SEVENTH GRADE						
Ratios and proportional Relationships						
UNIT	1	2	3	4	5	6
Analyze proportional relationships and use them to solve real-world and mathematical problems						
7.RP.1 Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities						
measured in like or different units. For example, if a person walks 1/2 mile in each 1/4 hour, compute the unit rate						
as the complex fraction 1/2/1/4 miles per hour, equivalently 2 miles per hour.	Х			Χ		
7.RP.2 Recognize and represent proportional relationships between quantities.	Х			Χ		
7.RP.2a Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a						
table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.	Х			Χ		_
7.RP.2b Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.	Х			х		
7.RP.2c Represent proportional relationships by equations. For example, if total cost t is proportional to the number						
n of items purchased at a constant price p, the relationship between the total cost and the number of items can be	Х			Х		
7.RP.2d Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with						
special attention to the points (0, 0) and (1, r) where r is the unit rate.	Х			Х		
7.RP.3 Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax,						
markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.	Х			Х		
The Number System						
Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide ratio	nal n	uml	oers.			
7.NS.1 Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.		Х				
7.NS.1a Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged.		Х				
7.NS.1b Understand p + q as the number located a distance q from p, in the positive or negative direction						
depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive						
inverses). Interpret sums of rational numbers by describing real-world contexts.		х				
7.NS.1c Understand subtraction of rational numbers as adding the additive inverse, $p - q = p + (-q)$. Show that the						
distance between two rational numbers on the number line is the absolute value of their difference, and apply this						
principle in real-world contexts.		Х				
7.NS.1d Apply properties of operations as strategies to add and subtract rational numbers.		Х				

7.NS.2 Apply and extend previous understandings of multiplication and division and of fractions to multiply and			Т	Т	
divide rational numbers.		Х			
7.NS.2a Understand that multiplication is extended from fractions to rational numbers by requiring that operations					
continue to satisfy the properties of operations, particularly the distributive property, leading to products such as					
(-1)(-1) = 1 and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real					
world contexts.		Х			
7.NS.2b Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers					
(with non-zero divisor) is a rational number. If p and q are integers, then $-(p/q) = (-p)/q = p/(-q)$. Interpret quotients					
of rational numbers by describing real-world contexts.		Χ			
7.NS.2c Apply properties of operations as strategies to multiply and divide rational numbers		Х			
7.NS.2d Convert a rational number to a decimal using long division; know that the decimal form of a rational number					
terminates in 0s or eventually repeats		Х			
7.NS.3 Solve real-world and mathematical problems involving the four operations with rational numbers.		Χ			
Expressions and Equations					
Use properties of operations to generate equivalent expressions					
7.EE.1 Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with					
rational coefficients.			Χ		
7.EE.2 Understand that rewriting an expression in different forms in a problem context can shed light on the					
problem and how the quantities in it are related. For example, a + 0.05a = 1.05a means that "increase by 5%" is the					
same as "multiply by 1.05."		Х	Χ		
Solve real-life and mathematical problems using numerical and algebraic expressions and equations.					
7.EE.3 Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in					
any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to					
calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of					
answers using mental computation and estimation strategies. For example: If a woman making \$25 an hour gets a					
10% raise, she will make an additional 1/10 of her salary an hour, or \$2.50, for a new salary of \$27.50. If you want to					
place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar					
about 9 inches from each edge; this estimate can be used as a check on the exact computation.			Х	Х	
7.EE.4 Use variables to represent quantities in a real-world or mathematical problem, and construct simple					
equations and inequalities to solve problems by reasoning about the quantities.	Х	Х	Х		

7.EE.4a Solve word problems leading to equations of the form $px + q = r$ and $p(x + q) = r$, where p, q, and r are						
specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic						
solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a						
rectangle is 54 cm. Its length is 6 cm. What is its width?	Х	Х	Χ			
7.EE.4b Solve word problems leading to inequalities of the form $px + q > r$ or $px + q < r$, where p , q , and r are specific						
rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For						
example: As a salesperson, you are paid \$50 per week plus \$3 per sale. This week you want your pay to be at least						
\$100. Write an inequality for the number of sales you need to make, and describe the solutions.			Χ			
Geometry						
Draw, construct, and describe geometrical figures and describe the relationships between them.						
7.G.1 Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas						
from a scale drawing and reproducing a scale drawing at a different scale.	Х			x		
7.G.2 Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions.						
Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a						
unique triangle, more than one triangle, or no triangle.						Χ
7.G.3 Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of						
right rectangular prisms and right rectangular pyramids.						Χ
Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.						
7.G.4 Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal						
derivation of the relationship between the circumference and area of a circle.			Х			
7.G.5 Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write						
and solve simple equations for an unknown angle in a figure.			Χ			Χ
7.G.6 Solve real-world and mathematical problems involving area, volume and surface area of two- and three						
dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.			Χ			Χ
Statistics and Probability						
Use random sampling to draw inferences about a population.						
7.SP.1 Understand that statistics can be used to gain information about a population by examining a sample of the						
population; generalizations about a population from a sample are valid only if the sample is representative of that						
population. Understand that random sampling tends to produce representative samples and support valid						
inferences.					Х	

7.SP.2 Use data from a random sample to draw inferences about a population with an unknown characteristic of		
interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or		
predictions. For example, estimate the mean word length in a book by randomly sampling words from the book;		
predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or		
prediction might be.		X
Draw informal comparative inferences about two populations.		
7.SP.3 Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities,		
measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example,		
the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer		
team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between		
the two distributions of heights is noticeable.		X
7.SP.4 Use measures of center and measures of variability for numerical data from random samples to draw informal		
comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh		
grade science book are generally longer than the words in a chapter of a fourth-grade science book.		X
Investigate chance processes and develop, use, and evaluate probability models.		
7.SP.5 Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood		
of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a		
probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely		
event.		x
7.SP.6 Approximate the probability of a chance event by collecting data on the chance process that produces it and		
observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For		
example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but		
probably not exactly 200 times.		x
7.SP.7 Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to		
observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.		x
7.SP.7a Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to		
determine probabilities of events. For example, if a student is selected at random from a class, find the probability		
that Jane will be selected and the probability that a girl will be selected.		x
7.SP.7b Develop a probability model (which may not be uniform) by observing frequencies in data generated from a		
chance process. For example, find the approximate probability that a spinning penny will land heads up or that a		
tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely		
based on the observed frequencies?		X
7.SP.8 Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.		Х
7.SP.8a Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes		
in the sample space for which the compound event occurs.		x

7.SP.8b Represent sample spaces for compound events using methods such as organized lists, tables and tree			
diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the			
sample space which compose the event.)	x
7.SP.8c Design and use a simulation to generate frequencies for compound events. For example, use random digits			
as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the			
probability that it will take at least 4 donors to find one with type A blood?		>	Χ