Mathematics Curriculum

Subject Area: Advanced Placement Calculus AB 11-12
 Advanced Placement Topic: Limits

| Show-Me Standards | | | | | |
| :--- | :---: | :---: | :---: | :---: | :--- | :--- |
| | Advanced Placement
 Standard | Show Me
 Standards | DOK | Instructional Strategies
 Student Activities/Resources | |
| | The students will: | | | | Assessment |

Mathematics Curriculum

Subject Area: Advanced Placement Calculus AB 11-12
 Advanced Placement Topic: Limits

Show-Me Standards					
	Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
	1. develop skills in factor and reduce, rationalizing numerators , special limits of sine and cosine and division with greatest power in the denominator to evaluate limits.	$\begin{gathered} \text { MA } 5 \\ 3.4,3.6 \end{gathered}$		1. Determine the correct process to solve limits of rational expressions.	1. Find the $\lim _{x \rightarrow 2}(x-2) \div\left(x^{2}-4\right)$ (SMP 4,y)
$\begin{aligned} & \text { ס } \\ & \text { D } \\ & \dot{0} \\ & \dot{0} \\ & \dot{0} \end{aligned}$	1. Evaluate limits of various functions from either the right or the left.	$\begin{gathered} \text { MA } 5 \\ 3.4 \end{gathered}$		1. Apply various methods of solving limits to determine the limit from the left or the right.	1. $\lim _{x \rightarrow 3-}(x-3)^{-1}$ (SMP 4,5)

Mathematics Curriculum

Subject Area: Advanced Placement Calculus AB 11-12
 Advanced Placement Topic: Limits

Show-Me Standards					
	Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
	1. Determine how limits fail to exist by showing that they approach either positive or negative infinite.	$\begin{gathered} \text { MA } 5 \\ 3.5 \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{\circ} \\ & 0 \\ & \stackrel{\rightharpoonup}{\bar{訁}} \\ & \hline \end{aligned}$	1. Apply various methods of determining limits including graphs to find infinity.	$\begin{aligned} & \text { 1. } \lim _{x \rightarrow 1}(x-1)^{-2} \\ & \text { (SMP } 4,5) \end{aligned}$
	1. After learning rules of differentiation students will determine the application of L'Hopitals Rule.	$\begin{gathered} \text { MA } 5 \\ 3.4 \end{gathered}$		1. Following the defined application of L'Hopital's Rule, students will apply, often repeatedly, the rule defined limits.	1. $\lim _{x \rightarrow 0}(\sin 3 x) \div(3 x)$ (SMP 1,2,4,5)
	1. Evaluate limits at positive or negative infinity to find horizontal asymptotes of rational functions and later apply to solve limits in general.	$\begin{gathered} \text { MA } 5 \\ 3.5 \end{gathered}$		1. Evaluate various limits as x approaches positive or negative infinity.	$\begin{aligned} & \text { 1. } \lim _{x \rightarrow \infty}(\sin x) \div x \\ & (\text { SMP } 2,4,5,7) \end{aligned}$

Mathematics Curriculum

Subject Area: Advanced Placement Calculus AB 11-12

Advanced Placement Topic: Derivatives

Show-Me Standards					
	Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
səjny u!̣eчつ 'ұuә!!ono 'ईэnpoлd 'дәмоd	1. find 1 st and 2nd derivatives applying power, product, quotient and chain rules.	$\begin{gathered} \text { MA } 5 \\ 3.1,3.6 \end{gathered}$		1. Determine which is appropriate; power, product, quotient or chain rule, then apply.	$\begin{aligned} & 1 . y=\left(3 x^{2}+4 x\right)^{5} \\ & (\text { SMP } 1,6) \end{aligned}$
$\begin{aligned} & \frac{\pi}{0} \\ & \frac{\bar{O}}{\underline{E}} \\ & \hline \end{aligned}$	1. distinguish between explicit and implicit equations. Then, find 1st and 2nd derivatives using rules for implicit differentiation.	$\begin{gathered} \text { MA } 5 \\ 3.1,3.4 \end{gathered}$		1. Determine if solving implicitly or leaving and using rules of explicit derivatives.	1. $x y+3 x^{2} y=7$, find y^{\prime} (SMP 1,6)

Mathematics Curriculum

Subject Area: Advanced Placement Calculus AB 11-12

Advanced Placement Topic: Derivatives

Show-Me Standards					
	Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
	1. distinguish between average rate of change and instantaneous rates of change.	$\begin{gathered} \text { MA } 5 \\ 3.1 \end{gathered}$		1. Given a function and a defined interval, contrast average and instantaneous rates of change.	1. Find the average rate of change of $x(t)=t^{2}+2 t+5$ over the interval [1,6] (SMP 1,4)
	1. apply 1 st derivatives to find equations of normal and tangent lines.	$\begin{gathered} \text { MA } 5 \\ 3.4 \end{gathered}$		1. Apply various 1 st derivatives and a point of tangency that is given or must be found. Various equations of tangent and normal lines will be written.	1. Write the equation of the tangent and normal line of $y=\sin x$ at $\pi / 2,1$ (SMP 1,5,6)

Mathematics Curriculum

Subject Area: Advanced Placement Calculus AB 11-12

Advanced Placement Topic: Derivatives

Mathematics Curriculum

Subject Area：Advanced Placement Calculus AB 11－12

Advanced Placement Topic：Derivatives

Show－Me Standards					
	Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities／Resources	Assessment
	The students will：				
	1．find the derivatives of all six trig functions．	$\begin{gathered} \text { MA } 5 \\ 3.1,3.4 \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \\ & \text { O} \\ & \text { 訁訁訁 } \end{aligned}$	1．Apply previous derivatives in combination with the trigonometric derivatives to solve．	$\begin{aligned} & \text { 1. } y=(3 x+2)(\sin 2 x) \text { find } y^{\prime} \\ & (\text { SMP } 4,5) \end{aligned}$
	1．apply differentiation rules for inverse trig functions．	$\begin{gathered} \text { MA } 5 \\ 3.5 \end{gathered}$		1．Solve differentiation problems involving trigonometric inverses．	$\begin{aligned} & \text { 1. Find } y^{\prime} \text { of } y=x \arcsin x \\ & \text { (SMP 4,6) } \end{aligned}$
	1．find derivatives of exponential functions of base e and other bases．	$\begin{gathered} \text { MA } 5 \\ 3.5 \end{gathered}$		1．Find 1st derivatives of exponential functions．	$\begin{aligned} & \text { 1. Find } y^{\prime} \text { of } y=e^{2 x} \\ & \text { (SMP 4,6) } \end{aligned}$

Mathematics Curriculum

Subject Area: Advanced Placement Calculus AB 11-12					
Advanced Placement Topic: Applications of Derivatives					
Show-Me Standards					
	Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
Relative and Absolute Extremas	1. find absolute extrema. Find relative extrema by 1st and 2nd derivative test.	$\begin{gathered} \text { MA } 5 \\ 3.1,3.4 \end{gathered}$		1. Distinguish between absolute and relative extrema. Understand the process of finding extrema by 2nd derivative test.	1. Given $y=\sin x[0, \pi]$ find a)absolute extrema b)relative extrema (SMP 1,6)
	1. given various functions, find intervals of increasing, decreasing, and concavity.	$\begin{gathered} \text { MA } 5 \\ 3.1,3.4 \end{gathered}$		1. Apply 1st derivative test to find intervals of increasing and decreasing. Apply 2nd derivative test to determine intervals of concavity.	1. Given $y=\cos 2 x[0,2 \pi]$ find a)intervals of increasing or decreasing b)intervals of concavity (SMP 1,6)

Mathematics Curriculum

Subject Area: Advanced Placement Calculus AB 11-12					
Advanced Placement Topic: Applications of Derivatives					
Show-Me Standards					
	Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
	1. find 2nd derivatives and determine the existence of points of inflection.	$\begin{gathered} \text { MA } 5 \\ 3.1,3.4 \end{gathered}$		1. Using the definition of points of inflection, determine if they exist and find them.	1. $y=\sin 2 x[0,2 \pi]$ find all points of inflection. (SMP 1,6)
Find Maximum and Minimums	1. write equations from word problems and find maximum or minimum values.	$\begin{gathered} \text { MA } 5 \\ 3.1,3.4 \end{gathered}$		1. Translate given information into an equation to determine a maximum or a minimum value.	1. A rancher has 200 ft of fencing to enclose two adjacent, rectangular pens. What dimensions should be used to create a maximum area? (SMP 1,2,4)

Mathematics Curriculum

Subject Area: Advanced Placement Calculus AB 11-12
 Advanced Placement Topic: Applications of Derivatives

Show-Me Standards					
	Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
	1. define and apply Rolles and Mean Value Theorem.	$\begin{gathered} \text { MA } 5 \\ 3.4 \end{gathered}$		1. Determine and if possible, apply Rolles and Mean Value Theorem.	1. Determine whether Rolles Theorem can be applied to $f(x)=(x-1)(x-2)(x-3)$ on $[1,3]$. If it can not be applied, explain why. If it can be applied, find the value of c that is guaranteed. (SMP 1,2,6)
	1. determine average velocity, velocity and acceleration.	$\begin{gathered} \text { MA } 5 \\ 3.4,3.5 \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \\ & \vdots \\ & \hat{O} \\ & \text { 立 } \end{aligned}$	1. Find average velocity, velocity and acceleration given equations and intervals.	1. $s(t)=-16 t^{2}+64 t+20$ a) Find velocity at $t=2$ b) Find acceleration when the velocity is equal to 0 . (SMP 1,6)

Mathematics Curriculum

Subject Area: Advanced Placement Calculus AB 11-12
 Advanced Placement Topic: Integration

Show-Me Standards					
	Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
	1. apply rules of summation to find area using limits. 2. learn and apply basic rules of integration for indefinite integrals.	$\begin{gathered} \text { MA } 5 \\ 3.4 \end{gathered}$		1. Sketch and solve area by using summation rules and limits. 2. Apply power rule, trig integrals and basic properties of integration to solve integration problems.	1. Use the limit process to find the area of the region between the graph of $y=-2 x+3$ and the $x-$ axis over $[0,1]$. 2. $\int(3 x+4)(2 x+1) d x$ solve. (SMP 1,6)
	1. find area using Reimann Sums.	$\begin{gathered} \text { MA } 5 \\ 3.2 \end{gathered}$		1. By the use of applying the limit of a sum, solve various questions by Reimann Sums.	1. Using Reimann's Sum, find the area formed by $f(x)=4-2 x$, the x axis, over [0,2] with six equal sub intervals. (SMP 1,4,5)

Mathematics Curriculum

Subject Area: Advanced Placement Calculus AB 11-12
 Advanced Placement Topic: Integration

| Show-Me Standards | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Advanced Placement
 Standard | Show Me
 Standards | DOK | Instructional Strategies
 Student Activities/Resources | Assessment |

Mathematics Curriculum

Subject Area: Advanced Placement Calculus AB 11-12
 Advanced Placement Topic: Applications of Integration

Mathematics Curriculum

Subject Area: Advanced Placement Calculus AB 11-12
Advanced Placement Topic: Applications of Integration

Show-Me Standards							
	Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources			
					Assessment		

