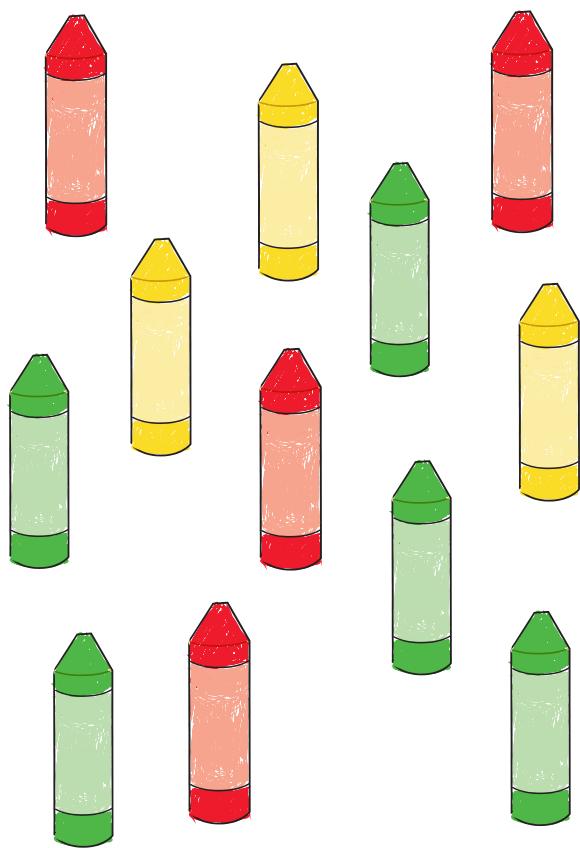
4

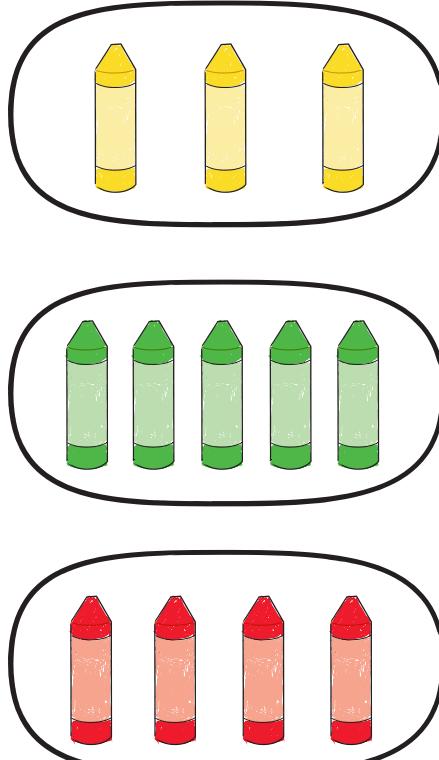


four

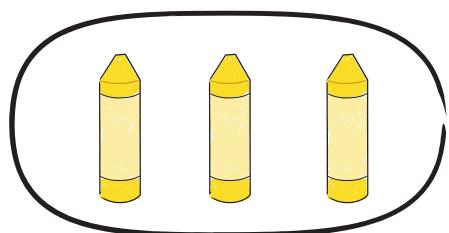

5

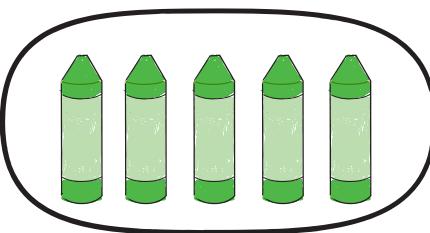
five

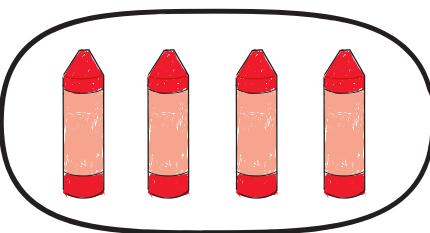




Greater than


Less than


Equal to

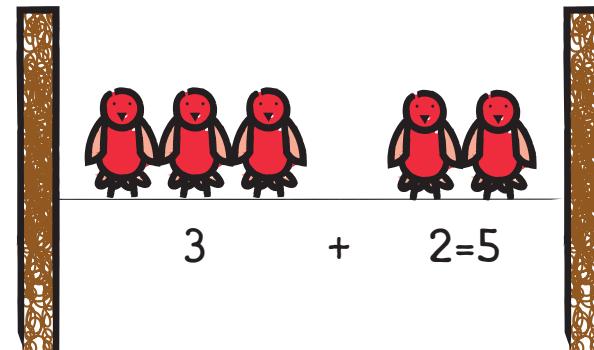

Classify and Count by Color


Classify


Count

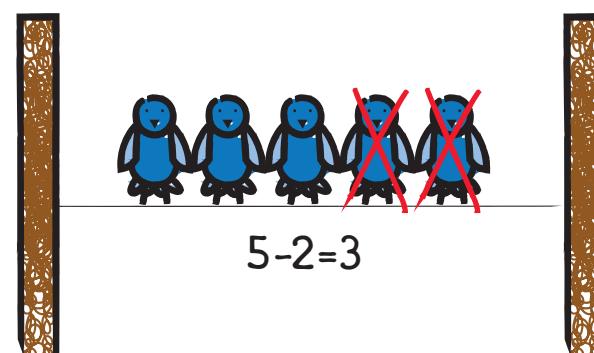
3

5

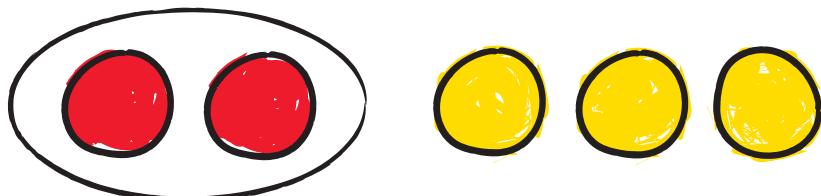


4

Add


When we add, we **join** together

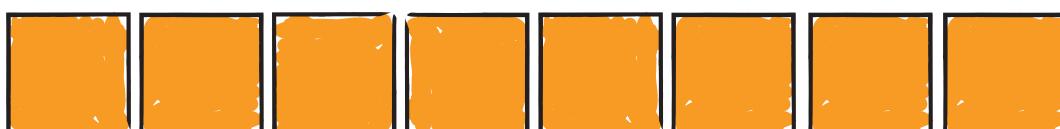
Subtract


When we **subtract**, we **take from**.

Solve Put Together and Take Apart Word Problems

$$2 + 3 = 5$$

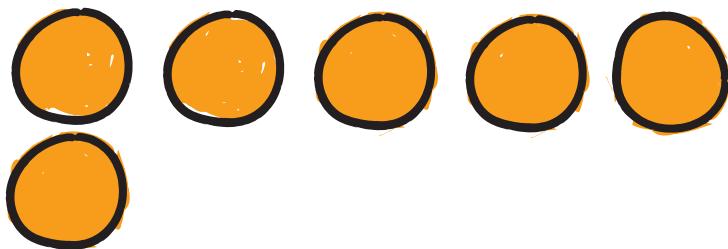
$$5 - 2 = 3$$


Represent 6 to 10

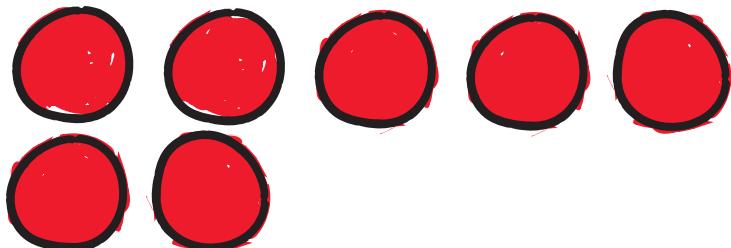
6

7

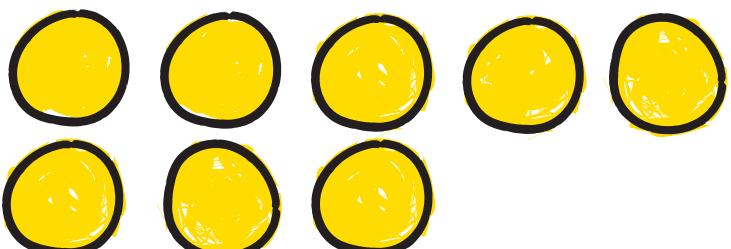
8

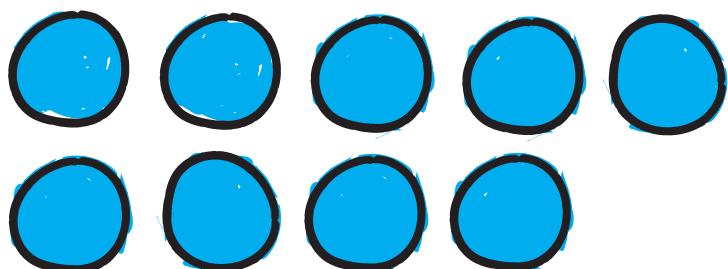


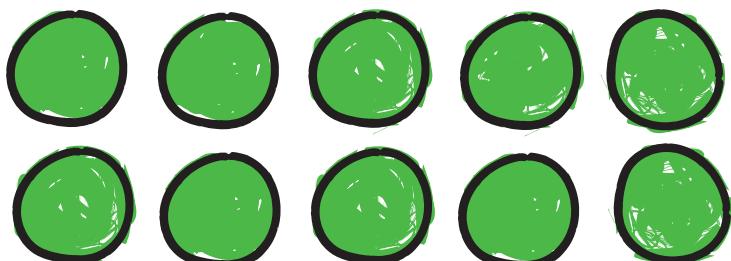
9



10


Count and Write 6, 7, 8, 9, and 10


6 six


7 seven

8 eight

9 nine

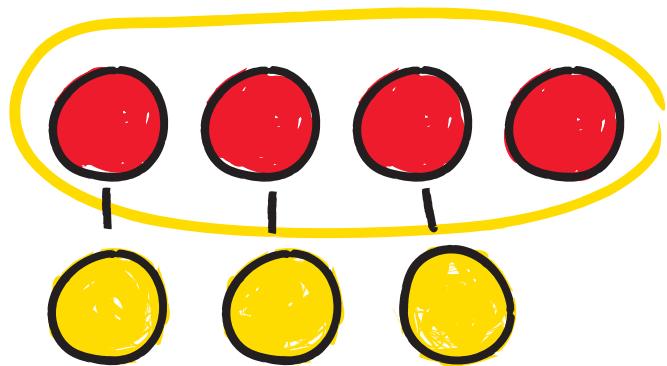
10 ten

Count to 100

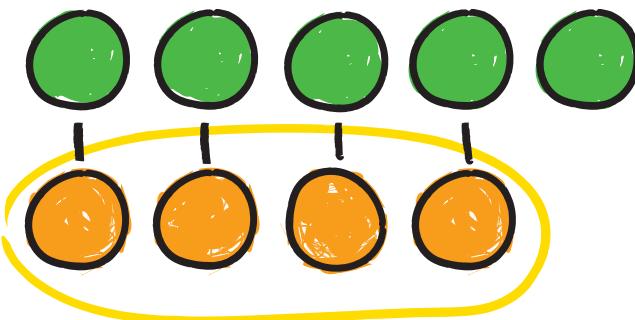
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Possible examples of ways to count to 100:

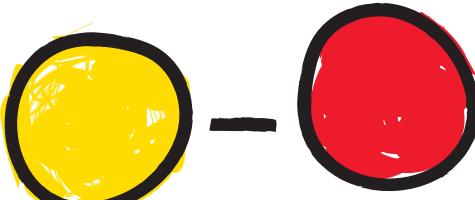
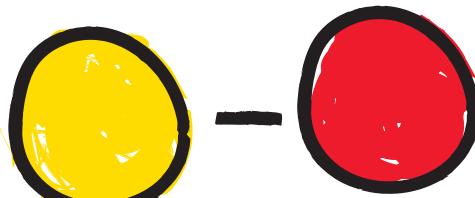
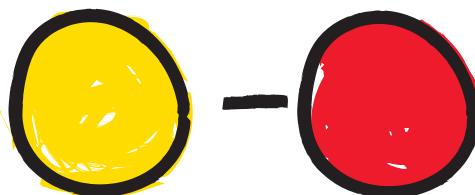
Count by ones



Count by tens



Count by ones, starting with a number other than 1

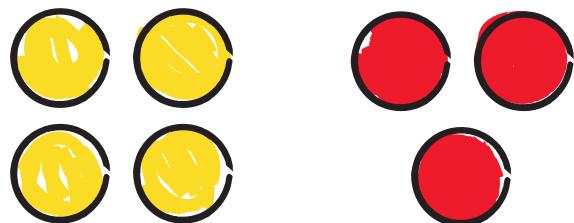



Greater than

Less than

Equal

Solve Addition Problems Within 10

$$6 + 4 = 10$$


Solve Subtraction Problems Within 10

$$10 - 3 = 7$$

Put Together and Take Apart

Add

$$4 + 3 = 7$$

plus

Put together

Subtract

$$6 - 2 = 4$$

minus

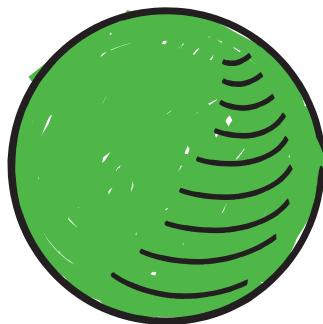
Take apart

Ways to Make 6

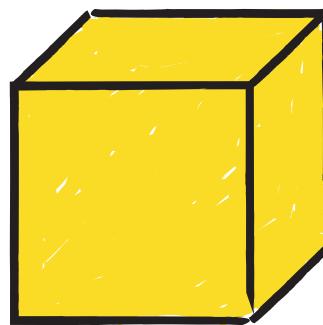
$$6 = 1 + 5$$

$$6 = 2 + 4$$

$$6 = 3 + 3$$



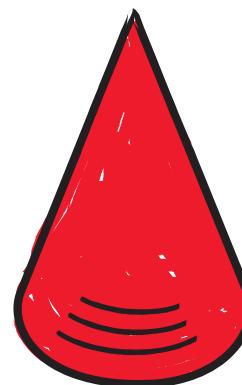
$$6 = 4 + 2$$


$$6 = 5 + 1$$

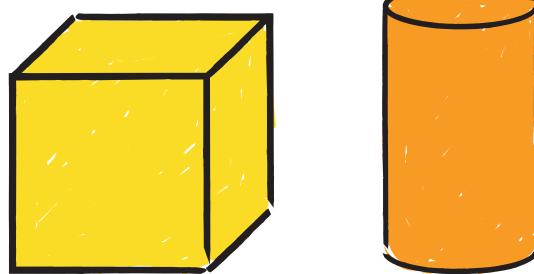
Spheres

solid
round
curved surfaces
three-dimensional

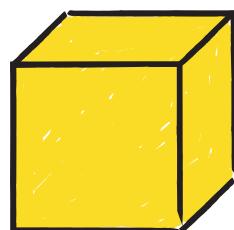
Cubes


solid
6 flat surfaces
three-dimensional

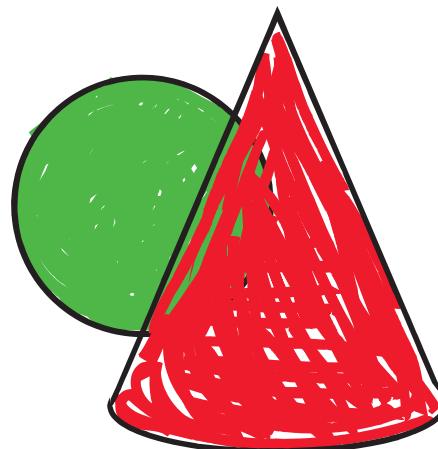
Cylinders


solid
1 curved surface
2 flat surfaces
three-dimensional

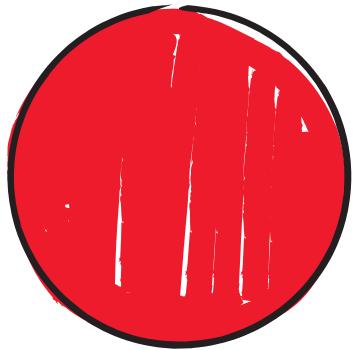
Cones


solid
1 curved surface
1 flat surface
three-dimensional

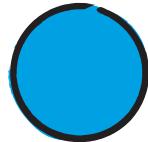
Use Above and Below, Next To and Beside, and In Front Of and Behind

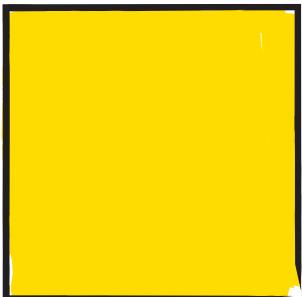

The cube is **beside** the cylinder.
The cylinder is **next to** the cube.

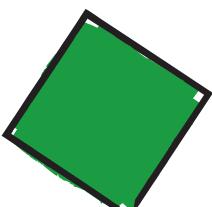
The cube is **above**
the sphere.

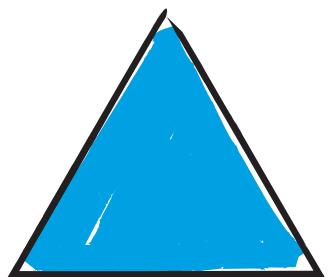


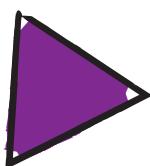
The sphere is **below**
the cube.


The sphere is **behind**
the cone.

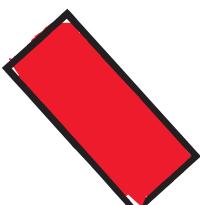

The cone is **in front of**
the sphere.

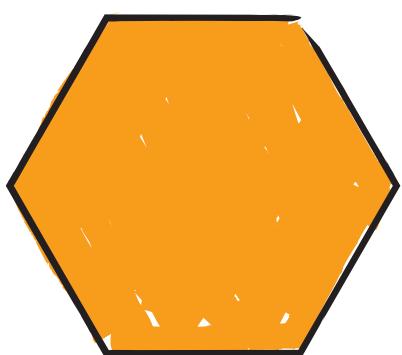

Circles

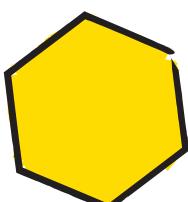

flat, curved


Squares

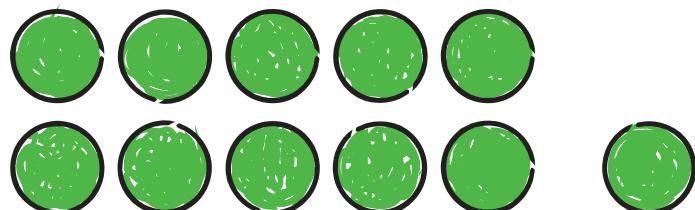
four sides,
four corners


Triangles

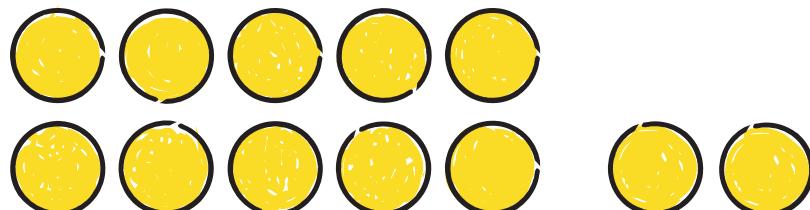

three sides,
three corners


Rectangles

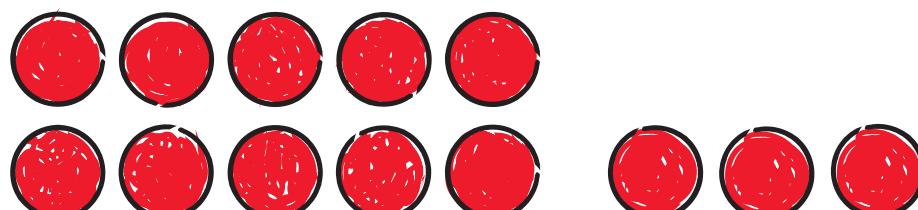
four sides,
four corners


Hexagons

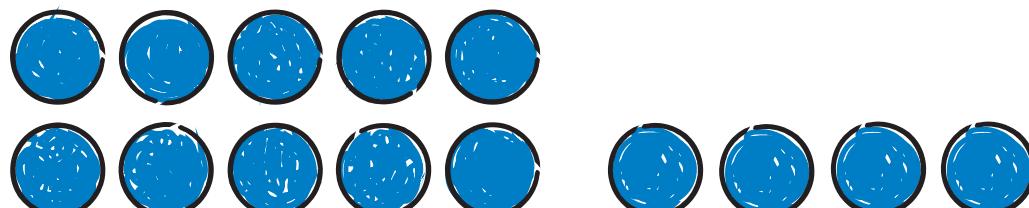
six sides,
six corners


Compose Ten Ones and Some More Ones

11

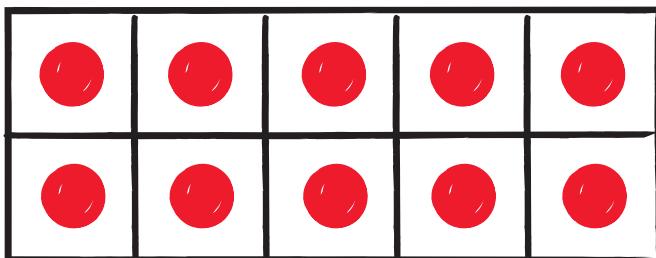

10 ones and 1 more one

12

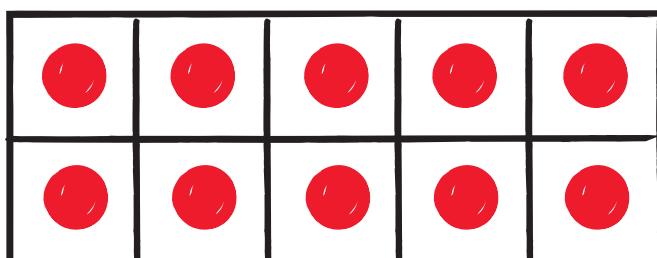

10 ones and 2 more ones

13

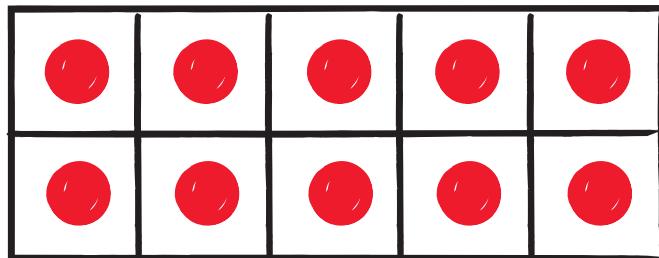
10 ones and 3 more ones


14

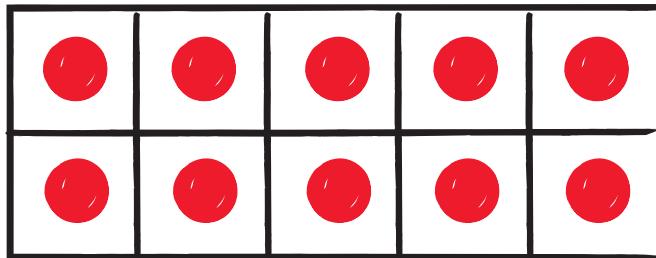
10 ones and 4 more ones


Count and Write 11 to 14

Count and write 11


$$10 + 1 = 11$$

Count and write 12


$$12 = 10 + 2$$

Count and write 13

$$13 = 10 + 3$$

Count and write 14

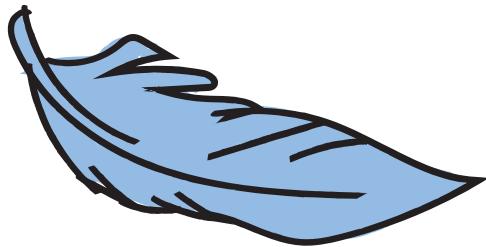
$$10 + 4 = 14$$

Height

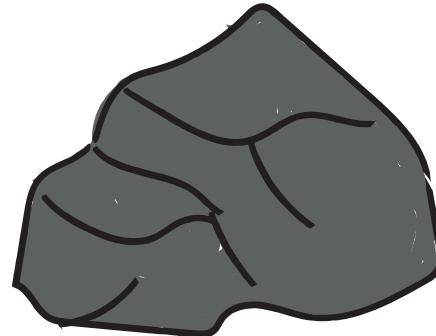
Taller

Shorter

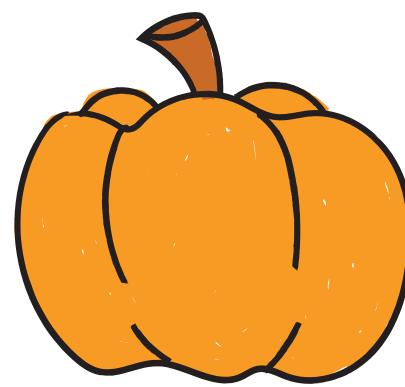
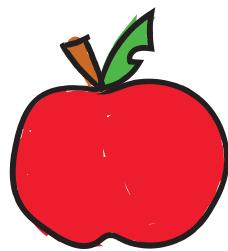
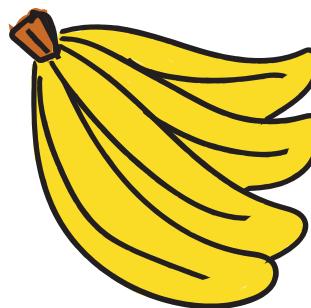
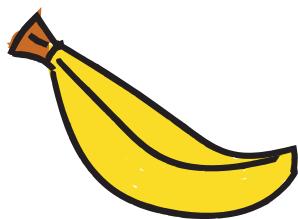
Length



Longer



Shorter





Weight

Light

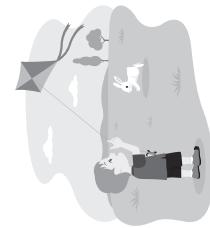
Heavy

Lighter

Heavier

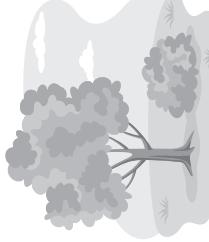
Teacher Notes

Notes & Reflections

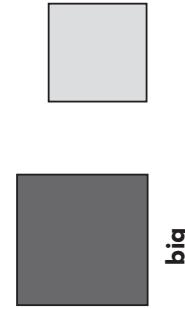


Interactive Glossary

Possible summaries:


My Vocabulary Summary

below
debajo


The rabbit is **below** the kite.

beside
junto a

The tree is **beside** the bush.

big
grande

Glossary

J33

Interactive Glossary

C

Possible summaries:

My Vocabulary Summary

category
categoria

toys

fruits

circle

círculo

classify
clasificar

apples

not apples

© Houghton Mifflin Harcourt Publishing Company

Glossary

J34

Interactive Glossary

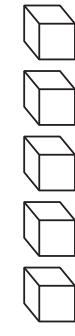
Possible summaries:
My Vocabulary Summary

column
columna

compare
comparar

cone
cono

corner
esquino


Glossary

J35

Interactive Glossary

Possible summaries:
My Vocabulary Summary

count
contar

1 2 3 4 5 6 7 8 9 10

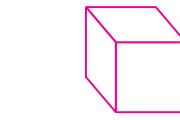
11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29

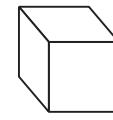
31 32 33 34 35 36 37 38 39

41 42 43 44 45 46 47 48 49

51 52 53 54 55 56 57 58 59


61 62 63 64 65 66 67 68 69

71 72 73 74 75 76 77 78 79


81 82 83 84 85 86 87 88 89

91 92 93 94 95 96 97 98 99

101

cube
cubo

1 2 3 4 5
Count the number of cubes
to find the total number.

curved surface
superficie curva

Some solids have a
curved surface.

cylinder
cilindro

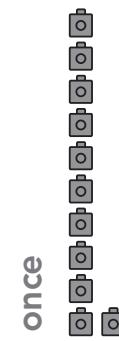
Glossary

J36

Interactive Glossary

E

Possible summaries:
My Vocabulary Summary


eight
ochos

eighteen
dieciocho

eleven
once

equal to
igual a

the number of cubes in
the top group is **equal to**
the number of cubes in the
bottom group

equation
la ecuació

$$4 + 1 = 5$$

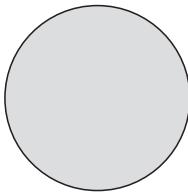
Glossary

J37

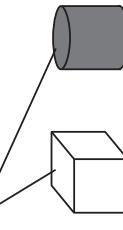
Glossary

F

Possible summaries:
My Vocabulary Summary


fifteen
quince

five


flat
plano

A circle is a **flat** shape.

flat surface
superficie plana

Some solids have a
flat surface.

$$4 + 1 = 5$$

J38

Interactive Glossary

Possible summaries:

My Vocabulary Summary

four
cuatro

fourteen
catorce

greater than
mayor que

fourteen

catorce

G

greater than

mayor que

9 is greater than 6

H

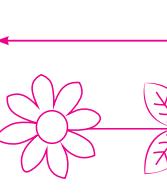
9 is greater than 6

heavier

más pesado

heavier

Glossary

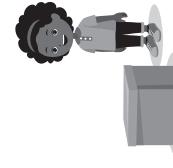

J39

Interactive Glossary

Possible summaries:

My Vocabulary Summary

height
la altura


Height: the distance from top to bottom

hexagon
hexágono

I

in front of
delante de

The box is in **front of** the girl.

Glossary

J40

Interactive Glossary

Possible summaries:

My Vocabulary Summary

is equal to
es igual a

$$3 + 2 = 5$$

What is on the left side of the equal sign (=) **is equal to** what is on the right side of the equal sign (=).

J

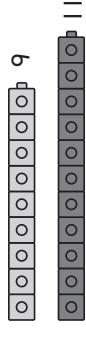
join
juntar

$$2 + 1 = 3$$

$$2 + 1 = 3$$

Interactive Glossary

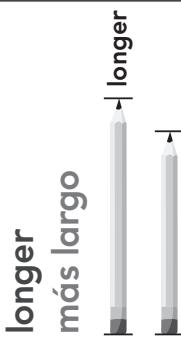
Possible summaries:


My Vocabulary Summary

length
el largo

Length: the distance from one end of an object to the other

less than
mentos que!



9 is **less than** 11

q is less than 11.

lighter
más liviano

longer
más largo

Glossary

J41

© Houghton Mifflin Harcourt Publishing Company

© Houghton Mifflin Harcourt Publishing Company

Interactive Glossary

Possible summaries:

My Vocabulary Summary

side lado	
six seis	

sixteen dieciséis	
size tamaño	

small pequeño	
square cuadrado	

J47

Glossary

Interactive Glossary

Possible summaries:

My Vocabulary Summary

solid sólido	
sort ordenar	
sphere esfera	
square cuadrado	

J48

Glossary

Interactive Glossary

Possible summaries:

My Vocabulary Summary

subtract

$$3 - 1 = 2$$

T

Take Apart

$$5 - 2 = 3$$

take away

para llevar

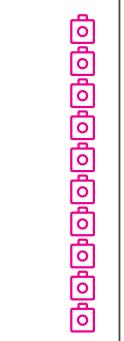
Take From

$$3 - 1 = 2$$

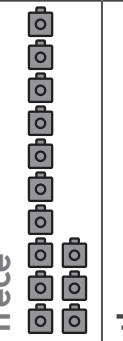
Glossary

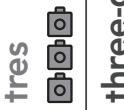
© Houghton Mifflin Harcourt Publishing Company

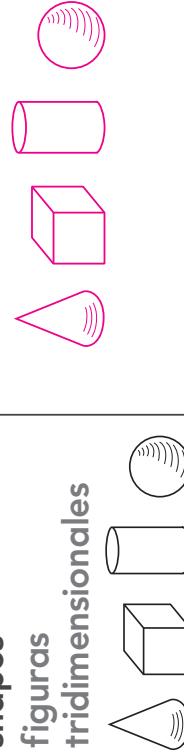
Interactive Glossary


Possible summaries:

My Vocabulary Summary


taller


ten


thirteen

three

three-dimensional shapes

J49

© Houghton Mifflin Harcourt Publishing Company

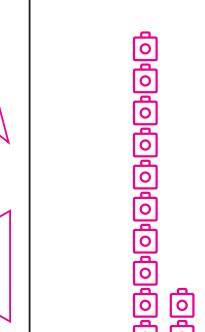
Glossary

Interactive Glossary

Possible summaries:

My Vocabulary Summary

total
sumar


 + =

$$2 + 4 = 6$$

total

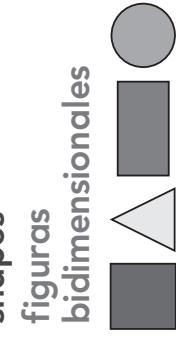
Adding 2 marbles to 4 marbles makes a **total** of 6 marbles.

triangle
triángulo

two-dimensional shapes
figuras bidimensionales

© Houghton Mifflin Harcourt Publishing Company

Glossary


J51

Interactive Glossary

Possible summaries:

My Vocabulary Summary

two-dimensional shapes
figuras bidimensionales

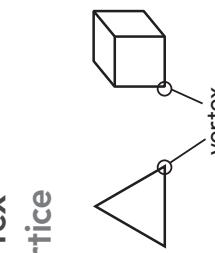
U

unknown
la incógnita

© Houghton Mifflin Harcourt Publishing Company

Glossary

J52


U

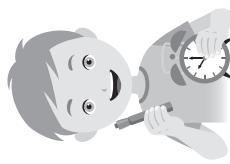
unknown
la incógnita

V

vertex
vértice

Glossary

J52


Interactive Glossary

W

Possible summaries:

My Vocabulary Summary

weight
el peso

Weight: how heavy or light something is

Z

zero
cero

there are **zero** fish, none

© Houghton Mifflin Harcourt Publishing Company

Glossary

J53

Index

A

About the Math. *See under Professional Learning above*, 389–392

act out

addition problems within five, 101–104

within ten, 267–270

subtraction problems within five, 105–108

within ten, 271–274

add, fluently within five, 133–138, 175–180

addition

add to

within five, 109–114, 121–126

within ten, 267–270, 275–280

equations, 109–114, 121–126, 133–138, 151–156,

163–168, 175–180, 267–270, 275–280, 287–292,

299–304, 309–312, 317–322, 329–334

act out within ten, 267–270

solve, result unknown, 133–138, 299–304

solve within five, 109–114, 151–156, 175–180

solve within ten, 275–280, 317–322, 329–334

write equations within five, 121–126

write equations within ten, 287–292

is equal to, 112, 118

plus, 112

problems, within five, 143–146

problem solving, act out addition

problems, 101–104, 267–270

put together, 151–156, 317–322

represent and draw

equations within five, 111–114, 124–126

equations within ten, 275–280, 309–312

using mental images, 163–168

subtraction and, 133–138, 175–180, 299–304, 329–334

ways to make

eight, 343–346, 359–360

five, 21–24, 186

four, 186

nine, 347–350, 359–360

seven, 341–342, 360

six, 339–340, 359–360

ten, 351–354, 355–358, 360

word problems, 109–114, 133–138, 151–156, 175–180, 275–280, 299–304, 317–322, 329–334

Add To

within five, 109–114, 121–126

within ten, 267–270, 275–280

algebra

addition

equations, 109–114, 121–126, 133–138, 151–156,

163–168, 175–180, 267–270, 275–280, 287–292,

299–304, 309–312, 317–322, 329–334

represent and draw problems, 111–114, 124–126, 275–280, 309–312

solve word problems within five, 109–114, 133–138, 151–156, 175–180

solve word problems within ten, 275–280, 299–304, 317–322, 329–334

subtraction and, 133–138, 175–180, 299–304, 329–334

subtraction

addition and, 133–138, 175–180, 299–304, 329–334

equations, 115–120, 127–132, 133–138, 157–162,

169–174, 175–180, 271–274, 281–286, 293–298,

299–304, 313–316, 323–328, 329–334

represent and draw problems, 130–132, 134, 136, 148–150, 157–162, 169–174, 271–274, 281–286,

293–298, 327–328

solve word problems within five, 115–120, 133–138, 157–162, 175–180

solve word problems within ten, 281–286, 299–304, 323–328, 329–334

ways to make

eight, 343–346, 359–360

five, 21–24, 186

four, 186

nine, 347–350, 359–360

seven, 341–342, 360

six, 339–340, 359–360

ten, 351–354, 355–358, 360

anchor chart, every module includes a completed

anchor chart. 8B, 32B, 56B, 84B, 104B, 146B, 190B, 206B, 226B, 242B, 270B, 312B, 342B, 368B, 392B, 408B, 442B, 462B, 484B, 500B

Anchor charts are also available in the *Teacher Edition: Planning and Pacing Guide* PG85–PG104

Are You Ready?, appears in every module. 4, 28, 52, 80, 100, 142, 186, 202, 222, 238, 266, 308, 338, 364, 388, 404, 438, 458, 480, 496

assessment

Are You Ready?, appears in every module. 4, 28, 52, 80, 100, 142, 186, 202, 222, 238, 266, 308, 338, 364, 388, 404, 438, 458, 480, 496

Check Understanding, appears in every lesson. *See, for example*, 7, 19, 23, 31, 35, 39, 42, 46, 55, 59, 63, 67, 71, 74, 83, 87, 91, 94, 103, 107, 112, 123, 212, 390, 499

diagnostic assessment

Are You Ready? (see Are You Ready?)

formative assessment

Check Understanding (see Check Understanding)

Module Review, every module includes a Module Review with a possible scoring guide for all items. 25–26, 49–50, 77–78, 97–98, 139–140, 181–182, 199–200, 219–220, 235–236, 263–264, 305–306, 335–336, 359–360, 385–386, 401–402, 433–434, 455–456, 475–476, 493–494, 509–510

Module Test, every module includes a Module Test with an alternate version. 26A, 50A, 78A, 98A, 140A, 182A, 200A, 220A, 236A, 264A, 306A, 336A, 360A, 386A, 402A, 434A, 456A, 476A, 494A, 510A

summative assessment

Module Review (see Module Review)

Module Test (see Module Test)

B

behind, 397–400

below, 389–392

beside, 393–396

big, 89–92

C

category, 81–84, 85–88, 89–92, 93–96

Check Understanding, appears in every lesson. *See, for example*, 7, 11, 23, 31, 35, 39, 42, 46, 55, 59, 63, 67, 71, 74, 83, 87, 91, 94, 103, 107, 112, 123, 212, 390, 499

circle, identify and describe, 405–408

classify

by count, 93–96

and count by color, 81–84

and count by shape, 85–88

and count by size, 89–92

Collect and Display. *See under* language routines

color, classify and count by, 81–84

compare

by counting

groups to five, 65–68

groups to ten, 251–254

heights, 489–492

lengths, 485–488

by matching

groups to five, 61–64, 69–72

groups to ten, 247–250, 255–258

numbers/groups

equal to, 61–64, 247–250

greater than, 53–56, 69–72, 73–76, 239–242

less than, 57–60, 69–72, 73–76, 243–246

to five, 53–56, 57–60, 61–64, 65–68, 69–72, 73–76

to ten, 243–246, 247–250, 251–254, 255–258, 259–262

two-dimensional shapes, 429–432

two numbers, 73–76, 243–246, 259–262

weights, 501–504

Compare and Connect. *See under* language routines

cone, identify and describe, 377–380

connecting cubes, 5, 9, 13, 17, 21, 22, 23, 24, 25, 26, 29, 33, 37, 53–56, 57–60, 61–64, 65, 69–71, 77, 81, 83, 85, 97, 109–112, 115–118, 142, 144, 147–148, 151–152, 157–158, 163, 169, 187, 191, 195, 197, 238, 240, 244, 247–248, 251–252, 255–256, 263, 267–268, 271–272, 275, 308, 310, 313–314, 317–318, 323–325, 338, 364, 439–440, 443–444, 447–448, 451, 459, 463, 467, 479

corners. *See* vertex/vertices

count. *See also* numbers

and classify

by color, 81–84

by count, 93–96

by shape, 85–88

by size, 89–92

TE Book 1	1–50A
TE Book 2	51A–78A
TE Book 3	79A–98A
TE Book 4	99A–140A
TE Book 5	141A–182A

TE Book 6	183–220A
TE Book 7	221A–264A
TE Book 8	265A–306A
TE Book 9	307A–336A
TE Book 10	337A–360A

TE Book 11	361–402A
TE Book 12	403A–434A
TE Book 13	435–476A
TE Book 14	477–510A

Teacher Edition: Planning and Pacing Guide PG1–PG123
Teacher Edition references are in *italics*;
Teacher Edition: Planning and Pacing Guide references begin with PG.

compare by, 65–68, 251–254
 by ones, 223–226
 by tens, 227–230

Critique, Correct, and Clarify. *See under language routines*

cube, identify and describe, 369–372

curve, of circle, 407–408

curved surfaces, 367, 373–375, 377–379

cylinder, identify and describe, 373–376

D

data checkpoint, every module includes an autoscored Are You Ready? diagnostic assessment and a Module Test summative assessment. Every lesson includes an autoscored Check Understanding formative assessment.

When you assign autoscored assignments on Ed: Your Friend in Learning, you will have immediate access to data and recommendations for differentiation.

Are You Ready?, appears in every module. 4, 28, 52, 80, 100, 142, 186, 202, 222, 238, 266, 308, 338, 364, 388, 404, 438, 458, 480, 496

Check Understanding, appears in every lesson. *See, for example*, 7, 11, 15, 19, 23, 31, 35, 39, 43, 47, 55, 59, 63, 67, 71, 75, 83, 87, 91, 95, 103, 107
 Module Test, 26A, 50A, 78A, 98A, 140A, 182A, 200A, 220A, 236A, 264A, 306A, 336A, 360A, 386A, 402A, 434A, 456A, 476A, 494A, 510A

data-driven instruction, every module includes data charts to help you drive instruction to support students for the Are You Ready? and Module Review assessments. Every lesson includes differentiation support following the Check Understanding assessment to support students. *Teacher Edition: Planning and Pacing Guide* PG24–PG31

developing math language, 3C, 27C, 51C, 79C, 99C, 141C, 185C, 201C, 221C, 237C, 265C, 307C, 317C, 363C, 387C, 403C, 437C, 457C, 479C, 495C

diagnostic assessment

Are You Ready? (*see Are You Ready?*)

differentiated instruction, every lesson includes leveled activities for pulled small groups and leveled print and digital activities for Math Centers. Some examples are 5C, 9C, 13C, 17C, 21C, 29C, 33C, 37C, 41C, 45C, 53C, 57C, 61C, 65C, 69C, 73C, 81C, 85C, 89C, 93C

domino, 165, 168

dot plate, 164, 167, 170, 173

E

eight

count and write, 207–210
 represent, 191–194
 ways to make, 343–346, 359–360

eighteen

compose, 447–450
 count and write, 467–470
 represent, 451–454

eleven

compose, 439–442
 count and write, 459–462

equations

addition
 act out within ten, 267–270
 solve, result unknown, 133–138, 299–304
 solve within five, 109–114, 151–156, 175–180
 solve within ten, 275–280, 317–322, 329–334
 write within five, 121–126
 write within ten, 287–292
 for result unknown word problems, 133–138, 175–180, 299–304, 329–334
 subtraction
 act out within ten, 271–274
 solve, result unknown, 133–138, 299–304
 solve within five, 115–120, 157–162, 175–180
 solve within ten, 281–286, 323–328, 329–334
 write within five, 127–132
 write within ten, 293–298

Exit Ticket, every lesson provides a projectable Exit Ticket.

Some examples are 8, 12, 16, 20, 24, 32, 36, 40, 44, 48, 56, 60, 64, 68, 72, 76, 84, 88, 92, 96, 104, 108

expressions

addition, 309–312
 subtraction, 313–316

F

fifteen

compose, 443–446
 count and write, 463–466

five(s)

act out problems
 within addition, 101–104
 within subtraction, 105–108
 compare to
 by counting groups to, 65–68
 by matching groups to, 61–64, 69–72
 numbers, 73–76
 numbers equal to, 61–64
 numbers greater than, 53–56, 69–72, 73–76
 numbers less than, 57–60, 69–72, 73–76
 count and write, 37–40
 count and write numbers to, 45–48
 count to, 45–48
 draw, 37–40
 fluently add within, 175–180

fluently subtract within, 175–180

order, 186

represent, 13–16, 37–40, 186

represent problems

within addition, 143–146

within subtraction, 147–150

solve problems

add to, 109–114

put together, 151–156

take apart, 157–162

take from, 115–120

ways to make, 21–24, 186

write problems

within addition, 121–126

within subtraction, 127–132

five frames, 6–7, 10–11, 14–15, 23, 52, 56, 62–63, 70, 100, 186

flat, 405–406, 409–410, 413–414, 417–418, 421–422. *See also* two-dimensional shapes

flat surfaces, 369–371, 373–375, 377–379

formative assessment

Check Understanding (*see Check Understanding*)

four

count and write, 37–40, 45–48

order, 186

represent, 9–12, 186

ways to make, 186

fourteen

compose, 439–442, 444
 count and write, 459–462

front

G

geometry. *See* shapes

Glossary. *See* More Practice and Homework Journal for the student Interactive Glossary. *See* Teacher Edition: Planning and Pacing Guide PG106–PG117 for the teacher Interactive Glossary

greater than, 53–56, 61–64, 65–68, 69–72, 73–76, 239–242, 251–254, 259–262

groups

add to, 275–280

compare by counting, 65–68

fewer, 57–60, 69–72, 243–246

by matching, 69–72, 255–258

more, 53–56, 69–72, 239–242

put together, 151–156, 317–322

same number, 61–64, 247–250

take apart, 157–162, 323–328

take from, 281–286

Index

H

heavier, 501–504
heights
 compare, 489–492
 describe attributes of, 481–484, 505–508
hexagon, identify and describe, 421–424
hundred, count to
 forward from a given number, 231–234
 by ones, 223–226
 by tens, 227–230
hundred charts, 224–226, 228–230

I

I Can scale, every lesson provides a scale to track progress on learning goals. Some examples are 8, 12, 16, 20, 24, 32, 36, 40, 44, 48, 56, 60, 64, 68, 72, 76, 84, 88, 92, 96, 104, 108
in front of, 397–400
Interactive Glossary. *See* Glossary
is equal to, 112, 118

J

join, 101–104, 109–114, 121–126, 267–270, 275–280, 287–292
journal, every lesson provides prompts for journals. Some examples are 8, 12, 16, 20, 24, 32, 36, 40, 44, 48, 56, 60, 64, 68, 72, 76, 84, 88, 92, 96, 104, 108

L

language routines
 Collect and Display, some examples are 8B, 32B, 56B, 84B, 104B, 146B, 190B, 206B, 226B, 242B
 Compare and Connect, some examples are 22, 82, 86, 94, 110, 112, 148, 158, 189, 224, 390, 498
 Critique, Correct, and Clarify, some examples are 41, 60, 331, 487, 492, 502, 507
 Stronger and Clearer Each Time, some examples are 11, 33, 47, 70, 83, 121, 127, 133, 176, 193, 196, 301
 Three Reads, some examples are 5, 9, 13, 17, 21, 29, 33, 37, 53, 57, 61, 65, 69, 81, 85, 195, 239, 373, 409
larger, 33, 37, 48, 216, 218, 427–428, 433
Learning Mindset, appears in all unit openers and in some lessons.
 In lessons, some examples are 8, 12, 16, 20, 24, 32, 36, 40, 56, 60, 64, 68, 72, 84, 88, 92, 104, 108, 114, 120
 In unit openers, 2, 184, 362, 436, 478
lengths
 compare, 485–488
 describe attributes of, 481–484, 505–508
less than, 57–60, 61–63, 65–71, 73–76, 243–246, 255–257, 259–262

Leveled Questions, every lesson includes a chart with leveled questions for Depth of Knowledge 1, 2, and 3 and diagnostic support of what students may know or understand. Some examples are 6, 10, 18, 22, 30, 34, 38, 42, 46, 54, 58, 62, 66, 70, 82, 90, 188, 256, 393, 498
lighter, 501–504
longer, 485–488

M

Make Connections. *See under* Warm-Up Options
manipulatives and materials

 connecting cubes, 5, 9, 13, 17, 21, 22, 23, 24, 25, 26, 29, 33, 37, 53–56, 57–60, 61–64, 65, 69–71, 77, 81, 83, 85, 97, 109–112, 115–118, 142, 144, 147–148, 151–152, 157–158, 163, 169, 187, 191, 195, 197, 238, 240, 244, 247–248, 251–252, 255–256, 263, 267–268, 271–272, 275, 308, 310, 313–314, 317–318, 323–325, 338, 364, 439–440, 443–444, 447–448, 451, 459, 463, 467, 479
 five frames, 6–7, 10–11, 14–15, 23, 52, 56, 70, 100, 186
 hundred charts, 224–226, 228–230
 pattern blocks, 85–88, 89, 94, 425–428, 433
 ten frames, 188, 196, 200, 438, 446, 458, 460–462, 464–466, 468–469, 475–476
 two-color counters, 7, 9–11, 13–15, 17, 21, 25–26, 29, 33, 37, 46, 52, 53–54, 57–58, 61, 65, 69, 81, 89, 100, 109–112, 115–118, 144, 147–148, 151–152, 157, 163, 169, 186, 187, 191, 195, 202, 203, 207, 239–240, 243–244, 247–248, 251–252, 255–256, 267–268, 271–272, 275, 310, 313–314, 317–318, 323–325, 438, 439, 443, 447, 458, 459, 463–465, 467–469, 475, 480
 two-dimensional shapes, 425–434

Manipulatives and Tools, PG75–PG76

matching, compare by, 61–64, 69–72, 247–250, 255–258

Mathematical Practices and Processes

1. *make sense of problems and persevere in solving them*, occurs throughout. Some examples are 58–59, 102–103, 110–111, 164–165
2. *reason abstractly and quantitatively*, in some lessons. Some examples are 6–7, 54–55, 440–441, 460–461
3. *construct viable arguments and critique the reasoning of others*, in some lessons. Some examples are 54–55, 482–483, 490–491, 498–499
4. *model with mathematics*, in some lessons. Some examples are 122–123, 165–166, 281–282, 334–338
5. *use appropriate tools strategically*, in some lessons. Some examples are 196–197, 240–241, 318–319
6. *attend to precision*, in some lessons. Some examples are 62–63, 228–229, 390–391, 406–407
7. *look for and make use of structure*, in some lessons. Some examples are 26–27, 460–461, 482–483
8. *look for and express regularity in repeated reasoning*, in some lessons. Some examples are 228–229, 318–319, 352–353, 440–441, 452–453, 486

Mathematical Progressions, each TE module and lesson includes a Mathematical Progression for current development, prior learning, and future connections.
In lessons, some examples are 5A, 9A, 13A, 17A, 21A, 29A, 33A, 37A, 41A, 45A, 53A, 57A, 61A, 65A, 69A, 73A
In modules, 3B, 27B, 51B, 79B, 99B, 141B, 185B, 201B, 221B, 237B, 265B, 307B, 337B, 363B, 387B, 403B, 437B, 457B, 479B, 495B

Math on the Spot videos, some lessons feature a Math on the Spot video problem. Some examples are 12A, 16A, 48A, 56A, 60A, 68A, 92A, 104A, 126A, 132A, 150A
See also student and parent resources on Ed: Your Friend in Learning

Math Routine. *See under* Warm-Up Options

Math Teaching Practices

1. *establish mathematics goals to focus learning*, occurs throughout. Some examples are 3B, 5A, 27B, 29A
2. *implement tasks that promote reasoning and problem solving*, occurs throughout. Some examples are 99B, 101D, 105D
3. *use and connect mathematical representations*, occurs throughout. Some examples are 185B, 187D, 191D
4. *facilitate meaningful mathematical discourse*, occurs throughout. Some examples are 221B, 228, 363B, 370
5. *pose purposeful questions*, occurs throughout. Some examples are 3B, 6, 79B, 81, 437B, 440, 479B, 482
6. *build procedural fluency from conceptual understanding*, occurs throughout. Some examples are 141B, 154, 307B, 320
7. *support productive struggle in learning mathematics*, occurs throughout. Some examples are 51B, 53, 201B, 203
8. *elicit and use evidence of student thinking*, occurs throughout. Some examples are 5B, 9, 13B, 17

measurement, compare

 by heights, 489–492
 by lengths, 485–488
 by weights, 501–504

minus, 118

model, visual or concrete. *See* represent

modeling. *See also* numbers

 addition, 121–126, 133–137, 275–80
 equations within ten, 287–292
 problems within ten, 275–280, 309–312, 329–334
 put together, 151–156, 317–322
 subtraction, 127–132, 281–286
 equations within ten, 293–298
 problems within ten, 313–316, 329–334
 take apart, 157–162, 323–328
 take from, 281–286

Module Opening Task, 3, 27, 51, 79, 99, 141, 183, 201, 221, 237, 265, 307, 337, 361, 387, 403, 435, 457, 477, 495

module planning, 3A, 27A, 51A, 79A, 99A, 141A, 183A, 201A, 221A, 237A, 265A, 307A, 337A, 361A, 387A, 403A, 435A, 457A, 477A, 495A

TE Book 1 1–50A
TE Book 2 51A–78A
TE Book 3 79A–98A
TE Book 4 99A–140A
TE Book 5 141A–182A

TE Book 6 183–220A
TE Book 7 221A–264A
TE Book 8 265A–306A
TE Book 9 307A–336A
TE Book 10 337A–360A

TE Book 11 361–402A
TE Book 12 403A–434A
TE Book 13 435–476A
TE Book 14 477–510A

Teacher Edition: Planning and Pacing Guide PG1–PG123
Teacher Edition references are in *italics*;
Teacher Edition: Planning and Pacing Guide references begin with PG.

Module Review

Module Review, every module includes a Module Review with a possible scoring guide for all items. 25–26, 49–50, 77–78, 97–98, 139–140, 181–182, 199–200, 219–220, 235–236, 263–264, 305–306, 335–336, 359–360, 385–386, 401–402, 433–434, 455–456, 475–476, 493–494, 509–510

Module Test, appears in every module. 26A, 50A, 78A, 98A, 140A, 182A, 200A, 220A, 236A, 264A, 306A, 336A, 360A, 386A, 402A, 434A, 456A, 476A, 494A, 510A

N

next to, 393–396

nine

count and write, 207–210
represent, 191–194
ways to make, 347–350, 359–360

nineteen

compose, 447–450
count and write, 467–470
represent, 453

numbers

compare (see compare)
count and write, 29–32, 33–36, 41–44, 45–48, 203–206, 207–210, 211–214, 459–462, 463–466, 467–470, 471–474
eight, 191–194, 207–210
eighteen, 447–450, 467–470
eleven, 439–442, 459–462
fifteen, 443–446, 463–466
five(s), 13–16, 21–24, 37–40, 41–44, 45–48
four, 9–12, 37–40, 41–44, 45–48
fourteen, 439–442, 459–462
hundred, 223–226, 227–230
nine, 191–194, 207–210
nineteen, 447–450, 453, 467–470
one(s), 5–8, 29–32, 41–44, 45–48, 223–226, 439–442, 443–446, 447–450
order (see order numbers)
seven, 187–190, 203–206
seventeen, 447–450, 467–470
six, 187–190, 203–206
sixteen, 447–450, 467–470
ten(s), 195–198, 211–214, 215–218, 227–230
thirteen, 439–442, 459–462
three, 9–12, 33–36, 41–44
twelve, 439–442, 459–462
twenty, 451–454, 471–474
two, 5–8, 33–36, 41–44, 45–48
ways to make
eight, 343–346, 359–360
five, 21–24, 186

four

nine, 347–350, 359–360
seven, 341–342, 360
six, 339–340, 359–360
ten, 351–354, 355–358, 360
zero, 17–20, 29–32, 41–44

O

one(s)

count by, 41–44, 45–48, 231–234, 439–442, 443–446, 447–450
count and write, 29–32, 45–48
order, 186
represent, 5–8, 186

one hundred. See hundred

order numbers

to five, 45–48, 186
to ten, 215–218

P

pacing, *Teacher Edition: Planning and Pacing Guide* PG46–PG59

pattern blocks, 85–88, 89, 425–428, 433

plus, 112

position words

above, 389–392
behind, 397–400
below, 389–392
beside, 393–396
in front of, 397–400
next to, 393–396

prerequisite skills. See also Are You Ready?

add and subtract, 308
add to, 266
classify by size, 480
compare numbers within five, 238, 480
count and order to five, 186, 202
count and write numbers to ten, 438, 458
count objects, 80, 202, 438, 458
count representations of numbers to five, 52, 186
count to ten, 222
explore numbers to five, 4
identify three-dimensional shapes and objects, 364, 388
longer and shorter, 486, 489–492, 496
match numbers to groups, 4, 32
match shapes, 404
match the numbers three, four, and five, 32
order numbers, 100, 186, 202, 222
represent addition and subtraction using objects, drawings, and equations, 308
represent fewer, 238

represent more

represent numbers to five, 48, 52, 80, 100, 186
represent numbers to ten, 222, 438, 458
solve addition and subtraction word problems, 308
solve word problems within five, 338
sort by kind or size, 80, 480
take from, 266
taller and shorter, 489–492, 496
use equations, 266, 308
ways to make

eight, 343–346, 359–360
four and five, 100, 142, 186, 338
nine, 347–350, 359–360
seven, 341–342, 360
six, 339–340, 359–360
ten, 351–354, 355–358, 360
which number comes next, 222
write numbers, 52, 100, 142, 202, 438, 458

Prerequisite Skills Activity. See under Warm-Up Options

Problem Types, PG68–PG71

Professional Learning

About the Math, some examples are 5A, 21A, 33A, 37A, 41A, 69A, 89A, 93A, 105A, 109A, 127A
Using Mathematical Practices and Processes, some examples are 9A, 29A, 57A, 65A, 73A, 85A, 121A, 147A, 169A, 207A, 211A
Visualizing the Math, some examples are 13A, 17A, 45A, 61A, 115A, 133A, 157A, 259A, 281A, 309A, 347A, 355A, 373A, 377A, 467A

Put It in Writing. See journal

Put Together, 143–146, 151–156, 309–312, 317–322

R

rectangle, identify and describe, 417–420

represent

connecting cubes, 5, 9, 13, 17, 21, 22, 23, 24, 25, 26, 29, 33, 37, 53–56, 57–60, 61–64, 65, 69–71, 77, 81, 83, 85, 97, 109–112, 115–118, 142, 144, 147–148, 151–152, 157–158, 163, 169, 187, 191, 195, 197, 238, 240, 244, 247–248, 251–252, 255–256, 263, 267–268, 271–272, 275, 308, 310, 313–314, 317–318, 323–325, 338, 364, 439–440, 443–444, 447–448, 451, 459, 463, 467, 479
five frames, 6–7, 10–11, 14–15, 23, 52, 56, 62–63, 70–71, 100, 186
hundred charts, 224–226, 228–230
pattern blocks, 85–88, 89, 94, 425–428, 433
ten frames, 188, 196, 200, 438, 446, 458, 460–462, 464–466, 468–469, 475–476
three-dimensional shapes, 365–368, 369–372, 373–376, 377–380, 381–384, 389–392, 393–396, 397–400, 429–432

Index

represent (continued)

two-color counters, 7, 9–11, 13–15, 17, 21, 25–26, 29, 33, 37, 46, 52, 53–54, 57–58, 61, 65, 69, 81, 89, 100, 109–112, 115–118, 144, 147–148, 151–152, 157–158, 163, 169, 186, 187, 191, 195, 202, 203, 207, 239–240, 243–244, 247–248, 251–252, 255–256, 267–268, 271–272, 275, 310, 313–314, 317–318, 323–325, 438, 439, 443, 447, 458, 459, 463–465, 467–469, 475, 480
two-dimensional shapes, 85–88, 94, 405–408, 409–412, 413–416, 417–420, 421–424, 425–428, 429–432

Response to Intervention/Multi-Tiered

System of Support (RtI/MTSS), options can be found at point of use. Some examples are 4, 5C, 9B, 9C, 13B, 13C, 17B, 17C, 21B, 21C, 25–26, 28, 29C, 33C, 37C, 41C, 49–50, 52, 53C, 57C, 61C, 65C, 69C, 73C, 80, 81C, 85C, 89C, 93C

See also Teacher Edition: Planning and Pacing Guide PG42

review. *See* Module Review

S

same height, 481–484

same length, 481–484

Science, Technology, Engineering, and Math. *See* STEM Task

seven

count and write, 203–206
represent, 187–190
ways to make, 341–342, 360

seventeen

compose, 447–450
count and write, 467–470

shape(s)

build, 381–384
classify and count by, 85–88
compare two- and three-dimensional, 429–432
compose, 425–428
flat, 405–408, 409–412, 413–416, 417–420, 421–424
three-dimensional
 compare, 429–432
 cone, 377–380
 cube, 369–372
 cylinder, 373–376
 sphere, 365–368
two-dimensional
 circle, 405–408
 classify and count by, 85–88, 93–96
 compare, 405–408, 429–432
 compose, 425–428
 hexagon, 421–424
 rectangle, 417–420
 square, 409–412
 triangle, 413–416

Sharpen Skills. *See under* Warm-Up Options

shorter than, 481–484, 487–488, 491–492

sides

of equal length, 409–412
hexagon, 421–424

rectangle, 417–420

square, 409–412

triangle, 413–416

six

count and write, 203–206

represent, 187–190

ways to make, 339–340, 359–360

sixteen

compose, 448–449

count and write, 467–470

size, classify and count by, 89–92

small, 89–92

solid, 365–368. *See also* three-dimensional shapes

sort

circles, 405–408

by color, 81–84

by count, 93–96

hexagons, 421–424

rectangles, 417–420

by shape, 85–88

by size, 89–92

squares, 409–412

triangles, 413–416

Spark Your Learning. *See under* student samples

sphere, identify and describe, 365–368, 393

square, identify and describe, 409–412

standards correlations, *Teacher Edition: Planning and Pacing Guide PG61–PG66*

STEM Task, 1–2, 183–184, 361–362, 435–436, 477–478

Step It Out. *See under* student samples

strategies. *See* subtraction: problem solving

Stronger and Clearer Each Time. *See under* language routines

student samples

Spark Your Learning, 5D, 9D, 13D, 17D, 21D, 29D, 33D, 37D, 53D, 57D, 61D, 65D, 69D, 73D, 81D, 85D, 89D, 101D, 105D, 109D, 115D, 143D, 147D, 151D, 157D, 163D, 169D, 187D, 191D, 195D, 203D, 207D, 223D, 227D, 239D, 243D, 247D, 251D, 255D, 267D, 271D, 275D, 281D, 309D, 313D, 317D, 323D, 339D, 343D, 347D, 365D, 369D, 373D, 377D, 381D, 405D, 409D, 413D, 417D, 421D, 425D, 439D, 443D, 447D, 459D, 463D, 467D, 481D, 485D, 489D, 497D, 501D

Step It Out, 41D, 45D, 73D, 93D, 175D, 211D, 215D, 231D, 259D, 287D, 293D, 299D, 329D, 351D, 355D, 389D, 393D, 397D, 429D, 451D, 471D, 505D

subtract, fluently within five, 115–120, 175–180

subtraction

addition and, 133–138, 175–180, 299–304, 329–334

equations

act out within ten, 271–274

solve, result unknown, 133–138, 299–304

solve within five, 115–120, 157–162, 175–180

solve within ten, 281–284, 323–328, 329–334

write within five, 127–132

write within ten, 293–298

minus, 118

problem solving, act out subtraction problems, 105–108, 271–274

problems within five, 147–150

represent and draw equations, 117–120, 130–132,

136, 138

problems within five, 147–150

problems within ten, 313–316

using mental images, 169–174

take apart, 157–162, 323–328

take away, 105–108

take from

within five, 115–120, 127–132

within ten, 281–286

word problems, 115–120, 133–138, 157–162,

175–180, 281–286, 299–304, 323–328, 329–334

summative assessment

Module Review (see Module Review)

Module Test (see Module Test)

symbols. *See* is equal to; minus; plus

T

Table of Measures. *See* More Practice and Homework Journal

Tabletop Flipcharts Mini-Lesson, every lesson includes a Tabletop Flipchart Mini-Lesson for teachers to use with a small, pulled group of students who are almost there. Some examples are 5C, 9C, 13C, 17C, 21C, 29C, 33C, 37C, 41C, 45C, 53C, 57C, 61C, 65C, 69C, 73C, 81C, 85C, 89C, 93C

Take Apart, 157–162, 323–328

take away, 106–108

Take From

within five, 115–120, 127–132

within ten, 281–286

taller than, 489–492

Teacher to Teacher, 3B, 27B, 51B, 79B, 99B, 141B, 185B, 201B, 221B, 237B, 265B, 307B, 337B, 363B, 387B, 403B, 437B, 457B, 479B, 495B

Teaching for Depth, 3B, 27B, 51B, 79B, 99B, 141B, 185B, 201B, 221B, 237B, 265B, 307B, 337B, 363B, 387B, 403B, 437B, 457B, 479B, 495B

technology and digital resources. *See* Ed: Your Friend in Learning for interactive instruction, interactive practice, and videos

ten(s)

act out addition problems within, 267–270

act out subtraction problems within, 271–274

compare

by counting groups to, 251–254

equal to, 247–250

greater than, 239–242

less than, 243–246

by matching groups to, 239–242, 243–246, 247–250, 255–258

numbers, 259–262

count and order to, 215–218

count and write, 211–214

count by, 227–230

represent, 195–198

TE Book 1 1–50A
TE Book 2 51A–78A
TE Book 3 79A–98A
TE Book 4 99A–140A
TE Book 5 141A–182A

TE Book 6 183–220A
TE Book 7 221A–264A
TE Book 8 265A–306A
TE Book 9 307A–336A
TE Book 10 337A–360A

TE Book 11 361–402A
TE Book 12 403A–434A
TE Book 13 435–476A
TE Book 14 477–510A

Teacher Edition: Planning and Pacing Guide PG1–PG123
Teacher Edition references are in *italics*;
Teacher Edition: Planning and Pacing Guide references begin with PG.

represent problems within, using objects and drawings

addition, 309–312

subtraction, 313–316

solve problems within

add to, 275–280

put together, 317–321

result unknown, 299–304

take apart, 323–328

take from, 281–286

word problems within, 329–334

ways to make, 351–354, 355–358, 360

write equations

within addition, 287–292

within subtraction, 293–298

ten frames, 188, 196, 200, 438, 446, 458, 460–462, 464–466, 468–469, 475–476

thirteen

compose, 439–442

count and write, 459–462

three

count and write, 33–36, 45–48

order, 186

represent, 9–12, 186

three-dimensional shapes

build, 381–384

compare, 429–432

cone, 377–380

cube, 369–372

cylinder, 373–376

describe position, 389–392, 393–396, 397–400

sphere, 365–368

Three Reads. *See under* language routines

total, 101–104

triangle, identify and describe, 413–416

twelve

compose, 439–442

count and write, 459–462

twenty

count and write, 471–474

represent numbers to, 451–454

two

count and write, 33–36, 45–48

order, 186

represent, 5–8, 186

two-color counters, 7, 9–11, 13–15, 17, 21, 25–26,

29, 33, 37, 46, 52, 53–54, 57–58, 61, 65, 69, 81, 89, 100,

109–112, 115–118, 144, 147–148, 151–152, 163, 169,

186, 187, 191, 195, 202, 203, 207, 239–240, 243–244,

247–248, 251–252, 255–256, 267–268, 271–272, 275,

310, 313–314, 317–318, 323–325, 438, 439, 443, 447,

458, 459, 463–465, 467–469, 475, 480

two-dimensional shapes

circle, 405–408

classify and count by, 85–88, 94

compare, 429–432

compose, 425–428

hexagon, 421–424

rectangle, 417–420

square, 409–412

triangle, 413–416

U

Unit Performance Task, PG77–PG81

unknown result word problems

solving, 133–138, 175–180, 299–304, 329–334

Unpacking Math Standards, 5A, 29A, 45A, 53A,

81A, 101A, 143A, 187A, 223A, 227A, 231A, 309A, 339A, 355A, 389A, 405A, 439A, 443A, 459A, 481A, 485A

Using Mathematical Practices and Processes. *See under* Professional Learning

V

vertex/vertices

hexagon, 423–424

rectangle, 419–420

square, 411–412

triangle, 415–416

Visualizing the Math. *See under* Professional Learning

W

Warm-Up Options, every lesson includes the warm-

up options Make Connections, Math Routines, Prerequisite Skills Activity, and Sharpen Skills. Some examples are 5B, 9B, 13B, 17B, 21B, 29B, 33B, 37B, 41B, 45B, 53B, 57B, 61B, 65B, 69B, 73B, 81B, 85B, 89B, 93B

weights

compare, 501–504

describe attributes of, 497–500, 505–508

word problems

within five, 109–114, 115–120, 133–138, 151–156, 157–162, 175–180

result unknown, solving, 133–138, 299–304

within ten, 275–280, 281–286, 299–304, 317–322, 323–328, 329–334

write

numbers (*see* numbers)

Z

zero

count and write, 29–32, 46

represent, 17–20