Name: \qquad

Mathematics: The Language of STEM

Exploring Equivalent Fractions: Day 1

CONTENT AND TASK DECISIONS

Grade Level(s): 5

Description of the Task:

Students will use snap cubes to build rectangular prisms in order to discover different ways of representing the same fraction.

Indiana Mathematics Content Standards:

- 5.C.4: Add and subtract fractions with unlike denominators, including mixed numbers.
- 5.AT.2: Solve real world problems involving addition and subtraction of fractions.

Indiana Mathematics Process Standards:

- PS1
- PS2
- PS3
- PS4
- PS5
- PS6

Mathematics Content Goals:

Students will directly model how to form equivalent fractions.

Language Objectives:

Students will engage effectively in a range of collaborative discussions about equivalent fractions, while posing and responding to specific questions based on the remarks of others.

Materials:

Snap Cubes
Fraction Puzzles Worksheet

THE LESSON

Before:

Student Actions

- Students will work in pairs to build a rectangle that is one third of one color and two-thirds of another color using more than three cubes.
- Students will contribute to the discussion by posing questions to their peers and sharing ideas.

Teacher Actions

- Show the students a rectangle made of one yellow cube and two blue cubes. Ask, "What fraction of the rectangle is yellow?"
- Ask, "How can you use snap cubes to build a rectangle that is one third of one color and two-thirds of another color using more than three cubes?"
- Circulate among groups to provide assistance and make observations.
- Call on students to share and explain their thinking.

During:

Student Actions

- Students will work in pairs to create snap cubes rectangles that represent the following puzzles. They must find as many solutions as possible and draw each solution on grid paper.

Teacher Actions

- Circulate among groups to provide assistance, pose further questions, and make observations.

After:

Student Actions

- Students will contribute to the discussion by posing questions to their peers and sharing ideas.
- Student exit ticket: What patterns did you notice when creating solutions to these puzzles?
- Note: Students will need to keep their grid paper for the next day's lesson.

Teacher Actions

- Lead the class in a discussion. Call on several groups to share their solutions to one of the puzzles, using the following prompts:
- How did you go about solving this problem?
- Which solution best illustrates the puzzle? Why?

ASSESSMENT
(student exit ticket): What patterns did you notice when creating solutions to these puzzles?

Observe:

- Observe students making the connection between two fractions that have different numerators and denominators but have the same value.
- Observe students engaging effectively in a range of collaborative discussions about equivalent fractions, while posing and responding to specific questions based on the remarks of others.

Fraction Puzzles

Fraction Puzzle \#1
This rectangle is $1 / 2$ blue and $1 / 4$ yellow. The rest of the rectangle is black. Use your cubes to build as possibilities that you can think of. Draw them in the grid paper below.

Fraction Puzzle \#2
This rectangle has 12 cubes. Three are blue, $1 / 4$ are black, and $1 / 6$ are yellow. Use your cubes to build as many as possible. Draw them in the grid paper below.

Fraction Puzzle \#3
This rectangle is $3 / 8$ blue and $1 / 4$ yellow. The rest of the rectangle is black. Use your cubes to build as many as possible. Draw them in the grid paper below.

Fraction Puzzle \#4
This rectangle is $3 / 5$ blue. The rest is black and yellow but not in equal amounts. Use your cubes to build as many as possible. Draw them in the grid paper below.

Mathematics: The Language of STEM

Exploring Equivalent Fractions: Day 2

CONTENT AND TASK DECISIONS

Grade Level(s): 5

Description of the Task:

- Students will present their multiplication patterns from yesterday's activity in a table.
- Students will use manipulatives of their choice to solve the problem and present their findings to the class.

Indiana Mathematics Content Standards:

- 5.C.4: Add and subtract fractions with unlike denominators, including mixed numbers.
- 5.AT.2: Solve real world problems involving addition and subtraction of fractions.

Indiana Mathematics Process Standards:

- PS1
- PS2
- PS3
- PS4
- PS5
- PS6

Mathematics Content Goals:

Students will use multiplication strategies to form equivalent fractions and apply their strategies to solve an addition problem involving fractions.

Language Objectives:

Students will engage effectively in a range of collaborative discussions about equivalent fractions, while posing and responding to specific questions based on the remarks of others.

Materials:

Snap Cubes
Fraction Puzzles Worksheet

THE LESSON

Before:

Student Actions

- Students will work in the same pairs from yesterday to create a table showing the number of cubes for each color in fraction puzzle \#1. See example below:

Blue cubes	2	4	8
Yellow cubes	1	2	4
Black cubes	1	2	4
Total cubes	4	8	16

- Use the table to show the three equivalent fractions represented by the number of blue cubes.
$2 / 4=4 / 8=8 / 16=$ \qquad

Teacher Actions

- Ask students to look over their grid paper from yesterday.
- Ask "What did you notice about the rectangles you built yesterday?"
- "When building a fraction what did the bottom number represent?"
- "What did the top number represent?"
- Teacher will use the first rectangle from yesterday (2 blue, 1 yellow, 1 black cubes) to show students how to fill in the table.
- Allow time for students to continue filling in the table for the remaining rectangles from yesterday's lesson.
- Teacher will circulate the room, checking to make sure groups are completing the table correctly
- "What do we know about all of these rectangles?"
- "What patterns do you see?"

During:

Student Actions

- Students will work in the same pairs to use manipulatives to solve and model the following problem:
- Sandy and Lisa are sharing a pizza at a sleepover. Sandy ate $1 / 2$ of the pizza and Lisa ate $1 / 3$ of the pizza. How much pizza did they eat all together? How much is left?

Teacher Actions

- Circulate among groups to provide assistance, pose further questions, and make observations.
- Provide enrichment for students who grasp the concept quickly. (Draw a model and show your thinking using a number sentence) (Can you do that problem in another way?)

After:

Student Actions

- Students will contribute to the discussion by posing questions to their peers and sharing ideas.
- Students will complete their exit ticket independently.

Teacher Actions

- Lead the class in a discussion. Call on several groups to share their models and solutions on the document camera. (Consider ordering presenters by level of understanding-least to most.)
- How did you go about solving this problem?
- Why couldn't you add the fractions the way they were written?
- Who ate more pizza?
- Justify your answer.

ASSESSMENT

(student exit ticket): Add $2 / 5+1 / 4$ on a notecard. Explain the strategy you used to solve the problem.

Observe:

- Observe students forming multiplication patterns to form equivalent fractions.
- Observe students using equivalency concepts to add unlike fractions.
- Observe students engaging effectively in a range of collaborative discussions about equivalent fractions, while posing and responding to specific questions based on the remarks of others.

