DOMAIN						
DESCRIPTION	CLUSTER DESCRIPTION	MLS CODE	MLS DESCRIPTION	DOK	INSTRUCTIONAL ACTIVITIES	ASSESSMENTS
					Understand and use definitions	
					of angles, circles, perpendicular	Students will compare
			Define angle, circle, perpendicular line,		lines, parallel lines, and line	formal and informal
			parallel line, line segment and ray based on		segments based on the	definitions of given terms
	Experiment with		the undefined notions of point, line,		undefined term of a point, a line,	and discuss the importance
	transformations in the		distance along a line and distance around a			of having precise definitions.
	plane.	G.CO.A.1	circular arc.	2	length of an arc.	(SMP 6)
						Students will perform
					Given various geometric figures,	transformations on a wide
			Represent transformations in the plane, and		e.g. triangles, parallelograms,	variety of geometric figures
	Experiment with		describe them as functions that take points		trapezoids, students will perform	represented on a Cartesian
	transformations in the		in the plane as inputs and give other points		all transformations of these	plane.
e	plane.	G.CO.A.2	as outputs.	2	figures on the Cartesian plane	(SMP 5, 6)
Congruence						Students will state whether
grue -						the figure has rotational
Juo						symmetry. If so, copy the
						figure, locate the center of
	Experiment with				Given various geometric figures	symmetry, and state the
	transformations in the		Describe the rotational symmetry and lines		determine if it has rotation	order and magnitude of
	plane.	G.CO.A.3	of symmetry of two-dimensional figures.	2	symmetry and line symmetry.	symmetry.
					Students will use previous	
					comparisons and descriptions of	
					transformations develop and	Students will perform a
					understand the meaning of	translation, rotation, and
			Develop definitions of rotations, reflections		rotations, reflections, and	reflection with a given
	Experiment with		and translations in terms of angles, circles,		translations based on angles,	polygon using coordinate
	transformations in the		perpendicular lines, parallel lines and line		circles, perpendicular lines,	notation.
	plane.	G.CO.A.4	segments.	2	parallel lines, and line segments.	(SMP 5, 6, 7)

DOMAIN						
DESCRIPTION	CLUSTER DESCRIPTION	MLS CODE	MLS DESCRIPTION	DOK	INSTRUCTIONAL ACTIVITIES	ASSESSMENTS
	Experiment with transformations in the plane.	G.CO.A.5	Demonstrate the ability to rotate, reflect or translate a figure, and determine a possible sequence of transformations between two congruent figures.		Transform a geometric figure given a rotation, reflection, or translation using graph paper, tracing paper, or geometric software.	Students will reflect a triangle about the y-axis and provide the image's coordinates. (SMP 3, 5, 7)
Congruence					Knowing that rigid transformations preserve size and shape or distance and angle, use this fact to connect the idea of congruency.	Students will work backwards – given two figures that have the same size and shape, find a sequence of rigid motions that will map one onto the other. (SMP 3, 5, 7) Students will label and
Cong	Understand congruence in terms of rigid motions.	G.CO.B.6	Develop the definition of congruence in terms of rigid motions.		Students identify corresponding sides and corresponding angles of congruent triangles of congruent triangles.	compare a given triangle and its image to verify that corresponding sides and angles are congruent. (SMP 3)
	Understand congruence in terms of rigid motions.	G.CO.B.7	Develop the criteria for triangle congruence from the definition of congruence in terms of rigid motions.		List the sufficient conditions to prove triangles are congruent and map a triangle with one of the sufficient conditions (e.g., SSS) onto the original triangle then show that corresponding sides and corresponding angles are congruent.	Students will construct pairs of triangles that satisfy the ASA, SAS or SSS congruence criteria, and use rigid motions to verify that they satisfy the definition of congruent figures. (SMP 2, 3)

DOMAIN						
DESCRIPTION	CLUSTER DESCRIPTION	MLS CODE	MLS DESCRIPTION	DOK	INSTRUCTIONAL ACTIVITIES	ASSESSMENTS
						Given parallel lines cut by
					Prove angle measures given	multiple parallel transversals
					parallel lines cut by a transversal	and one given angle,
					and one angle measure, find the	students will solve for
					measures of alternate interior	various types of angle
					angles, alternate exterior angles,	relationships and provide
	Prove geometric				corresponding angles, and same-	proofs.
	theorems.	G.CO.C.8	Prove theorems about lines and angles.	3	side interior angles.	(SMP 2, 3, 5)
						Students will write a 2
						column proof showing 2
					Given two triangles with	triangles are congruent by
					additional information prove the	SAS or ASA given the
ъ	Prove geometric				triangles are congruent using	necessary information.
enc	theorems.	G.CO.C.9	Prove theorems about triangles.	3	SAS, ASA, etc	(SMP 2, 3, 5)
Congruence						Students will prove the
juo						diagonals of a rectangle are
						congruent by applying the
					Construct parallelograms by	distances formula to a
					applying the five theorems that	rectangle plotted on a
	Prove geometric				prove a quadrilateral is a	coordinate plane.
	theorems.	G.CO.C.10	Prove theorems about polygons.	2	parallelogram.	(SMP 2, 3, 5)
						Students will match the
						construction with the
					Students will recognize formal	transformation.
					geometric constructions using a	(SMP 5, 6)
					compass, protractor, and a	Students will construct a
					straightedge. Construct various	regular hexagon inscribed in
	Make geometric		Construct geometric figures using various		regular polygons inscribed in a	a circle.
	constructions.	G.CO.D.11	tools and methods.	2	circle.	(SMP 5, 6)

DOMAIN						
DESCRIPTION	CLUSTER DESCRIPTION	MLS CODE	MLS DESCRIPTION	DOK		ASSESSMENTS
					Perform a dilation with a given	
					center and scale factor on a	
					figure in the coordinate plane.	
					Verify that when a side passes	
					through the center of dilation,	
2					the side and its image lie on the	
Jeti					same line. Verify that	
Loc					corresponding sides of the	
igoi					preimage and images are	
Ĕ					parallel. Verify that a side length	Students will apply a dilation
hue						by a factor of 3, centered at
SS, 8	Understand similarity in				factor multiplied by the	the point C to the given
Jgle	terms of similarity		Construct and analyze scale changes of		corresponding side length of the	figure.
riai	transformations.	G.SRT.A.1	geometric figures.	2	preimage.	(SMP 2, 5, 6, 8)
l 1					Determine that two figures are	Students will test for
Rigl					similar by verifying that angle	similarity given two figures
t,	Understand similarity in		Use the definition of similarity to decide if		measure is preserved and	with stated angle measures
lari	terms of similarity		figures are similar and to solve problems		corresponding sides are	and side lengths.
Similarity, Right Triangles, and Trigonometry	transformations.	G.SRT.A.2	involving similar figures.	2	proportional.	(SMP 3, 5, 7)
S						Students will recognize the
						use of a ruler and a
						protractor to prove two
	Understand similarity in		Use the properties of similarity		Identify and explain that AA	triangles are similar by the
	terms of similarity		transformations to establish the AA		similarity is a sufficient condition	AA similarity criterion.
	transformations.	G.SRT.A.3	criterion for two triangles to be similar.	2	for two triangles to be similar.	(SMP 3)

DOMAIN						
DESCRIPTION	CLUSTER DESCRIPTION	MLS CODE	MLS DESCRIPTION	DOK	INSTRUCTIONAL ACTIVITIES	ASSESSMENTS
					Given similar triangles students	
					will set up and use proportions	
					to solve for missing segment	
					lengths and will extend the	Students will set up and use
					application to real-world	proportions to solve
					problems (e.g., using similar	problems of similar triangles
try					figures, calculate the height of a	having missing segment
me					building given the height of a	lengths and will apply this
ouo			Use congruence and similarity criteria for		person; the length of a football	process to solve a variety of
rigo	Prove theorems		triangles to solve problems and to prove		field given the length of a	real-world problems.
Гр	involving similarity.	G.SRT.B.4	relationships in geometric figures.	2	shadow on the ground.	(SMP 3, 4, 6, 7)
an					Use triangle similarity to prove	
les,					other theorems about triangles	Given two triangles are
ang					such as	similar, then prove the ratio
1 L					proving a line parallel to one side	of corresponding altitudes is
ght	Define trigonometric		Understand that side ratios in right triangles		of a triangle divides the other	equal to the ratio of
Ř	ratios, solve problems		define the trigonometric ratios for acute		two proportionally, and it's	corresponding sides.
rity	involving right triangles.	G.SRT.C.5	angles.	2	converse.	(SMP 3, 5)
Similarity, Right Triangles, and Trigonometry						
Sin					Students will apply trigonometric	Students will use
					relationships of sine, cosine and	trigonometric relationships
					tangent to find lengths of sides	to find missing angles and
					and angle measures of a variety	sides of a variety of right
	Define trigonometric		Explain and use the relationship between		of right triangles and will apply	triangles, including real-
	ratios, solve problems		the sine and cosine of complementary		trigonometry to solve real-world	world applications.
	involving right triangles.	G.SRT.C.6	angles.	3	problems	(SMP 2, 3)

DOMAIN						
DESCRIPTION	CLUSTER DESCRIPTION	MLS CODE	MLS DESCRIPTION	DOK	INSTRUCTIONAL ACTIVITIES	ASSESSMENTS
Similarity, Right Triangles, and Trigonometry	Define trigonometric ratios, solve problems involving right triangles. Define trigonometric ratios, solve problems involving right triangles.	G.SRT.C.7	Use trigonometric ratios and the Pythagorean Theorem to solve right triangles. Derive the formula A = 1/2 ab sin(C) for the area of a triangle.	3	Students will solve a wide variety of problems involving angle relationships (complementary, supplementary) of adjacent angles, interior and exterior angles of a polygon, acute angles of a right triangle and will find missing sides of a right triangle using the Pythagorean Theorem. Explain the Law of Sines and Law of Cosines to solve right triangles, then use the Law of Sines to derive the formula A = 1/2 ab sin(C)	Find the length of the ladder leaning against a building given the height the ladder reaches and the distance the base of the ladder is from the building. (SMP 1, 4, 5) Given the measures of two angles and a nonincluded side of a triangle, use the Law of Sines to solve the triangle. Then find the area of a triangle using the formula A = 1/2 ab sin©
Circles	Understand and apply theorems about circles Understand and apply theorems about circles	G.C.A.1 G.C.A.2	Prove that all circles are similar using similarity transformations. Identify and describe relationships among inscribed angles, radii and chords of circles.	2	Using the fact that the ratio of diameter to circumference is the same for circles, prove that all circles are similar. Identify when a diameter (or radius) of a circle is perpendicular to a chord, then it bisects the chord and its arc.	Students will use the appropriate tools to measure the necessary dimensions of circular objects to prove all circles are similar. (SMP 3, 5) Given a circle, with a diameter of 30 in and a chord of 22 in, find the length from the center of the circle to the chord.

DOMAIN						
DESCRIPTION	CLUSTER DESCRIPTION	MLS CODE	MLS DESCRIPTION	DOK	INSTRUCTIONAL ACTIVITIES	ASSESSMENTS
						Students will use formal
					Construct the circumscribed	geometric constructions to
					circle whose center is the point	construct perpendicular
			Construct the inscribed and circumscribed		of intersection of the	bisectors of the sides and
			circles of a triangle, and prove properties of		perpendicular bisectors of each	angle bisectors of a given
	Understand and apply		angles for a quadrilateral inscribed in a		side of the triangle (the	triangle.
	theorems about circles	G.C.A.3	circle.	2	circumcenter).	(SMP 3, 5)
					Students will write a proportion	
Circles					using an arc measure (degrees)	Students will find the arc
Circ	Find arc lengths and				divided by 360 degrees set equal	length given an arc measure
	areas of sectors of		Derive the formula for the length of an arc		to the arcs length divided by the	of 50 degrees and a
	circles.	G.C.B.4	of a circle.	3	circumference,	circumference of 10 pi.
						Given a circle's radius and
					Compute areas of sectors by first	central angle students will
					considering them as fractional	use proportionality to find
					parts of a circle. Then, using	the area of the sector. Then
	Find arc lengths and				proportionality, derive a formula	derive the formula for the
	areas of sectors of		Derive the formula for the area of a sector		for their area in terms of radius	area of a sector.
	circles.	G.C.B.5	of a circle.	3	and central angle.	(SMP 2, 3, 6, 7)

DOMAIN DESCRIPTION	CLUSTER DESCRIPTION	MLS CODE	MLS DESCRIPTION	рок	INSTRUCTIONAL ACTIVITIES	ASSESSMENTS
	Translate between the geometric description and the equation for a				Use the Pythagorean Theorem, the coordinates of a circle's center, and the circle's radius to	Students will write an equation for a circle with a radius of 3 units and center at (2, 5).
	conic section.	G.GPE.A.1	Derive the equation of a circle.	2	write the equation of the circle.	(SMP 2, 3, 7 .8)
Exploring Geometric Properties with Equations	Translate between the geometric description and the equation for a conic section.	G.GPE.A.2	Derive the equation of a parabola given a focus and directory.		Find the distance from a point on the parabola (x, y) to the focus using the distance formula (Pythagorean Theorem).	Given a parabola with focus (-2. 1) and directrix y = -3 students will determine whether or not the point (2, 1) is part of the parabola. State true or false. (SMP 2, 3, 7.8)
ric Pr		0.01 L.A.2		2	(rythagorean meorem).	Students will given two
ploring Geomet	Use coordinates to prove geometric theorems algebraically.	G.GPE.B.3	Use coordinates to prove geometric theorems algebraically.		Students will use slope and distance formula to verify the polygon formed by connecting the points (-3, -2), (5, 3), (9, 9), (1, 4) is a parallelogram.	points, use the distance formula to find the coordinates of the point halfway between them. (SMP 2, 3, 7)
EX						Students will given a line and a point not on it, find an equation of the line through
	Use coordinates to		Prove the slope criteria for parallel and			the point that is parallel to
	prove geometric		perpendicular lines and use them to solve		Students will prove the slopes of	the given line.
	theorems algebraically.	G.GPE.B.4	problems.	3	parallel lines are congruent.	(SMP 3, 8)

DOMAIN						
DESCRIPTION	CLUSTER DESCRIPTION	MLS CODE	MLS DESCRIPTION	DOK	INSTRUCTIONAL ACTIVITIES	ASSESSMENTS
						For the line segment whose
						endpoints are (0, 0) and (4,
su						3), students will find the
tio					Given A(3, 2) and B(6, 11),	point that partitions the
dna	Use coordinates to		Find the point on a directed line segment		students will find the point that	segment into a ratio of 3 to
with Equations	prove geometric		between two given points that partitions		divides the line segment AB two-	2.
k it	theorems algebraically.	G.GPE.B.5	the segment in a given ratio.	3	thirds of the way from A to B.	(SMP 2, 7, 8)
ies						
^o roperties					Students will use the distance	
2 2					formula (based on the	
					Pythagorean Theorem) to	
etr					calculate the distance between	
E E					vertices of geometric figures,	
Ge					such as triangles, to find lengths	Students will solve a variety
ing					of segments and then using	of problems using the
Exploring Geometric					these lengths to determine if	distance formula by applying
EX	Use coordinates to		Use coordinates to compute perimeters of		triangles are acute, right, or	it to figures plotted on the
	prove geometric		polygons and areas of triangles and		obtuse based on the lengths of	Cartesian plane.
	theorems algebraically.	G.GPE.B.6	rectangles.	3	sides of triangles.	(SMP 1, 2, 5, 6)

DOMAIN						
DESCRIPTION	CLUSTER DESCRIPTION	MLS CODE	MLS DESCRIPTION	DOK	INSTRUCTIONAL ACTIVITIES	ASSESSMENTS
tric Measurement and Dimension.	Explain volume formulas and use them to solve problems.	G.GMD.A.1	Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid and cone.	2	For pyramids and cones, the factor 1/3 will need some explanation. An informal demonstration can be done using a volume relationship set of plastic shapes that permit one to pour liquid or sand from one shape into another.	Students will compare volumes of pyramids and prisms given congruent base areas and heights. Then demonstrate algebraically why the pyramid's volume is 1/3 that of the corresponding prism. (SMP 3, 4, 5)
	Explain volume formulas and use them to solve problems.	G.GMD.A.2	Use volume formulas for cylinders, pyramids, cones, spheres and composite figures to solve problems.	2	Solve surface area and volume problems of a variety of geometric figures including prisms, pyramids, cylinders, cones and spheres, e.g., solve more complex problems such as the difference in volumes of a cone inscribed in a cylinder.	Given the dimensions of a cylindrical tank of water and the necessary formulas the students will calculate the amount of paint needed to cover the lateral area and the amount of water needed to fill it completely. (SMP 1, 2, 3, 4, 5)
	Visualize relationships between two- dimensional and three- dimensional objects. Visualize relationships between two- dimensional and three- dimensional objects.	G.GMD.B.3	Identify the shapes of two-dimensional cross-sections of three-dimensional objects. Identify three-dimensional objects generated by transformations of two- dimensional objects.	3	Based on written descriptions & examples, students will draw geometric figures, apply given dimensions and will solve a variety of problems involving cross-sections. Given a two dimensional shape, perform a given transformation that results in a three figure.	Given a cylinder slice horizontally, then find the area of the circle and slice vertically and find the area of the rectangle. Students will identify that rotating a rectangle around the x-axis will create a cylinder

DOMAIN						
DESCRIPTION	CLUSTER DESCRIPTION	MLS CODE	MLS DESCRIPTION	DOK	INSTRUCTIONAL ACTIVITIES	ASSESSMENTS
						Students will discover the formula for the lateral area
						of a cylinder by removing
					Students will find the lateral	the label from a canned
	Apply geometric				area of various cylindrical objects	food, laying it flat on a table,
	concepts in modeling		Use geometric shapes, their measures and		given their dimensions.	and find its area recognizing
	situations.	G.MG.A.1	their properties to describe objects.	3	(SMP 4, 5, 7)	the label is a rectangle.
						Students will find the
try						weight of a cubic foot of
Vlodeling with Geometry						water given a King Size
jeo						waterbed that has the
th O						following dimensions 72 in.
Ň						X 84 in. X 9.5in. It takes
ling						240.7 gallons of water to fill
ode	Apply geometric				Students will discover the	it which would weigh 2071
В	concepts in modeling		Apply concepts of density based on area		relationship between volume	pounds.
	situations.	G.MG.A.2	and volume in modeling situations.	3	and density for various solids.	(SMP 1, 4, 5)
						Students will design three
						cereal boxes (rectangular
					Given one geometric solid and	prisms) of differing
					necessary formulas, students will	dimensions that would
					design a different geometric	contain congruent volumes
	Apply geometric				solid that will hold the same	using the necessary
	concepts in modeling		Apply geometric methods to solve design		amount of substance (e.g., a	formulas.
	situations.	G.MG.A.3	mathematical modeling problems.	3	cone to a prism).	(SMP 1, 4, 5)

DOMAIN						
DESCRIPTION	CLUSTER DESCRIPTION	MLS CODE	MLS DESCRIPTION	DOK	INSTRUCTIONAL ACTIVITIES	ASSESSMENTS
	Understand					
	independence and		Describe events as subsets of a sample		Students will draw Venn	Students will create a Venn
	conditional probability		space using characteristics of the outcomes,		diagrams that show relationships	diagram to display the
ility	and use them to		or as unions, intersections or complements		between sets within a sample	information in a given table.
of Probability	interpret data.	G.CP.A.1	of other events.	3	space.	(SMP 1, 2, 4, 6, 7)
loro						Working in groups of 4
of F						students will roll a pair of
						dice 20 times and keep track
and Rules					Students will understand that	of the outcomes. Find pairs
pu	Understand				independent events satisfy the	of events that are
ty a	independence and				relationship P(A) * P(B) = P (A *	independent and pairs that
billi	conditional probability				B). Then predict if two events	are not. Justify your
oba	and use them to		Understand the definition of independent		are independent, explain	conclusions.
al Pro	interpret data.	G.CP.A.2	events and use it to solve problems.	3	reasoning and check.	(SMP 1, 2, 3, 4, 6, 7)
Conditional Probability	Understand					Calculate the probability
libr	Understand					Calculate the probability
Col	independence and				Understand that conditional	that a student will draw a
	conditional probability					yellow marble after another
	and use them to				when an event occurs another	student has already drawn a
	interpret data.	G.CP.A.3	Calculate conditional probabilities of events.	3	event has already occurred.	marble and not put it back

DOMAIN DESCRIPTION	CLUSTER DESCRIPTION	MLS CODE	MLS DESCRIPTION	DOK	INSTRUCTIONAL ACTIVITIES	ASSESSMENTS
DESCRIPTION	CLUSTER DESCRIPTION	IVILS CODE	MLS DESCRIPTION	DOK	INSTRUCTIONAL ACTIVITIES	Working in groups of 4
						students will collect data
						from a random sample of
						students in their school on
						their favorite subject among
						math, science, history, and
						English. Using the data
bilit						construct a two-way
oba			Construct and interpret two-way frequency		Students will construct a two-	frequency table using the
bre	Understand		tables of data when two categories are		way frequency table for data	appropriate categories for
s of	independence and		associated with each object being classified.		using the appropriate categories	each variable. Then,
nle	conditional probability		Use the two-way table as a sample space		for each variable.	determine if given events
d R	and use them to		to decide if events are independent and to		Then, determine if given events	are independent.
/ an	interpret data.	G.CP.A.4	approximate conditional probabilities.	3	from the table are	(SMP 1-8)
Conditional Probability and Rules of Probability					Using everyday examples of	
bab					dependent events, students will	Working in groups of 4
Pro					illustrate the concept of	students will determine the
nal					conditional probability. For	probability of drawing a
itio					example, at a high school the	heart from a standard deck
ndi					' '	of cards on a second draw,
ů l					Business class and Spanish is	given that a heart was
					0.062. The probability that a	drawn on the first draw and
	Understand				student takes a Business class is	not replaced? Then,
	independence and				· · ·	determine if these events
	conditional probability		Recognize and explain the concepts of		a student takes Spanish given	are independent or
	and use them to		conditional probability and independence in		that the student is taken a	dependent.
	interpret data.	G.CP.A.5	a context.	3	Business class?	(SMP 1, 4, 6, 8)

DOMAIN						
DESCRIPTION	CLUSTER DESCRIPTION	MLS CODE	MLS DESCRIPTION	DOK	INSTRUCTIONAL ACTIVITIES	ASSESSMENTS
itional Probability and Rules of Proba					Understand that when events	
					are not mutually exclusive, then	Given a table with types of
	Understand				the probability that A or B	paintings, calculate using the
	independence and				occurs is the sum of their	addition rule what is the
	conditional probability				individual probabilities minus the	probability the student will
	and use them to		Apply and interpret the Addition Rule for		probability that both A and B	select a portrait or an oil
	interpret data.	G.CP.A.6	calculating probabilities.	3	occur	painting
						Students will toss a coin and
						roll a die and then use the
	Understand				Understand that the porobability	Multiplication Rule to find
	independence and				of two independent events both	the probability that the coin
	conditional probability		Apply and Interpret the general		occurring is the product of the	lands heads up and the
	and use them to		Multiplication Rule in a uniform probability		porbabilities of each individual	number rolled on the die is a
	interpret data.	G.CP.A.7	model.	3	event.	six.
	Understand					
	independence and				Students will recognize when the	
	conditional probability				order of an event is important to	Find the number of possible
	and use them to		Use permutations and combinations to		determine the amount of	outcomes for arranging four
	interpret data.	G.CP.A.8	solve problems.	3	possible outcomes.	books on a shelf.