Intro to Algebra

 Mathematics Curriculum| DOMAIN DESCRIPTION | CLUSTER DESCRIPTION | MLS CODE | MLS DESCRIPTION | DOK | Instructional Activities | Assessments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number and Quantity | Use units to solve problems. | $\begin{aligned} & \text { A1.NQ.B. } 3 \\ & a, b, c \end{aligned}$ | Use units of measure as a way to understand and solve problems involving quantities.
 - Identify, label and use appropriate units of measure within a problem.
 - Convert units and rates.
 - Use units within problems. | 2 | Choose and interpret units in the context of problems and formulas. | Solve area, perimeter, surface area and volume problems and label with appropriate units. |
| | Interpret and use structure. | A1.SSE.A. 1 | Interpret the contextual meaning of individual terms or factors from a given problem that utilizes formulas or expressions. | 3 | Interpret parts of an expression, such as terms, factors, and coefficients. | Students should be able to recognize and interpret the parts that make up the algebraic expression. |
| n
 .0
 0
 0
 0
 0
 0
 00
 .0
 0
 0
 0 | Create equations that describe linear, quadratic and exponential relationships. | A1.CED.A. 1 | Create equations and inequalities in one variable and use them to model and/or solve problems. | 2 | Create equations and inequalities representing real world scenarios. | Translate word phrases into algebraic expressions, equations and inequalities. |
| | | A1.CED.A. 3 | Represent constraints by equations or inequalities and by systems of equations or inequalities, and interpret the data points as a solution or non-solution in a modeling context. | 2 | Determine if a given number is a solution to an equation or inequality. | Determine if $x=-3$ is a solution to the equation $3 x+$ $1=-8$. |
| | | A1.CED.A. 4 | Solve literal equations and formulas for a specified variable that highlights a quantity of interest. | 2 | Rearrange formulas to highlight a quantity of interest using the same reasoning as solving equations. | Solve an equation in standard form such as $3 x+4 y$ $=-3$ for y. |

Intro to Algebra

 Mathematics Curriculum| DOMAIN DESCRIPTION | CLUSTER DESCRIPTION | MLS CODE | MLS DESCRIPTION | DOK | Instructional Activities | Assessments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Understand solving equations as a process, and solve equations and inequalities in one variable. | A1.REI.A. 1 | Explain how each step taken when solving an equation or inequality in one variable creates an equivalent equation or inequality that has the same solution(s) as the original. | 3 | Using algebraic properties and the properties of real numbers, solve linear equations and inequalities including multi-step problems. | Students will solve a variety of equations such as simple one-step equations and more rigorous multi-step equations such as $-4(x+1)=$ $3(x-1)+2$. |
| | Represent and solve linear and exponential equations and inequalities graphically | A1.REI.C. 6 | Explain that the graph of an equation in two variables is the set of all its solutions plotted in the Cartesian coordinate plane. | 2 | Interpret a graph as a collection of infinite solutions (x, y). Understand that graphical solution methods may produce approximate solutions, while algebraic solution methods use precise solutions. | Given the graph of $2 x+3 y=6$, is the point $(1,4)$ a solution? Graph linear equations using intercepts and t-charts. |
| | Perform operations on polynomials. | A1.APR.A. 1 | Add, subtract and multiply polynomials, and understand that polynomials follow the same general rules of arithmetic and are closed under these operations. | 2 | Add, subtract and multiply polynomials. | Solve problems such as $(2 x-4)-(-3 x+1)$ and $(x-7)(3 x-10)$ by applying the distributive property, the concept of combining like terms and the FOIL method. |
| | Summarize, represent and interpret data. | A1.DS.A. 2 | Use statistics appropriate to the shape of the data distribution to compare center and spread of two or more different data sets. | 2 | Compare the distributions of two or more data sets by examining their shapes, centers and spreads when drawn on the same scale. | Given a set of chapter one test scores find the measures of central tendency including mean, median, mode and range. |

