Subject Area: Advanced Placement Calculus AB 11-12

Advanced Placement Topic: Limits

	Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
Graphically	1. relate the informal definition of a limit to various functions and determine values.	MA 5 3.4	Strategic Thinking	1. Evaluate limits by the informal definition and graphically.	1. Evaluate the limit as x approaches 0 of x ⁻² (SMP 4,5)
Numerically	evaluate limits using direct substitution.	MA 5 3.4	Skill/Concept	Determine when direct substitution is appropriate.	Given a polynomial function, evaluate the limit. (SMP 4)

Subject Area: Advanced Placement Calculus AB 11-12

Advanced Placement Topic: Limits

	Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
Analytically	1. develop skills in factor and reduce, rationalizing numerators, special limits of sine and cosine and division with greatest power in the denominator to evaluate limits.	MA 5 3.4, 3.6	Strategic Thinking	Determine the correct process to solve limits of rational expressions.	1. Find the $\lim_{x\to 2}(x-2)\div(x^2-4)$ (SMP 4,y)
One-Sided	Evaluate limits of various functions from either the right or the left.	MA 5 3.4	Skill/Concept	Apply various methods of solving limits to determine the limit from the left or the right.	1. lim _{x→3-} (x-3) ⁻¹ (SMP 4,5)

Subject Area: Advanced Placement Calculus AB 11-12

Advanced Placement Topic: Limits

	Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
Infinite	Determine how limits fail to exist by showing that they approach either positive or negative infinite.	MA 5 3.5	Skill/Concept	Apply various methods of determining limits including graphs to find infinity.	1. lim _{x→1} (x-1) ⁻² (SMP 4,5)
L' Hopital's Rule	After learning rules of differentiation students will determine the application of L'Hopitals Rule.	MA 5 3.4	Strategic Thinking	Following the defined application of L'Hopital's Rule, students will apply, often repeatedly, the rule defined limits.	1. lim _{x→0} (sin3x)÷(3x) (SMP 1,2,4,5)
Limits at Infinity	Evaluate limits at positive or negative infinity to find horizontal asymptotes of rational functions and later apply to solve limits in general.	MA 5 3.5	Strategic Thinking	Evaluate various limits as x approaches positive or negative infinity.	1. lim _{x→∞} (sin x)÷x (SMP 2,4,5,7)

Subject Area: Advanced Placement Calculus AB 11-12

Advanced Placement Topic: Derivatives

	Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
	1. find 1st and 2nd derivatives applying power, product, quotient and chain rules.	MA 5 3.1, 3.6	Strategic Thinking	Determine which is appropriate; power, product, quotient or chain rule, then apply.	1. y=(3x ² +4x) ⁵ (SMP 1,6)
du	1. distinguish between explicit and implicit equations. Then, find 1st and 2nd derivatives using rules for implicit differentiation.	MA 5 3.1, 3.4	Strategic Thinking	Determine if solving implicitly or leaving and using rules of explicit derivatives.	1. xy+3x ² y=7, find y' (SMP 1,6)

Subject Area: Advanced Placement Calculus AB 11-12

Advanced Placement Topic: Derivatives

Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
The students will:				
distinguish between average rate of change and instantaneous rates of change.	MA 5 3.1	Skill/Concept	Given a function and a defined interval, contrast average and instantaneous rates of change.	1. Find the average rate of change of x(t)=t ² +2t+5 over the interval [1,6] (SMP 1,4)
1. apply 1st derivatives to find equations of normal and tangent lines.	MA 5 3.4	Strategic Thinking	Apply various 1st derivatives and a point of tangency that is given or must be found. Various equations of tangent and normal lines will be written.	1. Write the equation of the tangent and normal line of y=sin x at π/2, 1 (SMP 1,5,6)

Subject Area: Advanced Placement Calculus AB 11-12

Advanced Placement Topic: Derivatives

	Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
Related Rates	apply implicit thoughts to solve related rate problems.	MA 5 3.1, 3.4	Strategic Thinking	Given various situations an equation or a system of equations must be written involving given variables and a variable to be determined to solve related rates.	1. A spherical balloon is inflated with gas at the rate of 800 cm ³ /min. How fast is the radius of the balloon increasing when the radius is 30 cm? (SMP 1,2,6)
Natural Logs	1. find derivatives involving natural logs.	MA 5 3.5	Skill/Concept	Understand and apply rules of natural logs to find various derivatives.	1. Find y' given y=(ln x) ⁴ (SMP 4)

Subject Area: Advanced Placement Calculus AB 11-12

Advanced Placement Topic: Derivatives

	Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
Trigonometric Functions	1. find the derivatives of all six trig functions.	MA 5 3.1, 3.4	Skill/Concept	Apply previous derivatives in combination with the trigonometric derivatives to solve.	1. y=(3x+2)(sin 2x) find y' (SMP 4,5)
Inverse Trigonometric Functions	apply differentiation rules for inverse trig functions.	MA 5 3.5	Skill/Concept	Solve differentiation problems involving trigonometric inverses.	1. Find y' of y=x arcsin x (SMP 4,6)
_ ^ =	find derivatives of exponential functions of base e and other bases.	MA 5 3.5	Strategic Thinking	Find 1st derivatives of exponential functions.	1. Find y' of y=e ^{2x} (SMP 4,6)

Subject Area: Advanced Placement Calculus AB 11-12

Advanced Placement Topic: Applications of Derivatives

	Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
Relative and Absolute Extremas	1. find absolute extrema. Find relative extrema by 1st and 2nd derivative test.	MA 5 3.1, 3.4	Strategic Thinking	Distinguish between absolute and relative extrema. Understand the process of finding extrema by 2nd derivative test.	1. Given y=sin x [0,∏] find a)absolute extrema b)relative extrema (SMP 1,6)
Increasing and Decreasing Concavity	given various functions, find intervals of increasing, decreasing, and concavity.	MA 5 3.1,3.4	Strategic Thinking	Apply 1st derivative test to find intervals of increasing and decreasing. Apply 2nd derivative test to determine intervals of concavity.	1. Given y=cos2x [0,2∏] find a)intervals of increasing or decreasing b)intervals of concavity (SMP 1,6)

Subject Area: Advanced Placement Calculus AB 11-12

Advanced Placement Topic: Applications of Derivatives

	Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
Points of Inflection	1. find 2nd derivatives and determine the existence of points of inflection.	MA 5 3.1, 3.4	Strategic Thinking	Using the definition of points of inflection, determine if they exist and find them.	1. y=sin2x [0,2∏] find all points of inflection. (SMP 1,6)
Find Maximum and Minimums	write equations from word problems and find maximum or minimum values.	MA 5 3.1, 3.4	Strategic Thinking	Translate given information into an equation to determine a maximum or a minimum value.	1. A rancher has 200 ft of fencing to enclose two adjacent, rectangular pens. What dimensions should be used to create a maximum area? (SMP 1,2,4)

Subject Area: Advanced Placement Calculus AB 11-12

Advanced Placement Topic: Applications of Derivatives

	Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
Rolles and Mean Value Theorem	1. define and apply Rolles and Mean Value Theorem.	MA 5 3.4	Strategic Thinking	1. Determine and if possible, apply Rolles and Mean Value Theorem.	1. Determine whether Rolles Theorem can be applied to $f(x)=(x-1)(x-2)(x-3)$ on [1,3]. If it can not be applied, explain why. If it can be applied, find the value of c that is guaranteed. (SMP 1,2,6)
Velocity and Acceleration	determine average velocity, velocity and acceleration.	MA 5 3.4, 3.5	Skill/Concept	Find average velocity, velocity and acceleration given equations and intervals.	1. s(t)=-16t ² +64t+20 a) Find velocity at t=2 b) Find acceleration when the velocity is equal to 0. (SMP 1,6)

Subject Area: Advanced Placement Calculus AB 11-12

Advanced Placement Topic: Integration

	Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
tegra y Lin	apply rules of summation to find area using limits. learn and apply basic rules of integration for indefinite integrals.	MA 5 3.4	Skill/Concept	 Sketch and solve area by using summation rules and limits. Apply power rule, trig integrals and basic properties of integration to solve integration problems. 	1. Use the limit process to find the area of the region between the graph of y=-2x+3 and the x-axis over [0,1]. 2. \(\int(3x+4)(2x+1)\) dx solve. (SMP 1,6)
Reimann Sums	1. find area using Reimann Sums.	MA 5 3.2	Strategic Thinking	1. By the use of applying the limit of a sum, solve various questions by Reimann Sums.	1. Using Reimann's Sum, find the area formed by f(x)=4-2x, the x-axis, over [0,2] with six equal sub intervals. (SMP 1,4,5)

Subject Area: Advanced Placement Calculus AB 11-12

Advanced Placement Topic: Integration

	Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
Definite Integrals	1. apply the Fundamental Theorem of Calculus and other theorems to solve integrals. 2. apply the 2nd Fundamental Theorem of Calculus to solve integrals.	MA 5 3.2	Skill/Concept	 Apply integration rules and evaluate using the Fundamental Theorem of Calculus. Determine if a function is continuous on a given interval. Apply the 2nd Fundamental Theorem of Calculus. 	1. Find the area of the region bounded by y=x³+x, x=2, y=0. 2. Find the derivative of F(x)=integration of cos t dt from [0,x] (SMP 1,5,6)
Rules of Integration	 Power Trigonometric Natural Log Inverse Trig Substitution Exponential Function 	MA 5 3.2, 3.5	Skill/Concept	 Apply integration rules for the Power Rule. Apply integration rules for the Trigonometric Functions. Apply integration rules to Natural Logarithms. Apply integration rules to Inverse Trig Functions. Apply the technique of substitution for integration. Apply integration rules to Exponential Functions. 	 ∫4x dx ∫4secx tanx dx ∫(x+1)÷(dx) ∫(1+4x²)⁻¹dx ∫x²(x³-1)⁴ dx ∫e²x dx (SMP 1,2,6)

Subject Area: Advanced Placement Calculus AB 11-12

Advanced Placement Topic: Applications of Integration

	Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
Area and Volume	1. Area 2. Volume a) Disk b) Washer c) Shell d) Cross Section	MA 5 1.5	Strategic Thinking	 Graph various regions, determine bounds, and find the enclosed area. Graph the region and find the volume using the disk method. Graph the region and find the volume using the washer method. Graph the region and find the volume using the shell method. Graph the region and find the volume using cross sections. 	1. Find the area formed by y=sinx and y=x in the first quadrant. 2a. Find the volume of the solid generated by y=2x², y=0, x=2 taken about the x-axis. 2b. Find the volume of the solid generated by y=2x², y=0, x=2 taken about the y-axis. 2c. Find the volume of the solid formed by revolving the region formed by the graphs of y=x²+1, y=0, x=0, and x=1 about the y-axis. 2d. Find the volume of the region bounded by y=15x, y=-1+.5x and x=0 by cross sections perpendicular to the x-axis that are squares. (SMP 1,2,4,6)

Subject Area: Advanced Placement Calculus AB 11-12

Advanced Placement Topic: Applications of Integration

	Advanced Placement Standard	Show Me Standards	DOK	Instructional Strategies Student Activities/Resources	Assessment
	The students will:				
Basic Differential Equations	1. solve general and particular solutions of basic differential equations.	MA 5 3.4	Skill/Concept	Apply integration rules to solve general and particular equations.	1. y'=4x the equation contains [0,5]. Find y. (SMP 1,6)