Mathematics Curriculum

Subject Area: Honors Trigonometry and Pre-Calculus 11-12 (Dual-Enrollment)
 CCSS Conceptual Category: Number and Quantity
 CCSS Domain: The Complex Number System (N-CN)

Show-Me Standards

Mathematics Curriculum

Subject Area: Honors Trigonometry and Pre-Calculus 11-12 (Dual-Enrollment)
 CCSS Conceptual Category: Number and Quantity
 CCSS Domain: The Complex Number System (N-CN)

Show-Me Standards

CCSS Cluster	Common Core Standard (D)=District Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
	4. (+) represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number. 5. (+) represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation. 6. (+) calculate the distance between numbers in the complex plane as the modulus of the difference, and the midpoint of a segment as the average of the numbers at its endpoints.	3.4, 3.5		4. Graph $4+5 i$ in the complex coordinate plane. 5. Given $(-2+i) 5$ find the modulus and the argument. 6. Find the distance between (3-i) and (2+i).	4.Determine which quadrant $4+5 i$ is located in. 5. Know that $(-1+\sqrt{3} i) 3=8$ because ($-1+\sqrt{3}$ i) has modulus 2 and argument 120°. 6. Find the midpoint of (3-i) and (2+i) (SMP 2,5,7)

Mathematics Curriculum

Subject Area: Honors Trigonometry and Pre-Calculus 11-12 (Dual-Enrollment)
 CCSS Conceptual Category: Number and Quantity
 CCSS Domain: Vector and Matrix Quantities (N-VM)

Show-Me Standards

CCSS Cluster	Common Core Standard (D)=District Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment					
	The students will:									
	1. (+) recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments.			1. Given vector $u=(-1,3)$ and vector $v=(2,4)$ find $u+v$.	1. Use appropriate symbols for vectors and their magnitudes (e.g., v, \|v	,		v		, v).
	2. (+) find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.	1.5, 1.8		2. Given the initial vector $(3,4)$ and the terminal vector $(7,8)$ find the resulting component vector.	2. Given the initial vector $(5,6)$ and the terminal vector $(12,15)$ find the resulting component vector.					
	3. (+) solve problems involving velocity and other quantities that can be represented by vectors.			3. A ball is thrown with an initial velocity of $70 \mathrm{ft} / \mathrm{sec}$, at an angle of 35° with the horizontal. Find the vertical and horizontal components of the velocity.	3. A gun with a muzzle velocity of $1200 \mathrm{ft} / \mathrm{sec}$ is fired at an angle of 6° with the horizontal. Find the vertical and horizontal components of the velocity. (SMP 1,2,4,5)					

Mathematics Curriculum

Subject Area: Honors Trigonometry and Pre-Calculus 11-12 (Dual-Enrollment)
 CCSS Conceptual Category: Number and Quantity
 CCSS Domain: Vector and Matrix Quantities (N-VM)

Show-Me Standards

CCSS Cluster	Common Core Standard (D)=District Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
Perform operations on vectors	4. (+) add and subtract vectors. a. add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes. b. given two vectors in magnitude and direction form, determine the magnitude and direction of their sum. c. understand vector subtraction $\mathrm{v}-$ w as $\mathrm{v}+(-\mathrm{w})$, where -w is the additive inverse of w, with the same magnitude as w and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise.	1.5, 1.8		4. Let vector $v=(-2,5)$ and vector $w=(3,4)$ find the sum, difference, magnitude and direction of these two vectors. Then graph the sum.	4. Let vector $x=(1,3)$ and vector $y=(-3,6)$ find the sum, difference, magnitude and direction of these two vectors. Then graph the difference. (SMP 2,4,5)

Mathematics Curriculum

Subject Area: Honors Trigonometry and Pre-Calculus 11-12 (Dual-Enrollment)
 CCSS Conceptual Category: Number and Quantity
 CCSS Domain: Vector and Matrix Quantities (N-VM)

Show-Me Standards

ccss Cluster	Common Core Standard (D)=District Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment		
	The students will:						
	5. (+) multiply a vector by a scalar. a. represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as $c(v x, v y)=$ (cvx, cvy). b. compute the magnitude of a scalar multiple cv using $\\|\mathrm{cv}\\|=\|\mathrm{c}\| \mathrm{v}$. Compute the direction of cv knowing that when $\|c\| v \neq 0$, the direction of cv is either along v (for c >0) or against v (for $\mathrm{c}<0$).	1.5, 1.8		5. Let vector $\mathrm{v}=(-1,4)$ find and graph 2 v .	5. Let vector $v=(-10,6)$ find and graph 3 v . (SMP 2,4,5)		

Mathematics Curriculum

Subject Area: Honors Trigonometry and Pre-Calculus 11-12 (Dual-Enrollment)
 CCSS Conceptual Category: Number and Quantity
 CCSS Domain: Vector and Matrix Quantities (N-VM)

Show-Me Standards

CCSS Cluster	Common Core Standard (D)=District Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
Perform operations on matrices and use matrices in applications	6. (+) use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network. 7. (+) multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled. 8. (+) add, subtract, and multiply matrices of appropriate dimensions. 9. (+) understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties.	$\begin{gathered} 2.1,2.7 \\ 3.2,3.3 \end{gathered}$		6. Using matrix multiplication, incode the account number from a given credit card number. 7. Given a 3×3 matrix find its scalar product when the scalar equals -2. 8. Given a 2×3 and a 3×4 matrix, find their sum, difference and product. 9. Given a variety of matrices, show that some pairs can be multiplied while others cannot.	6. Given a square matrix, find the inverse. 7. Given a $2 x 4$ matrix, find the scalar product when the scalar equals 5. 8. Given a 2×2 and 2×4 matrix, find their sum, difference and product, if possible. 9. Given a variety of matrices, show that some can be added, subtracted and multiplied, while others cannot. (SMP 1,2,3,4,5)

Mathematics Curriculum

Subject Area: Honors Trigonometry and Pre-Calculus 11-12 (Dual-Enrollment)
 CCSS Conceptual Category: Number and Quantity
 CCSS Domain: Vector and Matrix Quantities (N-VM)

Show-Me Standards

| CCSS
 Cluster | Common Core Standard
 (D)=District Standard | Show Me
 Standards | DOK | Instructional Strategies
 Student Activities/Resources |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | The students will: | | | |
| | | | | |
| Assessment | | | | |

Mathematics Curriculum

Subject Area: Honors Trigonometry and Pre-Calculus 11-12 (Dual-Enrollment)
 CCSS Conceptual Category: Algebra
 CCSS Domain: Seeing Structure in Expressions (A-SSE)

Show-Me Standards

CCSS Cluster	Common Core Standard (D)=District Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	
	The students will:				Assessment

Mathematics Curriculum

Subject Area: Honors Trigonometry and Pre-Calculus 11-12 (Dual-Enrollment)
 CCSS Conceptual Category: Algebra
 CCSS Domain: Reasoning with Equations and Inequalities (A-REI)

Show-Me Standards

Mathematics Curriculum

Subject Area: Honors Trigonometry and Pre-Calculus 11-12 (Dual-Enrollment)
 CCSS Conceptual Category: Algebra
 CCSS Domain: Reasoning with Equations and Inequalities (A-REI)

Show-Me Standards

Mathematics Curriculum

Subject Area: Honors Trigonometry and Pre-Calculus 11-12 (Dual-Enrollment)
 CCSS Conceptual Category: Functions
 CCSS Domain: Interpreting Functions (F-IF)

Show-Me Standards

CCSS Cluster	Common Core Standard (D)=District Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
	7. graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. b. graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. c. graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. d. (+) graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior. e. graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.	$\begin{array}{r} \text { MA } 1,5 \\ 1.4,1.8 \end{array}$		7. Given $f(x)=x^{2}$ graph and give vertex point, axis of symmetry equation, and direction of opening. 7b. Graph $y=\sqrt{ } x+2$ 7c. Graph $y=(x-1)(x+2)(x-3)$ 7d. Given $f(x)=\left(x^{2}+1\right) /(x+1)$ graph showing zeros, asymptotes and end behavior. 7e. Graph $y=2 x$	7. Distinguish between graphs that are parabolas and absolute value functions. 7b. Distinguish between square root and absolute value functions, then graph. 7c. Graph polynomial functions using zeros and a sign graph. 7d. Explain how to find zeros and equations of all asymptotes in a given rational function. 7e. Identify percent rate of change in functions such as $y=$ $(1.02) \mathrm{t}, \mathrm{y}=(0.97) \mathrm{t}, \mathrm{y}=(1.01) 12 \mathrm{t}$, $y=(1.2) t / 10$, and classify them as representing exponential growth or decay. (SMP 2,4,5,6,7)

Mathematics Curriculum

Subject Area: Honors Trigonometry and Pre-Calculus 11-12 (Dual-Enrollment)					
CCSS Conceptual Category: Functions					
CCSS Domain: Building Functions (F-BF)					
Show-Me Standards					
CCSS Cluster	Common Core Standard (D)=District Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
	1. write a function that describes a relationship between two quantities. c. (+) compose functions.	1.6, 1.7		1c. If $T(y)$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $\mathrm{T}(\mathrm{h}(\mathrm{t})$) is the temperature at the location of the weather balloon as a function of time.	1c. The weekly cost C of producing x units in manufacturing is given by $C(x)=60 x+7.50$. The number of units, x, produced in t hours is given by $x(t)=50 \mathrm{t}$. Find the time that must elapse for the cost to increase to $\$ 15,000$. (SMP 1,2,4)

Mathematics Curriculum

Subject Area: Honors Trigonometry and Pre-Calculus 11-12 (Dual-Enrollment)
 CCSS Conceptual Category: Functions
 CCSS Domain: Building Functions (F-BF)

Show-Me Standards

CCSS Cluster	Common Core Standard (D)=District Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	
	The students will:				Assessment

Mathematics Curriculum

Subject Area: Honors Trigonometry and Pre-Calculus 11-12 (Dual-Enrollment)
 CCSS Conceptual Category: Functions
 CCSS Domain: Trigonometric Function (F-TF)

Show-Me Standards

Mathematics Curriculum

Subject Area: Honors Trigonometry and Pre-Calculus 11-12 (Dual-Enrollment)
 CCSS Conceptual Category: Functions
 CCSS Domain: Trigonometric Function (F-TF)

Show-Me Standards

| CCSS
 Cluster | Common Core Standard
 (D)=District Standard | Show Me
 Standards | DOK | Instructional Strategies
 Student Activities/Resources |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | The students will: | | | |

Mathematics Curriculum

Subject Area: Honors Trigonometry and Pre-Calculus 11-12 (Dual-Enrollment)
 CCSS Conceptual Category: Functions
 CCSS Domain: Trigonometric Function (F-TF)

Show-Me Standards

Mathematics Curriculum

Subject Area: Honors Trigonometry and Pre-Calculus 11-12 (Dual-Enrollment) CCSS Conceptual Category: Geometry
 CCSS Domain: Expressing Geometric Properties with Equations (G-GPE)

Show-Me Standards

ccss Cluster	Common Core Standard (D)=District Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
	3. (+) derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.	1.2		3. Discuss and demonstrate the difference between ellipses and hyperbolas and their respective foci.	3. Given $4 x^{2}+16 y^{2}+8 x-4 y-9=0$ determine if its an ellipse or hyperbola and find the coordinates of the foci. (SMP 1,2,4,5)

Mathematics Curriculum

Subject Area: Honors Trigonometry and Pre-Calculus 11-12 (Dual-Enrollment)					
CCSS Conceptual Category: Geometry					
CCSS Domain: Geometric Measurement and Dimension (G-GMD)					
Show-Me Standards					
CCSS Cluster	Common Core Standard (D)=District Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
Explain volume formulas and use them to solve problems	2. (+) give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures.	3.4, 3.5		Discuss and demonstrate Cavalieri's Principle using a variety of 3-dimensional solids.	By comparison of a cone and a cylinder, with the same base, justify the volume of a sphere. (SMP 1,2,3,5)

Mathematics Curriculum

Subject Area: Honors Trigonometry and Pre-Calculus 11-12 (Dual-Enrollment)
 CCSS Conceptual Category: Geometry
 CCSS Domain: Similarity, Right Triangles, and Trigonometry (G-SRT)

Show-Me Standards

CCSS Cluster	Common Core Standard (D)=District Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	
	The students will:				
Assessment					

