GALLAGHER BASSETT SERVICES, INC.

IAQ ASSESSMENT

MARSHALL PUBLIC SCHOOL DISTRICT MARSHALL HIGH SCHOOL 805 SOUTH MIAMI AVENUE MARSHALL, MISSOURI

APRIL 10, 2022

PREPARED BY:

7100 NORTHLAND CIRCLE NORTH, SUITE 307 BROOKLYN PARK, MINNESOTA 55428 (763) 400-7668

J.S. HELD PROJECT NO. 21111804

TABLE OF CONTENTS

SECTION	PAGE
1.0	INTRODUCTION
2.0	BACKGROUND
3.0	OBSERVATIONS
4.0	DIRECT MEASUREMENT OF AMBIENT INDOOR CONDITIONS
	4.1 Temperature and Relative Humidity (RH)2
	4.2 Volatile Organic Compounds (VOCs)
	4.3 Ozone (O ₃)
5.0	LABORATORY ANALYSIS OF AIR SAMPLES FOR VOLATILE ORGANIC COMPOUNDS (VOCs)3
	5.1 SAMPLING METHOD
	5.2 CRITERIA FOR COMPARISON OF DATA
	5.3 LABORATORY ANALYSIS 4 5.3.1 Total VOC's 4 5.3.2 Total Microbial VOCs 8
	5.4 Conclusions
6.0	COMBUSTION BYPRODUCT SAMPLING
	6.1 Combustion Byproduct Information9
	6.2 Combustion Byproduct Evaluation Criteria10
	6.3 Combustion Byproduct Sample Collection11
	6.4 Combustion Byproduct Sample Results and Conclusions12
7.0	MOLD SAMPLE COLLECTION
	7.1 Surface Mold Sample Collection137.1.1 Surface Mold Sample Collection and Analysis137.1.2 Recommended Standards for Mold Spores on Surfaces137.1.3 Review of Mold Surface Sample Analytical Results147.1.4 Mold Surface Sample Conclusions14
8.0	LIMITATIONS
9.0	CONCLUSIONS
10.0	RECOMMENDATIONS

LIST OF APPENDICES

APPENDICES

- A Photographs
- B Ambient Indoor Data
- C Comprehensive Air Survey Sample Location Diagram
- D Combustion Byproduct Sample Location Diagram
- E Mold Surface Sample Location Diagram
- F Enthalpy Comprehensive Air Survey Laboratory Analytical Report
- G Combustion Byproduct Air Laboratory Analytical Report and Chain of Custody
- H Combustion Byproduct Surface Laboratory Analytical Report and Chain of Custody
- I Mold Surface Laboratory Analytical Report and Chain of Custody

TABLES

- Table 1. Comparison of results to New York Department of Heath Survey, ACGIH Threshold Limit Values (TLV) and OSHA Permissible Exposure Limits (PEL)
- Table 2. Results above New York State Department of Health Survey and compared to ACGIH Threshold Limit Values (TLV) and OSHA Permissible Exposure Limits (PEL)

Report prepared by:

James Harvey, BS Environmental Scientist/Industrial Hygienist V

Report peer reviewed by:

ROBERT I. LEICHTON(CL)

Robert I. Leighton, MHS, CIH, CSP Senior Vice President, Environmental Health & Safety

1.0 INTRODUCTION

J.S. Held LLC (J.S. Held) was retained by Gallagher Bassett Services Inc. (Gallagher Bassett) to perform an indoor air quality (IAQ) assessment for Marshall Public School District at Marshall High School located at 805 South Miami Avenue in Marshall, Missouri. J.S. Held was retained to investigate the building due to employee health concerns after the building was cleaned by restoration contractor Servpro of Marshall after a reported fire in Room 4. Worker compensation complaints were also filed by several employees with the Marshall Public School District.

The IAQ assessment was performed on March 30, 2022 by Industrial Hygienist Mr. James Harvey and included the collection of air and surface samples for mold and combustion byproducts as well as laboratory samples and direct-reading measurements for volatile organic compounds (VOCs) and a visual assessment of the property.

Representative photographs collected during the assessment are provided in **Appendix A.** Ambient indoor data logs for VOC readings are included in **Appendix B**. VOC laboratory sample locations are provided on a diagram included in **Appendix C**. Combustion byproduct and mold sample location diagrams are included in **Appendices D and E**, respectively. Laboratory data for VOCs is included in **Appendix F** Combustion byproduct air and surface sample laboratory reports and chain of custody forms are provided in **Appendices G and H**. Mold surface sample laboratory report and chain of custody form are provided in **Appendix I**.

2.0 BACKGROUND

A fire reportedly occurred on November 17, 2021 in Room 4, an art room, at the Marshall High School. ServPro of Marshall (ServPro) mobilized equipment and containment to the school the following day, November 18, 2021to perform fire and smoke restoration activities at the site. J.S. Held performed a fire and smoke damage assessment approximately one month after the reported date of loss on December 21, 2021 with the specific purpose to determine the impact of the fire and smoke on the insulated metal walls within the building. A report of those findings was issued on February 24, 2022.

Servpro completed restoration and cleaning at some point during February 2022 after which the High School was reopened, and classes resumed. In March 2022 employees of the school started to express health concerns including development of a facial rash by one employee while unpacking contents from a box in Room 7.

3.0 OBSERVATIONS

The site is a public high school consisting primarily of two buildings connected by an entrance foyer hall; a 60,000 square-foot main building with classrooms and offices, and a second building with 40,000 square-foot which includes the school gymnasium, music rooms and theater, and a kitchen and commons area. J.S. Held's assessment included the larger main building where the fire occurred, and a limited section of the smaller building. The main building is a slab-on-grade structure with steel and wood framing, brick and concrete masonry unit (CMU) block walls, and a flat roof. Interior finishes include drywall ceilings and walls, metal partition walls, carpeting, and concrete flooring. J.S. Held conducted the assessment to determine potential IAQ contaminants within the main building that may be responsible for the health complaints reported by staff.

Suspended ceiling tiles and grids had been previously removed throughout the main building exposing roof decking and steel beams which appeared to have been painted. All finished had been removed from Room 4 which was being used to store content boxes. A section of carpet was observed to have been removed from the hallway adjacent to Room 4. Several of the classrooms contained Servpro boxes that were in the process of being emptied. Visual smoke damage was not observed at the time of J.S. Held's recent assessment.

4.0 DIRECT MEASUREMENT OF AMBIENT INDOOR CONDITIONS

Direct read instruments were used to collect data regarding Indoor Air Quality (IAQ) at the school, including for temperature, relative humidity, volatile organic compounds (VOCs) and ozone (O_3). , and Aeroqual Series 500,. Ambient air data logs for the ppbRae 3000 is attached as **Appendix B**.

4.1 Temperature and Relative Humidity (RH)

Many factors such as personal activity and clothing may affect personal comfort in a building. Generally, acceptable indoor levels for relative humidity should range from 20 to 60 percent (%). Maximum occupant comfort is normally achieved when relative humidity is between 30 to 50%. Normal temperature ranges considered are 68 to 75 degrees Fahrenheit (°F) in the winter and 73 to 79°F in the summer. These are normally associated with sedentary or slightly active individuals. Temperature and humidity readings were collected using a Kestrel thermal-hygrometer and were between 68.6 and 74.2 °F and 30.8 and 36.2 %, respectively. Industry standard guidelines recommend relative humidity within an occupied space should be maintained below 65% (The American Society of Heating, Refrigerating and Air-Conditioning Engineers) or 60% (EPA) to prevent an indoor environment conducive to mold growth. Based on these guidelines, relative humidity levels identified within the building are not conducive to mold growth.

4.2 Volatile Organic Compounds (VOCs)

Concentrations of many VOCs are consistently higher indoors (up to ten times higher) than outdoors. VOCs are emitted by a wide array of products numbering in the thousands. Examples include: adhesives, paints and lacquers, paint strippers, cleaning supplies, pesticides, building materials and furnishings, office equipment such as copiers and printers, correction fluids and carbonless copy paper, graphics and craft materials including glues and adhesives, permanent markers, and photographic solutions. VOCs concentrations are typically greater in buildings after new furnishings have been installed or after the building have been painted or renovated.

Real time VOC concentrations were measured for total VOCs during the assessment using a Honeywell ppbRae 3000 photoionization detection (PID) meter which was calibrated prior to use using calibration gas for isobutylene supplied by the manufacturer. Total VOC concentrations measured by the PID meter in the main building ranged from 340 to 1,000 parts per billion (ppb). An instantaneous peak reading of 19.43 parts per million (ppm) was measured within a content box in Room 7 which contained a bottle of hand sanitizer that had spilled. VOC concentrations measured by the PID meter in the gymnasium building were non-detectable at at 0 ppb.

Total VOC measurements are a composite of all VOCs present at the time and therefore cannot be compared to OSHA Permissible Exposure Limits (PELs) or ACGIH Threshold Limit Values (TLVs) for any specific individual VOC. The ppbRae 3000 measures VOCs in parts per billion (ppb). As PELs and TLVs for individual VOCs are in the part per million (ppm) range, and 1 ppm equals 1,000 ppb, measurement of total VOCs below 1,000 ppb are generally considered to be very low and safe.

4.3 Ozone (O₃)

As it was reported that hydroxyl machines, which can produce ozone (O_3) , were used during restoration activities, J.S. Held collected ozone readings using a Aeroqual Series 500 portable ozone monitor. The Aeroqual 500 has a detection limit of 0.001 parts per million (ppm) ozone. Ozone readings collected throughout both the main building and gymnasium were non-detectable or less than 0.001ppm. The OSHA PEL for ozone is an average concentration of 0.10 ppm for 8-hours.

The observed levels of O_3 were within acceptable levels for building occupancy at the time of J.S. Held's assessment.

5.0 LABORATORY ANALYSIS OF AIR SAMPLES FOR VOLATILE ORGANIC COMPOUNDS (VOCs)

J.S. Held collected air samples for laboratory analysis of volatile organic compounds at the Marshall Public High School on March 30, 2022. Samples were also analyzed for microbial volatile organic compounds (MVOCs). A sample location diagram is included in **Appendix C** and laboratory analytical reports are included as **Appendix F**.

5.1 SAMPLING METHOD

J.S. Held collected a total of (10) air samples from within the property, nine (9) samples were collected from within the reportedly impacted main building and one (1) sample was collected for comparison purposed from the reportedly non-impacted gymnasium building, in order to evaluate for the presence of total VOCs, and MVOCs. The samples were collected using multi-matrix thermal desorption tubes attached to air sampling pumps supplied by and calibrated prior to sampling by the laboratory, Enthalpy Analytical LLC (Enthalpy). The samples were collected over a period of at least 2-hours at the required air flow rate of 200 milliliters of air per minute. The tubes were capped on both ends, inserted with padding into individual cardboard containers and secured with screwtop lids. The containers were shipped to Enthalpy under chain of custody. Enthalpy is an American Industrial Hygiene Association (AIHA) accredited testing laboratory, Laboratory ID #166272.

In the laboratory, the chemist can identify the types and amounts of volatile organic chemicals, or VOCs, collected in the air sample by thermally desorbing the chemicals off the tube and into a gas chromatograph where the retention times and peak amounts are compared to known standards. Enthalpy uses methods NIOSH 2549 and ISO 16000-6 for analysis of total and microbial organic chemicals.

5.2 CRITERIA FOR COMPARISON OF DATA

The test results for samples analyzed for VOCs will be compared to three criteria; the Occupational Safety and Health Administration (OSHA) Permissible Exposure Limits (PELs) and the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Values (TLVs), as well as a survey of homes conducted by the New York State Department of Health (NYS DOH). The PELs and TLVs provide acceptable exposures for person working 40-hours per week on either an 8-hour time-weighted averages (TWAs) basis or short-term exposure limits of usually 15 minutes (STELs). The NYS DOH survey provides typical levels of the chemicals in homes using home heating oil throughout New York and are therefore useful in comparing non-occupational exposures to the general public on a 24-hour per day, 365-day per year basis.

5.3 LABORATORY ANALYSIS

5.3.1 Total VOC's

Enthalpy analyzed each sample for total VOCs, or tVOCs. With the exception of the library, total VOC concentrations within the impacted area ranged from 3,800 nanograms per liter (ng/L) in Room 26 to 6,000 ng/L in Room 10. The sample collected in the library was reported to contain non-detectable amounts of VOCs, or less than 200 ng/L. The tVOC concentration within the non-impacted area,

specifically the hall outside of the little theater, was reported at 1,100 ng/L. Enthalpy then analyzed each of the sample tubes to obtain results for individual types of VOC's present. See list of chemical compounds on the laboratory data sheets included in **Appendix F**. A comparison table including the top five VOCs given in ng/L for all ten samples is provided below:

Compound/Room	7	10	3	4	Library	26	Hall at Rooms 36 & 37	31	14	Hall at Little Theater
Total VOC's	5,900	6,000	4,200	5,000	< 200	3,800	3,700	4,300	5,200	1,100
TO-17 Compounds										
Acetone	61.0	62.0	49.0	48.0	< 1.0	49.0	46.0	45.0	60.0	19.0
Ethanol	1,500.0	1,400.0	790.0	1,100.0	8.8	720.0	820.0	670.0	970.0	260.0
Ethylacetate	4.6	3.4	2.3	4.8	0.4	2	2.3	1.9	2.3	0.8
Isopropanol	150.0	120.0	130.0	110.0	< 1.0	44.0	45.0	49.0	100.00	11.00
Semi-Quantitative C	ompounds									
Acetaldehyde	60.0	60.0	22.0	33.0	< 4.0	20.0	26.0	52.0	22.0	< 4.0
Butane (C 4)	10.0	10.0	10.0	13.0	< 4.0	5.0	5.0	7.0	7.0	29.0
Dipropylene glycol methyl ether	420.0	450.0	240	320.0	< 4.0	270.0	190.0	330.0	300.0	15.0
Ethylene Glycol	57.0	53.0	73.0	58.0	< 4.0	43.0	91.0	41.0	56.0	< 4.0
Texanol-A	200.0	240.0	220.0	260.0	< 4.0	170.0	130.0	220.0	300.0	9.0
Texanol-B	250.0	300.0	280.0	330.0	< 4.0	230.0	170.0	270.0	390.0	19.0

The major VOCs found and identified above are typical ingredients found in either paints and/or common household cleaning products.

With the exception of the Library, only butane (C-4) was reported to be higher in concentration in the non-impacted gymnasium building when compared to the impacted main building. All other VOCs identified were higher in concentration in the impacted main building than the non-impacted gymnasium.

Review of the test results for all other VOCs found with lesser concentrations in the ten (10) samples revealed lower concentrations of the following fifty-one (51) compounds given in ng/L:

Marshall Public High School - IAQ Assessment [21111804] April 11, 2022

Compound/Room	7	10	3	4	Library	26	Hall Rooms 36/37	31	14	Hall Little Theater
TO-17 Compounds										
Acetonitrile	0.5	0.6	< 0.4	0.6	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Benzene	0.4	0.4	0.4	0.4	< 0.2	0.4	0.4	0.3	0.4	0.4
Carbon Tetrachloride	0.7	0.7	0.7	0.7	< 0.2	0.9	1.4	0.8	0.8	0.5
Chloroform	0.3	0.3	0.2	0.2	< 0.3	0.2	0.2	< 0.2	0.3	< 0.2
Cyclohexane	0.3	0.3	0.2	0.2	< 0.2	0.2	0.2	0.2	0.3	0.2
1,4-Dichlorobenzene	2.9	3.1	2.5	2.3	< 0.2	3.5	4.4	4.3	3.1	0.2
Ethylbenzene	0.4	0.4	0.4	0.4	0.2	0.3	0.3	0.3	0.4	0.3
Hexane (C 6)	0.4	0.4	0.4	0.4	< 0.2	0.8	1.5	1.1	0.4	0.5
p-lsopropyltoluene	0.8	0.8	0.8	0.8	< 0.2	0.8	0.3	0.4	0.5	0.3
2-Methyl-1-propanol	< 0.2	< 0.2	0.4	0.4	< 0.2	< 0.2	< 0.2	1.0	0.3	0.3
4-Methyl-2-pentanone	< 0.2	2.2	1.3	1.3	< 0.2	2.9	1.1	1.0	1.9	1.0
Methylene Chloride	0.5	0.4	0.5	0.5	< 0.2	0.6	0.9	0.6	0.5	0.3
Naphthalene	< 0.4	< 0.4	< 0.4	< 0.4	< 0.2	0.4	0.7	0.5	< 0.4	< 0.4
Styrene	0.5	0.5	0.5	0.6	< 0.4	0.4	0.7	0.4	0.5	< 0.4
Toluene	3.4	3.3	3.1	3.6	< 0.2	3.1	3.6	3.3	3.3	1.3
Trichloro-trifluoroethane	0.5	0.5	0.5	0.5	< 0.2	0.5	0.5	0.5	0.6	0.6
1,2,4-Trimethylbenzene	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.0
m,p-Xylene	1.1	1.1	0.9	1.1	< 0.2	0.9	1.0	1.0	1.0	0.8
o-Xylene	0.4	0.4	0.3	0.4	< 0.2	0.3	0.3	0.3	0.3	0.3
SEMI QUANTITATIVE COMPOL	-	0.1	0.0	0.1	0.2	0.0	0.0	0.0	0.0	0.0
2,6-Dimethyl-7-octen-2-ol	7.0	8.0	5.0	4.0	< 4.0	6.0	4.0	6.0	7.0	< 4.0
Benzaldehyde	7.0	7.0	5.0	6.0	< 4.0	5.0	5.0	7.0	6.0	< 4.0
1-Butanol	30.0	30.0	23.0	36.0	< 4.0	22.0	17.0	15.0	26.0	< 4.0
1-Butoxy-2-propanol	4.0	< 4.0	< 4.0	5.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
2-Butoxyethanol	22.0	24.0	17.0	26.0	< 4.0	16.0	13.0	23.0	24	< 4.0
Butoxyethoxyethanol	45.0	42.0	17.0	18.0	< 4.0	29.0	16.0	40.0	34.0	< 4.0
Butylcyclohexyl acetate	5.0	6.0	< 4.0	< 4.0	< 4.0	5.0	< 4.0	< 4.0	5.0	< 4.0
C12-C14 Hydrocarbon ¹	8.0	10.0	7	5.0	< 4.0	7.0	6.0	6.0	9.0	< 4.0
C12-C14 Hydrocarbon ²	< 4.0	5.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
C14-C16 Hydrocarbon	< 4.0	< 4.0	4	< 4.0	< 4.0	< 4.0	10.0	< 4.0	< 4.0	< 4.0
C7-C9 Hydrocarbon	10.0	10.0	9	11	< 4.0	7.0	6.0	8.0	8.0	< 4.0
Decanal	< 4.0	6.0	5	< 4.0	< 4.0	7.0	9.0	14.0	7.0	< 4.0
Diethylene glycol ethyl ether	29.0	15.0	11	8.0	< 4.0	9.0	9.0	23.0	21.0	< 4.0
Dodecane (C 12)	8.0	8.0	6.0	7.0	< 4.0	6.0	5.0	8.0	7.0	< 4.0
2-Ethyl-1-hexanol	18.0	18.0	19.0	18.0	< 4.0	15.0	15.0	18.0	18.0	< 4.0
Isobutane	10.0	9.0	10.0	9.0	< 4.0	4.0	5.0	5.0	6.0	9.0
Isohexadecane	7.0	7.0	6.0	5.0	< 4.0	< 4.0	< 4.0	< 4.0	7.0	< 4.0
Isoprene	7.0	8.0	6.0	4.0	< 4.0	7.0	6.0	< 4.0	9.0	< 4.0
Limonene	50.0	70.0	23.0	22.0	< 4.0	25.0	17.0	21.0	42.0	8.0
Menthol	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	5.0	< 4.0	< 4.0	< 4.0
Methoxy-2-propanol	7.0	7.0	6.0	6.0	< 4.0	7.0	6.0	5.0	10.0	< 4.0
2-Methylbutane	6.0	5.0	5.0	6.0	< 4.0	< 4.0	< 4.0	< 4.0	5.0	4.0
Nonanal	5.0	5.0	< 4.0	6.0	< 4.0	< 4.0	5.0	13.0	< 4.0	< 4.0
Octamethylcyclotetrasiloxane	5.0	6.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	5.0	< 4.0
Pentane (C 5)	23.0	25.0	18.0	17.0	< 4.0	27.0	22.0	22.0	29.0	8.0
1-Propanol	7.0	6.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0

Compound/Room	7	10	3	4	Library	26	Hall Rooms 36/37	31	14	Hall Little Theater
n-Propylacetate	7.0	9.0	5.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	15.0	< 4.0
Propylene glycol	14.0	14.0	13.0	8.0	< 4.0	14.0	16.0	12.0	14.0	< 4.0
Tetradecane (C 14)	6.0	5.0	< 4.0	< 4.0	< 4.0	4.0	4.0	5.0	5.0	< 4.0
Tetramethyl-5-decyne-diol	34.0	47.0	12.0	9.0	< 4.0	30.0	17.0	8.0	20.0	< 4.0
Tridecane (C 13)	6.0	6.0	< 4.0	5.0	< 4.0	5.0	4.0	6.0	5.0	< 4.0
Urea	<4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	4.0	8.0	< 4.0	< 4.0

Excluding the sample collected within the library, all compounds were found to be higher or similar in concentration in the main building than in the non-impacted gymnasium. Fifteen (15) of the nineteen (19) TO-17 compounds identified in the samples collected from the main building were also reported in similar or lower concentrations in the sample collected in the gymnasium building.

Of the thirty-two (32) semi-quantitative compounds detected in the impacted main building only four (4), Isobutane, Limonene, 2-Methylbutane and Pentane (C 5), were also reported in the non-impacted sample collected from the gymnasium building. Concentrations of the four identified compounds in the gymnasium building, hall outside the little theater, were reported to be similar or lower than concentrations in the impacted main building. Many of those compounds, some of which are highlighted in bold in the above table, were found in higher amounts in the main building than in the control sample collected in the other building, for example, Limonene was between 22 and 70 ng/L in the main building but only 8 ng/L in the other building.

Summary Tables 1 and 2 are included with the appendices.

Table 1 provides a comparison of these test results to levels found in a NYS DOH survey of homes, ACGIH TLVs and OSHA PEL's. While not all the chemicals analyzed by Enthalpy for the ten (10) samples collected within Marshall High School were included in the NYS DOH survey or have TLVs or PELs, for the chemicals analyzed by both groups, the chemicals listed in **Table 2** had concentrations above the amounts found in the NYS DOH survey for one or more of the ten (10) samples collected inside Marshall High School. Those chemicals are also identified in the below table. In all cases, all chemicals listed in the summary tables and laboratory data sheets were well below their respective TLVs and PELs by several orders of magnitude.

Compound								
Room	3	4	7	10	14	26	31	Hall at 26/37
Carbon Tetrachloride								Х
1,4-Dichlorobenzene	Х	Х	Х	Х	Х	Х	Х	Х
Ethanol			Х	Х				
4-Methyl-2-pentanone				Х		Х		
Limonene (d-Limonene)	Х	Х	Х	Х	Х	Х	Х	Х

Chemical with concentrations above the NYS DOH Survey of Homes.

5.3.2 Total Microbial VOCs

The laboratory also analyzed the test results for a sub-group of VOCs typically found during microbial growth and designated as microbial or mVOCs. Analysis of all ten (10) air samples were reported by the lab to contain amounts of mVOCs of 7 ng/L or less in the impacted main building and 5 ng/L in the non-impacted gymnasium building, which is below the level of concern of at least 8 ng/L (>8 ng/L) suggesting there is likely no concern for mold inside the buildings.

5.4 Conclusions

Based upon the results of the Enthalpy IAQ Comp-Air Survey sample analysis, the main building where the fire occurred appears to have been negatively impacted by VOCs when compared to the other smaller building.

The method used by the laboratory is very sensitive and therefore very low levels of many different VOCs were detected. The VOCs in greater amounts common to most of the rooms/areas tested in the main building, while still low at the time samples were collected, include several common ingredients, as follows:

Cleaning products

- ethanol
- acetone
- isopropyl alcohol (IPA)
- di-propylene glycol methyl ether
- ethylene glycol
- Limonene

Paints

- Texanol A
- Texanol B

Limonene, also known as di-pentene, is found in many cleaning products, including ServPro Orange Plus. In the presence of ozone Limonene has been reported to create formaldehyde, which unfortunately, the laboratory analysis does not include. Hydroxyl machines, which produce ozone, were used by ServPro to reduce smoke odors during their remediation of the building. While ozone was not detected in the building at the time samples for VOCs were collected, it may have been present at the time the hydroxyl machines were operating, and therefore formaldehyde may have been present in addition to the above reported VOCs.

The presence of Texanol chemicals may be from the paints and primers used to encapsulate the roof. These chemicals may cause eye, skin, and respiratory tract irritation.

It appears that the VOCs may have been absorbed into porous and semi-porous materials inside the rooms that were cleaned after the fire and were still in the process of off-gassing from those materials at the time the teachers returned to the building. While off-gassing is a normal process, the amounts of cleaning products used to ensure a clean environment may have required additional time to adequately ventilate the impacted areas, and perhaps not enough time to resume use of the building. Also, the use of the hydroxyl machines may have produced enough ozone at the time it was used to convert some of the di-pentene (Limonene) to a stronger irritant than the normally safer ingredients in those products.

In any case, additional ventilation with mild heat should reduce the amount of these VOCs over time. Negative-pressure exhaust ventilation can be used to hasten the process if necessary. Items cleaned and placed in boxes or other containers may have delayed the off-gassing of those items, and should be removed from containers (by properly protected individuals donning half-face organic vapor/acid gas cartridge respirators and gloves) to allow for improved dissipation of those chemicals. Use of additional cleaning products is not recommended at this time.

6.0 COMBUSTION BYPRODUCT SAMPLING

As it was reported that Servpro performed fire and smoke restoration and cleaning within Marshall High School and employees were reporting health concerns, a post restoration verification sampling and analysis strategy was developed to determine whether air and surfaces were cleaned of combustion byproducts properly and completely. Air and surface sampling was conducted for combustion byproducts (soot, char, and ash) to determine impact on air and building materials from these compounds and to determine if restoration cleaning is complete.

6.1 Combustion Byproduct Information

Combustion byproducts are defined by the analytical laboratory to be those materials that are consistent in morphology (i.e., structure) with soot, char, and/or ash.

Soot

Black Carbon (soot) is defined as a randomly formed particulate of carbon, commonly with a spherical to pseudo-spherical (aciniform) morphology. It is a by-product of uncontrolled combustion.

Char

Char is defined as the layer of black particulate resulting from the burning of organic material which retains the morphology of the original substance.

Ash

Ash is defined as the white outermost layer resulting from the burning of organic material with only slight remains of the original morphology detectable.

6.2 Combustion Byproduct Evaluation Criteria

As there are no regulations regarding the concentration of soot, char or ash impact levels on surfaces, J.S. Held utilizes multiple criteria in the review of the data to evaluate the samples for impact, including the following: laboratory provided criteria, identification of and concentration of particulates on the sample, review of concentrations of each component against each other, source location of the fire and combustion byproducts, other potential sources of combustion byproducts (background), visual observations and location of samples that were collected, as well as potential for continued impact from identified sources.

The following criteria provided by the laboratory, Environmental Analysis Associates, Inc. (EAA), is utilized as a preliminary screening tool, which assists in the determination and presence and extent of surface impact based on soot, char, or ash concentrations.

Ratio (%) and Surface Concentration						
Classification (Impact)	Total Fire Residue (Ratio %)	Total Fire Residue (ct/mm ²)				
Typical – Low	<1%	<1				
Typical – Upper Background	1-3%	1-5				
Atypical	3 – 10%	5 – 50				
Elevated	>10%	>50				

The impact of dust loading is important in the evaluation of samples. For the interpretation of the results, the total ratio percent results column is utilized when there is heavy dust loading and/or long-term settled dust. If dust loading is not considered, the percent ratio of the result between the fire residue and the dust loading would be skewed in the total ratio percent column. With samples with light loading, the counts per millimeter square (ct/ mm²) are to be used. In addition to the dust loading, the normal

background (i.e. what is normally found inside of buildings) is also considered during the evaluation of samples results. Background concentrations are typically found inside of buildings, due to multiple sources/influences within in the building and rural communities. Typical sources include, but are not limited to, candle burning, cooking, incense burning, and outdoor pollutants. For the purpose of this project, samples with surface concentrations above Typical – Upper Background are considered elevated.

Additionally, there are no limits regulating the presence of airborne combustion byproducts, with the exception for soot which is regulated by the U.S. Environmental Protection Agency at a limit of 15 micrograms per cubic meter ($\mu g/m^3$). The following criteria provided by the laboratory, EAA, is utilized as a preliminary screening tool, which assists in the determination and presence and extent of airborne soot, char, or ash concentrations.

Percentile (%) and Airborne Concentration						
Classification (Impact)	Percentile Frequency of Occurrence (Percentile %)	Total Fire Residue (cts/m ³)				
Typical – Low	<50%	<100				
Typical – Upper Background	>50%	>100				
Atypical	>75%	>300				
Elevated	>95%	>1,000				

6.3 Combustion Byproduct Sample Collection

J.S. Held developed the following sampling strategy to assess building material surfaces and air quality within the building.

Targeted Sampling:

Locations identified for surface sample collection by J.S. Held were selected based on the following criteria:

- 1. The area's proximity to the fire;
- 2. Surfaces where soot, debris, and other environmental dust would typically collect;
- 3. Areas where visible dust and debris were present (indicating the area had not been cleaned for some time and therefore any soot or other environmental dust that may be attributed to the fire event may still be present); and
- 4. Contents within Servpro boxes as it was reported that during the unpacking of one of the boxes an employee developed a rash.
- 5. Rooms of employees expressing concern over health issues.

Surface samples were collected utilizing Bio-Tape[™] tape lifts inserted into a rigid plastic container, placed individually into plastic bags and sealed, recorded onto a chain of custody, and shipped by courier to EAA located in Bay City, Michigan. EAA is an American Industrial Hygiene Association (AIHA) accredited laboratory for analysis, which includes Polarized Light Microscopy (PLM) and Reflected Light Microscopy. A total of seventeen (17) surface samples were collected and submitted for laboratory analysis.

Airborne fire residue samples were collected utilizing Air-O-Cell (AOC) cassettes, recorded onto a chain of custody, and shipped by courier to EAA located in Bay City, Michigan. The fire residue air quality sampler is a particulate sampling cassette designed for the rapid collection and analysis of a wide range of airborne aerosols, which includes combustion byproducts. Samples were collected with the SKC Quick Take pump at a flow rate of approximately 15 liters per minute (lpm). A total of ten (10) air samples were collected and submitted for laboratory analysis.

A sample location diagram is included in **Appendix D** and air and surface laboratory analytical reports and associated chain of custody are in **Appendices G and H**, respectively.

6.4 Combustion Byproduct Sample Results and Conclusions

Analytical results for the twenty (20) surface samples and ten (10) air samples were reviewed by J.S. Held's Certified Industrial Hygienist (CIH). The results indicate that nineteen (19) of the twenty (20) surface samples were at or below Typical – Upper Background levels, and all of the ten (10) air samples were below Typical – Low Background. Combustion byproducts were not observed qualitatively by the laboratory in any of the twenty (20) surface samples collected. High concentrations of surface dust were not identified in any of the twenty (20) surface samples collected.

The following surface samples were reported above Typical – Upper Background based on the laboratory analytical report:

• Sample B-8 – Room 7 – Contents in Servpro Box.

All of the air samples were reported to be below Typical – Low Background based on the laboratory analytical report.

Results of J.S. Held's combustion byproduct sampling, which was conducted after restoration and cleaning was completed, indicated only limited smoke impact may remain on some contents within ServPro boxes.

7.0 MOLD SAMPLE COLLECTION

J.S. Held collected surface samples for mold. The samples were collected to determine whether an amplification of mold spores existed within the property. All samples were submitted to EMLab P&K, LLC (EMLab) in Phoenix, Arizona for analysis. EMLab is accredited by the American Industrial Hygiene Association's Laboratory Accreditation Program, LLC (AIHA-LAP, LLC) and is a participant in the Environmental Microbiology Laboratory Accreditation Program (EMLAP), (Lab ID 102297). Samples collected for surface mold included tape lift samples. Sample location diagrams for mold surface samples collected is included in **Appendix E.**

7.1 Surface Mold Sample Collection

J.S. Held collected seven (7) surface samples for mold to determine whether carpets were impacted with fungal growth as a result of water from fire suppression activities. The tape and slide are evaluated for characteristic mold spores under the microscope for type and amount of mold growth identified.

7.1.1 <u>Surface Mold Sample Collection and Analysis</u>

The surface tape sample was collected by pressing the sterile surface of a slide containing light adhesive to the surface of the wall and then enclosing the sample in its own locking case. Disposable gloves were worn during collection and containerizing of the sample. The surface sample was submitted under chain of custody and shipped to EMLab. Samples were analyzed by EMLab Service SOP: Direct microscopic exam (Quantitative) (EM-MY-S-1041).

7.1.2 <u>Recommended Standards for Mold Spores on Surfaces</u>

Currently, there are no specific state or federal standards for concentrations of mold spores. J.S. Held utilizes guidance from articles published in a journal of the AIHA, *The Synergist*, which was updated in 2003, that identifies normal background levels for surface mold. Concentrations of mold spores above these recommended guidelines for normal background are considered elevated and could indicate mold impact:

- Total spore count of 1,500 spore/cm² or 10,000 spores/in²;
- Spore counts of 750 spores/cm² or 5,000 spores/in² of Aspergillus/Penicillium; and
- Spore counts of approximately 2 spores/cm² or 100 spores/in² for water indicator species, *Chaetomium, Memnoniella, Trichoderma,* and *Stachybotrys*.

7.1.3 <u>Review of Mold Surface Sample Analytical Results</u>

Analytical results from the surface tape lift samples were reviewed by J.S. Held's Certified Industrial Hygienist (CIH). Of the seven (7) samples collected, all results were below established criteria for *Aspergillus/Penicillium* mold spores and no spores for water indicator species, *Chaetomium, Memnoniella, Trichoderma,* and *Stachybotrys* were reported by the laboratory in any of the seven samples collected. Analytical laboratory reports are included in **Appendix I.**

7.1.4 Mold Surface Sample Conclusions

The laboratory results from the seven (7) surface mold samples confirm that the carpets contain concentrations of mold spores considered to be normal background based on recommended guidelines.

8.0 LIMITATIONS

J.S. Held documented property conditions "as-is" during the assessment on March 30, 2022. Recommendations provided in this report are based upon the condition of the areas reported to be impacted as evaluated at the time of the assessment.

9.0 CONCLUSIONS

J.S. Held was retained by Gallagher Bassett to perform an indoor air quality (IAQ) assessment for the Marshall Public School District at the Marshall High School located at 805 South Miami Avenue in Marshall, Missouri. The assessment was conducted to assess a potential indoor air quality concern after fire and smoke restoration was performed. The assessment was performed on March 30, 2022, by Industrial Hygienist Mr. James Harvey. The assessment included a visual inspection, the collection of digital photographs to document general conditions, the collection of fungal surface samples, ambient air measurements for temperature and humidity, combustion byproduct air and surface sampling, real-time measurement of ozone and volatile organic compounds (VOCs), and the collection of air samples for VOCs.

Based on the assessment and sampling performed, VOC levels were higher in the impacted areas, in the main building, than in the non-impact building, and may be the result of cleaning products as well as paints and primers used during remediation. While five (5) of these VOCs were found in the impacted building in concentrations above the NYS DOH survey of homes, all air concentrations of all VOCs were found by the laboratory to be well within both their respective OSHA PELs as well as their ACGIH TLVs, by orders of magnitude.

The surface sampling for combustion by-products indicates the possible presence of soot above Typical – Upper Background concentrations on some of the contents within some of the boxes.

10.0 RECOMMENDATIONS

J.S. Held recommends additional ventilation with mild heat to reduce the airborne concentration of VOCs. Negative-pressure exhaust ventilation can be used to hasten the process if necessary. Items cleaned and placed in boxes should be removed from containers by properly protected individuals donning organic vapor/acid gas cartridge respirators and gloves to allow for improved dissipation of those chemicals. Contents removed from boxes should be HEPA vacuumed to remove any soot.

APPENDICES

APPENDIX A

PHOTOGRAPHS

805 South Miami Avenue, Marshall MO 65340

Figure (1) – Overview of Room 7.

Figure (3) – PID Meter measurement of 929 parts per billion (ppb) room 7.

Figure (5) –PID Meter measurement within contents box with hand sanitizer 19.43 parts per million (ppm).

Figure (2) – Combustion byproduct air sample –A-1 room 7.

Figure (4) – Leaking bottle of hand sanitizer located in ServPro contents box within room 7.

Figure (6) – Comp-Air sample set-up within room 10.

805 South Miami Avenue, Marshall MO 65340

Figure (7) – Painted exposed ceiling deck and steel above Room 3.

Figure (9) – Contents boxes stored in Room 4.

Figure (11) – CBP air sample in library.

Figure (8) – Ozone monitor reading of 0.000 ppm in Room 3.

Figure (10) – HVAC duct above Room 4 covered with polyethylene sheeting.

Figure (12) – PID Meter measurement of 388 parts per billion (ppb) library.

Figure (13) – Comp-Air sample in Library.

Figure (14) – Comp-Air sample Room 26.

Figure (15) – PID Meter measurement of 478 ppb in Room 26.

Figure (17) – Comp-Air sample Room 31.

Figure (16) – PID meter reading of 0 ppb in corridor between main building and gymnasium building.

Figure (18) – Sample B-1 – Collected from carpet in Room 7.

Marshall Public School District – Marshall High School

805 South Miami Avenue, Marshall MO 65340

Figure (19) – Sample B-3 – Collected from carpet in Room 26.

Figure (21) – Sample B-8 – Collected from contents in box within Room 7.

Figure (23) – Sample B-12 – Collected from contents within box in Room 4.

Figure (20) – Sample C-5 – Collected from Library carpet.

Figure (22) – Sample B-10 – Collected from content box within Room 10.

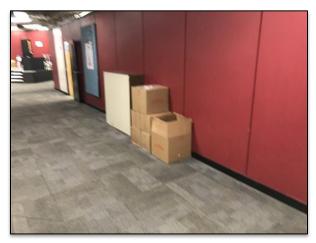


Figure (24) - Storage boxes in Southeast hallway.

Marshall Public School District – Marshall High School

805 South Miami Avenue, Marshall MO 65340

Figure (25) – CBP air sample and Comp Survey analysis samples collected in SE Hallway.

Figure (27) - Content storage boxes in Room 26.

Figure (29) – Sample B-16 – Collected from top of cabinet in Room 31.

Figure (26) – Ozone meter measurement of 0 ppm collected from within Library.

Figure (28) – CBP sample and Comp-Air sample collected in hall outside of little theatre in gymnasium building.

Figure (30) – Sample B-18 collected from contents in storage box within Mrs. Simms Room.

APPENDIX B

PPB RAE 3000 DATA

______ 22/03/30 12:02 Summary _____ Unit Name ppbRAE 3000(PGM-7340) Unit SN 594-906685 Unit Firmware Ver V2.22A _____ Running Mode Hygiene Mode Datalog Mode Auto Diagnostic Mode No Pause in Communication Mode Stop Reason _____ Site ID RAE00000 User ID USER0000 _____ Begin 3/30/2022 12:02:38 End 3/30/2022 12:17:25 Sample Period(s) 60 Number of Records 14 _____ Sensor PID(ppb) Sensor SN S023030311W6 Measure Type Avg Span 10000 Span 2 1000000 Low Alarm 50000 High Alarm 100000 Over Alarm 10000000 STEL Alarm 100000 TWA Alarm 50000 Measurement Gas Isobutylene Calibration Time 3/29/2022 16:06 Peak N/A Min N/A Average N/A Datalog PID(ppb) Index Date/Time (Avg) 001 3/30/2022 12:03:38 662 002 3/30/2022 12:04:38 890 3/30/2022 12:05:38 003 1063 3/30/2022 12:06:38 004 943 3/30/2022 12:07:38 005 956 006 3/30/2022 12:08:38 955 007 3/30/2022 12:09:38 965 008 3/30/2022 12:10:38 950

009 3/30/2022 12:11:38 947 010 3/30/2022 12:12:38 946 011 3/30/2022 12:13:38 947 012 3/30/2022 12:14:38 942 3/30/2022 12:15:38 945 013 014 3/30/2022 12:16:38 996 Peak 1063 Min 662 936 Average _____ 22/03/30 12:18 Summary _____ Unit Name ppbRAE 3000(PGM-7340) Unit SN 594-906685 Unit Firmware Ver V2.22A _____ Running Mode Hygiene Mode Datalog Mode Auto Diagnostic Mode No Stop Reason Pause in Communication Mode _____ Site ID RAE00000 User ID USER0000 Begin 3/30/2022 12:18:43 End 3/30/2022 12:23:52 Sample Period(s) 60 Number of Records 5 _____ Sensor PID(ppb) Sensor SN S023030311W6 Measure Type Avg Span 10000 Span 2 100000 50000 Low Alarm High Alarm 100000 Over Alarm 10000000 100000 STEL Alarm TWA Alarm 50000 Measurement Gas Isobutylene Calibration Time 3/29/2022 16:06 Peak N/A Min N/A Average N/A Datalog

PID(ppb) Index Date/Time (Avg) 001 3/30/2022 12:19:43 673 002 3/30/2022 12:20:43 663 003 3/30/2022 12:21:43 671 3/30/2022 12:22:43 004 684 3/30/2022 12:23:43 005 673 Peak 684 Min 663 673 Average _____ 22/03/30 12:26 Summary Unit Name ppbRAE 3000(PGM-7340) Unit SN 594-906685 Unit Firmware Ver V2.22A _____ Running Mode Hygiene Mode Datalog Mode Auto Diagnostic Mode No Stop Reason Pause in Communication Mode _____ Site ID RAE00000 User ID USER0000 _____ Begin 3/30/2022 12:26:14 End 3/30/2022 12:33:16 Sample Period(s) 60 Number of Records 7 Sensor PID(ppb) S023030311W6 Sensor SN Measure Type Avg Span 10000 Span 2 1000000 Low Alarm 50000 High Alarm 100000 Over Alarm 10000000 STEL Alarm 100000 TWA Alarm 50000 Measurement Gas Isobutylene Calibration Time 3/29/2022 16:06 Peak N/A Min N/A Average N/A

Datalog PID(ppb) Index Date/Time (Avg) 3/30/2022 12:27:14 001 569 002 3/30/2022 12:28:14 573 3/30/2022 12:29:14 003 599 004 3/30/2022 12:30:14 606 005 3/30/2022 12:31:14 608 3/30/2022 12:32:14 006 632 007 3/30/2022 12:33:14 681 Peak 681 569 Min 610 Average _____ 22/03/30 12:36 Summary _____ Unit Name ppbRAE 3000(PGM-7340) Unit SN 594-906685 Unit Firmware Ver V2.22A _____ Running Mode Hygiene Mode Datalog Mode Auto Diagnostic Mode No Stop Reason Pause in Communication Mode _____ Site ID RAE00000 User ID USER0000 Begin 3/30/2022 12:36:35 3/30/2022 12:42:36 End Sample Period(s) 60 Number of Records 6 _____ Sensor PID(ppb) Sensor SN S023030311W6 Measure Type Avg Span 10000 Span 2 100000 Low Alarm 50000 High Alarm 100000 Over Alarm 10000000 STEL Alarm 100000 TWA Alarm 50000 Measurement Gas Isobutylene Calibration Time 3/29/2022 16:06 Peak N/A Min N/A

Average N/A

Datalog PID(ppb) Index Date/Time (Avg) 001 3/30/2022 12:37:35 448 002 3/30/2022 12:38:35 385 003 3/30/2022 12:39:35 388 3/30/2022 12:40:35 3/30/2022 12:41:35 004 386 005 394 006 3/30/2022 12:42:35 422 Peak 448 385 Min Average 404 ______ 22/03/30 12:45 Summary _____ Unit Name ppbRAE 3000(PGM-7340) Unit SN 594-906685 Unit Firmware Ver V2.22A Running Mode Hygiene Mode Datalog Mode Auto Diagnostic Mode No Stop Reason Pause in Communication Mode _____ Site ID RAE00000 User ID USER0000 _____ Begin 3/30/2022 12:45:01 End 3/30/2022 12:49:57 Sample Period(s) 60 Number of Records 4 _____ Sensor PID(ppb) Sensor SN S023030311W6 Measure Type Avg Span 10000 Span 2 1000000 Low Alarm 50000
 High Alarm
 100000

 Over Alarm
 1000000

 STEL Alarm
 100000

 TWA Alarm
 50000
 TWA Alarm 50000 Measurement Gas Isobutylene Calibration Time 3/29/2022 16:06

Peak N/A Min N/A Average N/A Datalog PID(ppb) Index (Avg) Date/Time 001 3/30/2022 12:46:01 511 3/30/2022 12:47:01 3/30/2022 12:48:01 002 523 003 525 3/30/2022 12:49:01 004 518 Peak 525 Min 511 Average 519 ______ 22/03/30 12:52 Summary _____ Unit Name ppbRAE 3000(PGM-7340) Unit SN 594-906685 Unit Firmware Ver V2.22A Running Mode Hygiene Mode Datalog Mode Auto Diagnostic Mode No Stop Reason Pause in Communication Mode _____ Site ID RAE00000 User ID USER0000 _____ Begin 3/30/2022 12:52:15 End 3/30/2022 13:24:32 Sample Period(s) 60 Number of Records 32 _____ Sensor PID(ppb) Sensor SN S023030311W6 Measure Type Avg Span 10000 Span 2 1000000 Low Alarm 50000 High Alarm 100000 Over Alarm 10000000 100000 STEL Alarm TWA Alarm 50000 Measurement Gas Isobutylene Calibration Time 3/29/2022 16:06

Peak N/A Min N/A Average N/A

Datalog

Datalog			
	PI	[D(ppb)	
Index	Date/Time	(Avg)	
001	3/30/2022	12:53:15	405
002	3/30/2022	12:54:15	362
003	3/30/2022	12:55:15	124
004	3/30/2022	12:56:15	364
005	3/30/2022	12:57:15	899
006	3/30/2022		1813
007	3/30/2022	12:59:15	863
008	3/30/2022	13:00:15	806
009	3/30/2022	13:01:15	548
010	3/30/2022		399
011	3/30/2022	13:03:15	437
012	3/30/2022	13:04:15	494
013	3/30/2022		403
014	3/30/2022		487
015	3/30/2022	13:07:15	498
016	3/30/2022	13:08:15	501
017	3/30/2022		499
018	3/30/2022		501
019	3/30/2022		499
020	3/30/2022	13:12:15	493
021	3/30/2022	13:13:15	499
022	3/30/2022	13:14:15	475
023	3/30/2022	13:15:15	528
024	3/30/2022	13:16:15	554
025	3/30/2022	13:17:15	558
026	3/30/2022	13:18:15	679
027	3/30/2022	13:19:15	830
028	3/30/2022	13:20:15	844
029	3/30/2022	13:21:15	855
030	3/30/2022	13:22:15	849
031	3/30/2022	13:23:15	849
032	3/30/2022		842
Peak		313	
Min		24	
Average	61	17	

Unit SN 594-906685 Unit Firmware Ver V2.22A -----Running Mode Hygiene Mode Datalog Mode Auto Diagnostic Mode No Stop Reason Pause in Communication Mode _____ Site ID RAE00000 User ID USER0000 _____ Begin 3/30/2022 13:29:49 3/30/2022 13:44:49 End Sample Period(s) 60 Number of Records 14 -----Sensor PID(ppb) Sensor SN S023030311W6 Measure Type Avg 10000 Span Span 2 100000 Low Alarm 50000 High Alarm 100000 Over Alarm 10000000 STEL Alarm 100000 TWA Alarm 50000 Measurement Gas Isobutylene Calibration Time 3/29/2022 16:06 Peak N/A Min N/A Average N/A Datalog PID(ppb) Index Date/Time (Avg) 001 3/30/2022 13:30:49 1298 3/30/2022 13:31:49 002 781 003 3/30/2022 13:32:49 778 004 3/30/2022 13:33:49 2778 005 3/30/2022 13:34:49 795 3/30/2022 13:35:49 006 789 007 3/30/2022 13:36:49 790 008 3/30/2022 13:37:49 790 3/30/2022 13:38:49 009 894 3/30/2022 13:39:49 010 810 3/30/2022 13:40:49 011 805 012 3/30/2022 13:41:49 812 013 3/30/2022 13:42:49 808 014 3/30/2022 13:43:49 800

Peak 2778 Min 778 981 Average _____ 22/03/30 13:53 Summary _____ Unit Name ppbRAE 3000(PGM-7340) Unit SN 594-906685 Unit Firmware Ver V2.22A _____ Running Mode Hygiene Mode Datalog Mode Auto Diagnostic Mode No Stop Reason Pause in Communication Mode _____ Site ID RAE00000 User ID USER0000 _____ Begin 3/30/2022 13:53:52 End 3/30/2022 14:35:37 Sample Period(s) 60 Number of Records 41 _____ Sensor PID(ppb) Sensor SN S023030311W6 Measure Type Avg Span 10000 Span 2 100000 Low Alarm 50000 High Alarm 100000 Over Alarm 10000000 STEL Alarm 100000 TWA Alarm 50000 Measurement Gas Isobutylene Calibration Time 3/29/2022 16:06 Peak N/A Min N/A Average N/A Datalog PID(ppb) Index Date/Time (Avg) 001 3/30/2022 13:54:52 503 002 3/30/2022 13:55:52 647 003 3/30/2022 13:56:52 762 004 3/30/2022 13:57:52 749

005	3/30/2022	13:58:52	716	
006	3/30/2022	13:59:52	702	
007	3/30/2022	14:00:52	387	
008	3/30/2022	14:01:52	0	
009	3/30/2022	14:02:52	0	
010	3/30/2022	14:03:52	0	
011	3/30/2022	14:04:52	0	
012	3/30/2022	14:05:52	0	
013	3/30/2022		0	
014	3/30/2022	14:07:52	283	
015	3/30/2022		462	
016	3/30/2022		500	
017	3/30/2022		520	
018	3/30/2022		703	
019	3/30/2022		744	
020	3/30/2022		741	
021	3/30/2022		747	
022	3/30/2022		748	
023	3/30/2022		736	
024	3/30/2022		737	
025	3/30/2022		746	
026	3/30/2022		743	
020 027	3/30/2022		731	
028	3/30/2022		744	
029	3/30/2022		736	
030	3/30/2022		743	
031	3/30/2022		747	
032	3/30/2022		743	
033	3/30/2022		742	
034 034	3/30/2022		734	
035 035	3/30/2022		737	
036	3/30/2022		726	
030 037	3/30/2022		741	
038	3/30/2022		732	
	3/30/2022		731	
039 040	3/30/2022		724	
	3/30/2022			
041 Peak		52	122	
Min	0	52		
Average	58	22		
AVEI age	50			
22/03/30				
		******	******	<*************************************
Summary				
		bRAE 3000(PGM-7340)	
llnit SN	594-906685	5		
		V2.2		

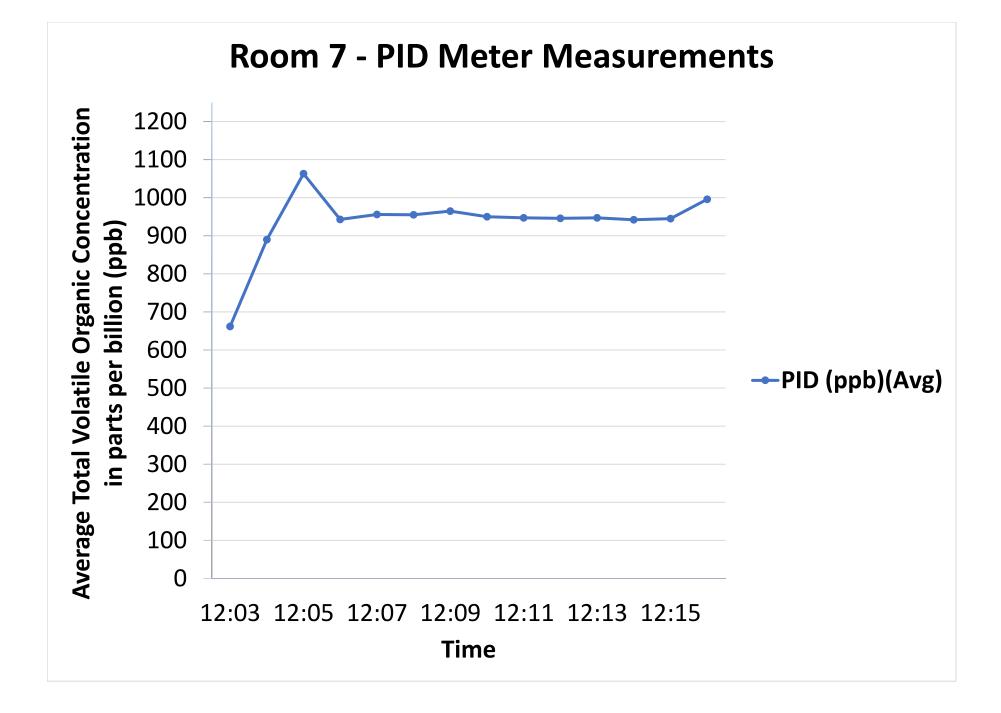
Running Mode Hygiene Mode Datalog Mode Auto Diagnostic Mode No Stop Reason Pause in Communication Mode _____ Site ID RAE00000 User ID USER0000 Begin 3/30/2022 14:47:58 3/30/2022 17:10:37 End Sample Period(s) 60 Number of Records 142 _____ Sensor PID(ppb) Sensor SN S023030311W6 Measure Type Avg Span 10000 Span 2 1000000 Low Alarm 50000 High Alarm 100000 Over Alarm 10000000 STEL Alarm 100000 TWA Alarm 50000 Measurement Gas Isobutylene Calibration Time 3/29/2022 16:06 Peak N/A Min N/A Average N/A Datalog PID(ppb) Index Date/Time (Avg) 001 3/30/2022 14:48:58 592 002 3/30/2022 14:49:58 640 3/30/2022 14:50:58 003 633 3/30/2022 14:51:58 004 643 3/30/2022 14:52:58 005 636 006 3/30/2022 14:53:58 633 007 3/30/2022 14:54:58 654 008 3/30/2022 14:55:58 673 009 3/30/2022 14:56:58 655 010 3/30/2022 14:57:58 655 011 3/30/2022 14:58:58 659 3/30/2022 14:59:58 012 656 3/30/2022 15:00:58 013 657 3/30/2022 15:01:58 644 014 015 3/30/2022 15:02:58 647 016 3/30/2022 15:03:58 648 017 3/30/2022 15:04:58 650

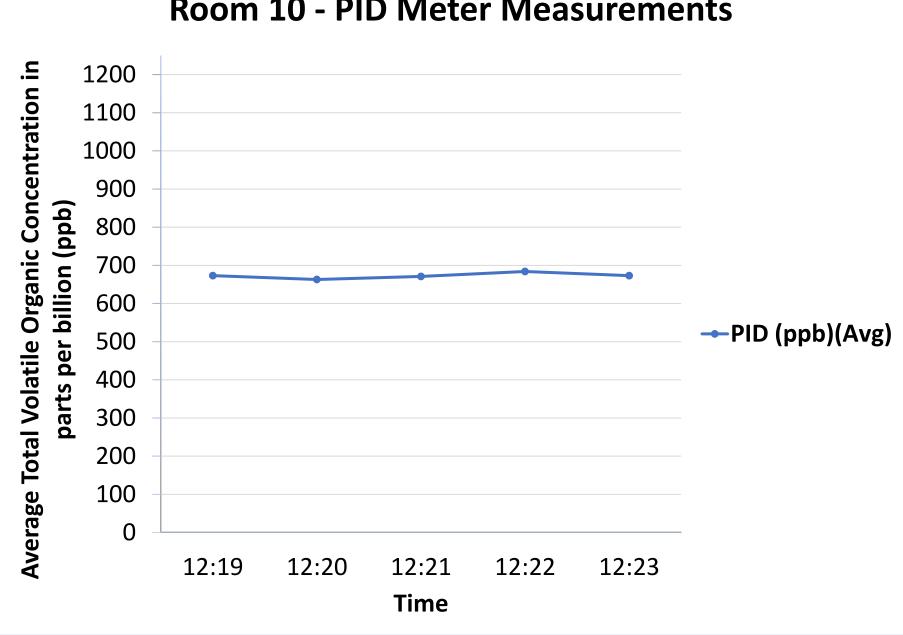
018	3/30/2022	15:05:58	652
019	3/30/2022		662
020	3/30/2022		664
021	3/30/2022	15:08:58	672
022	3/30/2022		662
022			656
	3/30/2022		
024	3/30/2022		671
025	3/30/2022		657
026	3/30/2022		665
027	3/30/2022		664
028	3/30/2022	15:15:58	672
029	3/30/2022		668
030	3/30/2022	15:17:58	668
031	3/30/2022	15:18:58	678
032	3/30/2022	15:19:58	680
033	3/30/2022	15:20:58	682
034	3/30/2022		678
035	3/30/2022		680
036	3/30/2022		682
037	3/30/2022		683
038	3/30/2022		687
039	3/30/2022		690
040	3/30/2022		687
041	3/30/2022		688
042	3/30/2022		687
043	3/30/2022		682
044	3/30/2022		680
045	3/30/2022		679
046	3/30/2022		678
047	3/30/2022		676
04 <i>1</i> 048	3/30/2022		674
040 049	3/30/2022		678
049 050	3/30/2022		675
050 051	3/30/2022		676
	3/30/2022		674
052 052			
053	3/30/2022		670
054 055	3/30/2022		667
055	3/30/2022		667
056	3/30/2022		664
057	3/30/2022	15:44:58	666
058	3/30/2022		669
059	3/30/2022		667
060	3/30/2022		669
061	3/30/2022		668
062	3/30/2022	15:49:58	672
063	3/30/2022	15:50:58	671
064	3/30/2022	15:51:58	675
065	3/30/2022		675
066	3/30/2022		667
067	3/30/2022	15:54:58	664

068	3/30/2022	15:55:58	668
069	3/30/2022		666
070	3/30/2022		671
071	3/30/2022	15:58:58	668
072	3/30/2022	15:59:58	665
073	3/30/2022	16:00:58	671
074	3/30/2022		663
075	3/30/2022		644
076	3/30/2022		649
077	3/30/2022	16:04:58	653
078	3/30/2022	16:05:58	649
079	3/30/2022		643
080	3/30/2022		646
081	3/30/2022		646
082	3/30/2022	16:09:58	648
083	3/30/2022	16:10:58	652
084	3/30/2022	16:11:58	647
085	3/30/2022	16:12:58	642
086	3/30/2022		639
087	3/30/2022		645
088	3/30/2022		644
089	3/30/2022	16:16:58	640
090	3/30/2022	16:17:58	639
091	3/30/2022	16:18:58	645
092	3/30/2022	16:19:58	636
093			645
	3/30/2022		
094	3/30/2022		636
095	3/30/2022		634
096	3/30/2022	16:23:58	631
097	3/30/2022	16:24:58	632
098	3/30/2022	16:25:58	639
099	3/30/2022		638
100			
	3/30/2022		641
101	3/30/2022		641
102	3/30/2022	16:29:58	631
103	3/30/2022	16:30:58	630
104	3/30/2022	16:31:58	626
105	3/30/2022		625
106	3/30/2022	16:33:58	626
107	3/30/2022	16:34:58	625
108	3/30/2022		621
109	3/30/2022	16:36:58	624
110	3/30/2022	16:37:58	622
111	3/30/2022	16:38:58	627
112	3/30/2022	16:39:58	622
113	3/30/2022	16:40:58	634
114	3/30/2022	16:41:58	629
115	3/30/2022		629
116	3/30/2022		635
117	3/30/2022	16:44:58	626

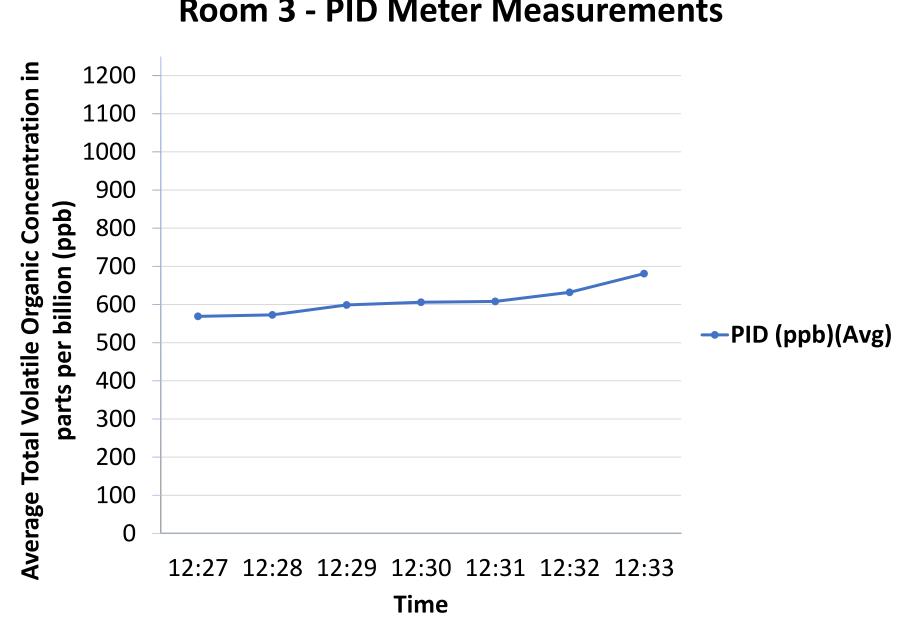
118	3/30/2022 16:45	:58	623
119	3/30/2022 16:46	:58	633
120	3/30/2022 16:47	:58	636
121	3/30/2022 16:48	:58	632
122	3/30/2022 16:49	:58	617
123	3/30/2022 16:50	:58	628
124	3/30/2022 16:51	:58	614
125	3/30/2022 16:52	:58	614
126	3/30/2022 16:53	:58	613
127	3/30/2022 16:54	:58	620
128	3/30/2022 16:55	:58	615
129	3/30/2022 16:56	:58	615
130	3/30/2022 16:57		601
131	3/30/2022 16:58		594
132	3/30/2022 16:59		601
133	3/30/2022 17:00		616
134	3/30/2022 17:01		606
135	3/30/2022 17:02		610
136	3/30/2022 17:03		606
137	3/30/2022 17:04		609
138	3/30/2022 17:05		605
139	3/30/2022 17:06		595
140	3/30/2022 17:07		593
141	3/30/2022 17:08		586
142	3/30/2022 17:09		597
Peak	690	0	557
Min	586		
Average			
Average	047		
22/03/3			
		*******	*****
Summary			
Unit No		3000(PGM	7240)
Unit Na	me ppbRAE 3 594-906685		-7540)
		1/2 224	
UNIT FI	rmware Ver	V2.22A	
	Mada Ukraiana		
	Mode Hygiene	Mode	
	Mode Auto		
-	tic Mode No		
	ason Power Do	own	
	RAE00000		
	USER0000		
-	3/30/2022 17:20		
	3/30/2022 17:20		
•	Period(s)	60	
Number	of Records	0	

-----Sensor PID(ppb) Sensor SN S023030311W6 Measure Type Avg Span 10000 Span 2 1000000 Low Alarm 50000
 High Alarm
 J00000

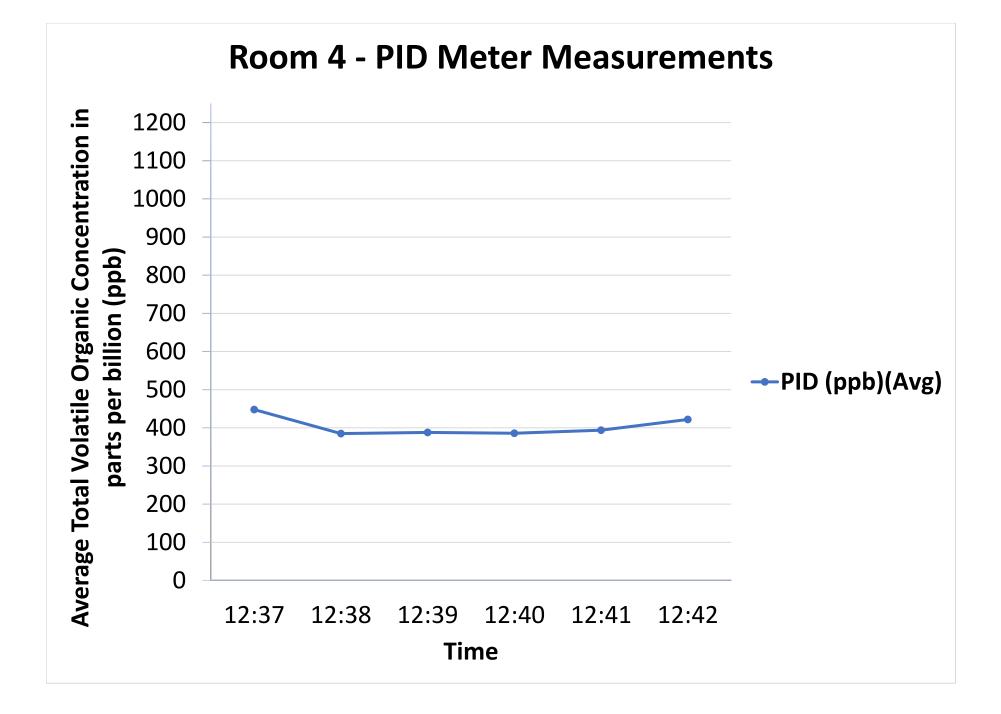

 Over Alarm
 1000000

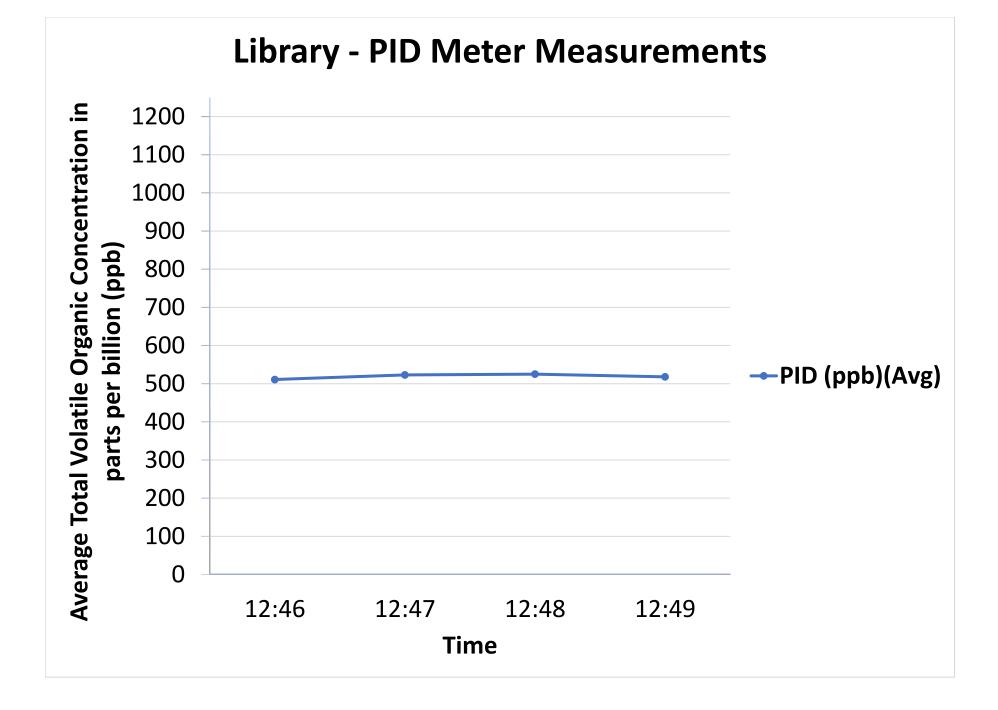

 STEL Alarm
 100000

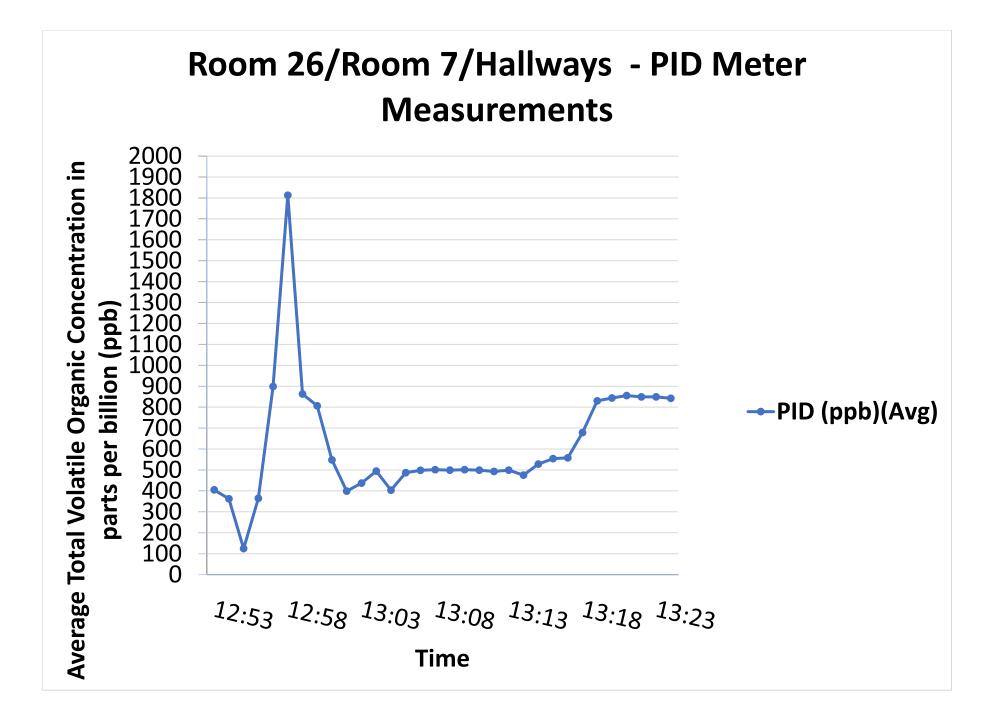
 TWA Alarm
 50000
 TWA Alarm 50000 Measurement Gas Isobutylene Calibration Time 3/29/2022 16:06

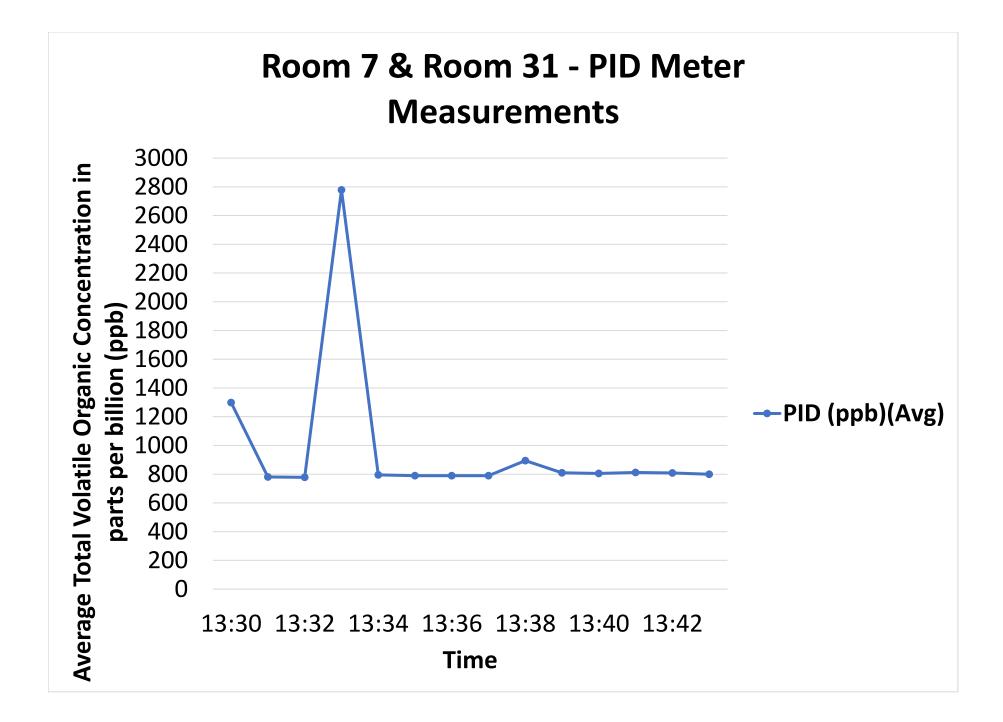

Datalog

0 record.

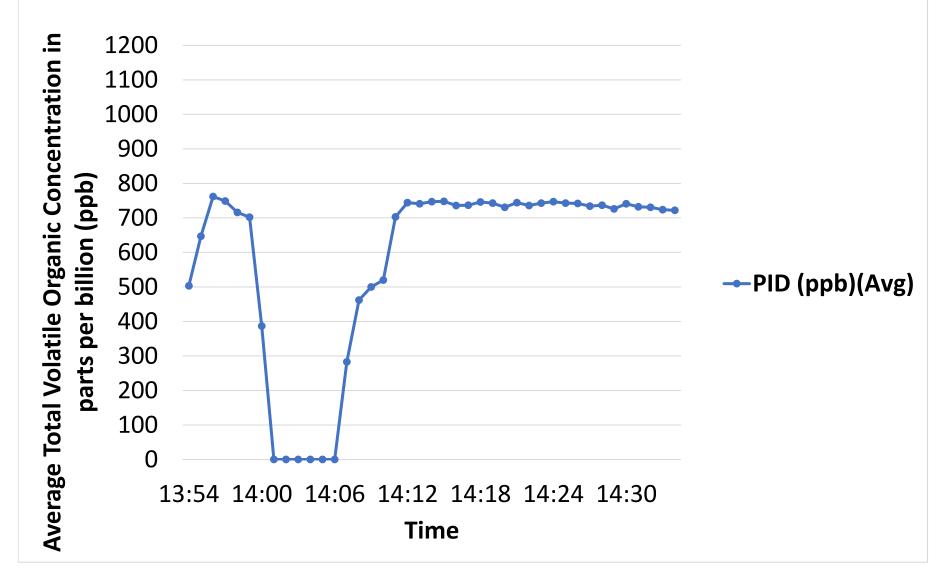


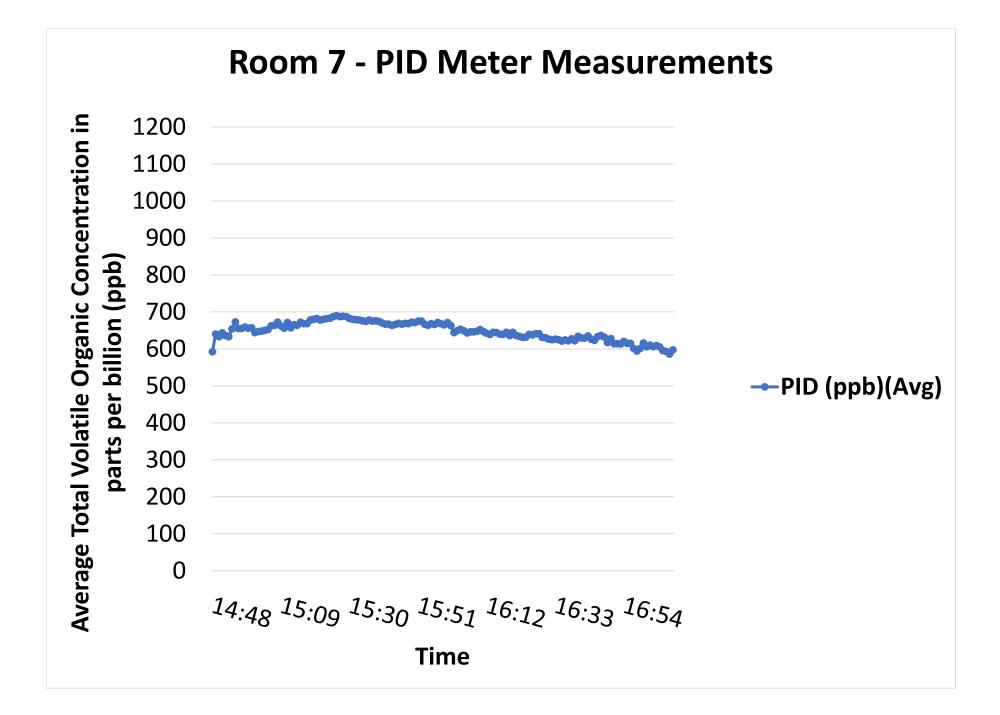



Room 10 - PID Meter Measurements



Room 3 - PID Meter Measurements



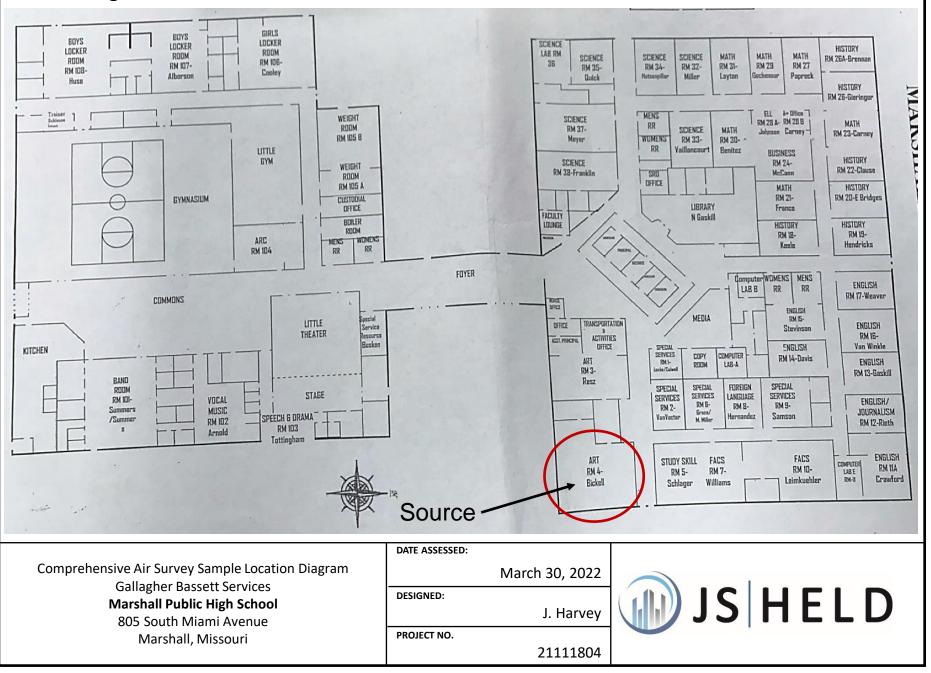


Hallways & Outside Little Theatre - PID Meter Measurements

APPENDIX C

COMPREHENSIVE AIR SURVEY SAMPLES LOCATION DIAGRAM

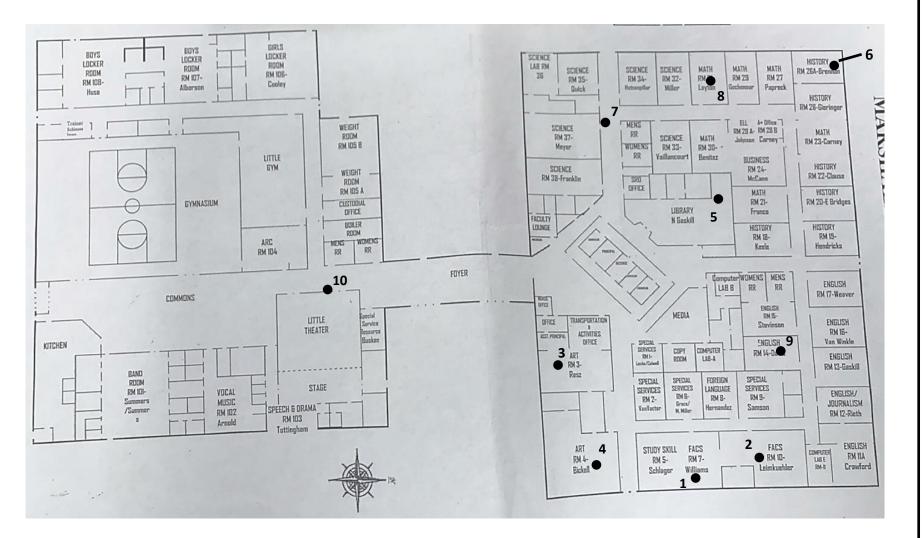
Comprehensive Air Survey Sample Location Diagram Appendix C


Legend

Air Sample Location

Comprehensive Air Survey Sample Location Diagram Gallagher Bassett Services Marshall Public High School 805 South Miami Avenue	DATE ASSESSED: DESIGNED: PROJECT NO.	March 30, 2022 J. Harvey	JSHELD
Marshall, Missouri	PROJECT NO.	21111804	

Marshall High School - Overview


Marshall High School

<u>Air Samples Location Descriptions:</u>

- 1: Room 7.
- 2: Room 10.
- 3: Room 3.
- 4: Room 4.
- 5: Library.
- 6: Room 26.
- 7: Southeast hall between rooms 36 and 37.
- 8: Room 31.
- 9: Room 14.
- **10:** Hall outside of little theatre.

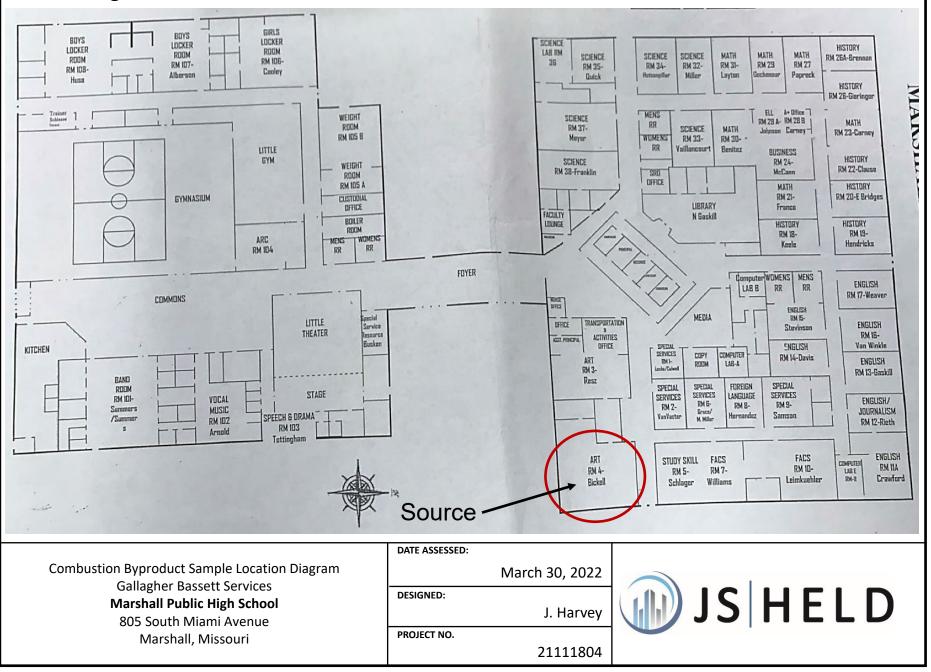
Comprehensive Air Survey Sample Location Diagram Gallagher Bassett Services	DATE ASSESSED: DESIGNED:	March 30, 2022	
Marshall Public High School 805 South Miami Avenue Marshall, Missouri	PROJECT NO.	J. Harvey 21111804	J2 HELD

Marshall High School

Comprehensive Air Survey Sample Location Diagram	DATE ASSESSED:	March 30, 2022	
Gallagher Bassett Services Marshall Public High School 805 South Miami Avenue Marshall, Missouri	DESIGNED: PROJECT NO.	J. Harvey 21111804	JSHELD

APPENDIX D

COMBUSTION BYPRODUCT SAMPLES LOCATION DIAGRAM

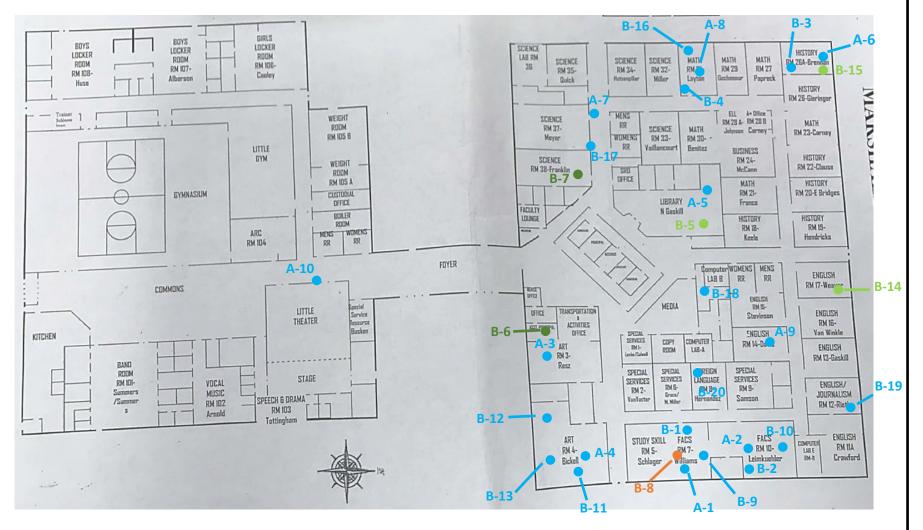

Combustion Byproduct Sample Location Diagram Appendix D

Legend

T-# / A-#	Tape Lift / Air Sample – Elevated Range
T-# / A-#	Tape Lift / Air Sample – Atypical Range
T-# / A-#	Tape Lift / Air Sample – Typical – Upper Background Range
T-# / A-#	Tape Lift / Air Sample – Typical – Low Range
T-# / A-#	Tape Lift / Air Sample – None Detected

Combustion Byproduct Sample Location Diagram Gallagher Bassett Services Marshall Public High School 805 South Miami Avenue Marshall, Missouri	DATE ASSESSED: March 30, 2022 DESIGNED: J. Harvey PROJECT NO. 21111804	JSHELD
--	---	--------

Marshall High School - Overview


Marshall High School

Air Samples Location Descriptions:	Surface/Tape Lift Samples Location Descriptions:
A-1: Room 7.	B-1: Room 7 – Carpet.
A-2: Room 10.	B-2: Room 10 – Carpet.
A-3: Room 3.	B-3: Room 26 – Carpet.
A-4: Room 4.	B-4: Room 31 – Carpet.
A-5: Library.	B-5: Library – Carpet.
A-6: Room 26.	B-6: Assistant Principal's Office – Carpet
A-7: Southeast hall between rooms 36 and 37.	B-7: Room 28 – Carpet.
A-8: Room 31.	B-8: Room 7 – Contents in ServPro box.
A-9: Room 14.	B-9: Room 7 – Contents in ServPro box.
A-10: Hall outside of little theatre.	B-10: Room 10 – Contents in ServPro box.
	B-11: Room 4 – Contents in ServPro box.
	B-12: Room 4 – Contents in ServPro box.
	B-13: Room 4 – Contents in ServPro box.
	B-14: Room 17 – Contents in ServPro box.
	B-15: Room 26 – Contents in ServPro box.
	B-16: Room 31 – Top of cabinet

- **B-17: Hallway Contents in ServPro box.**
- B-18: Mrs. Simms Room Contents in ServPro box.
- B-19: Room 12 Contents in ServPro box.
- B-20: Room 8 Top of file cabinet.

	DATE ASSESSED:		
Combustion Byproduct Sample Location Diagram Gallagher Bassett Services Marshall Public High School 805 South Miami Avenue Marshall, Missouri	DESIGNED:	March 30, 2022 J. Harvey 21111804	JSHELD

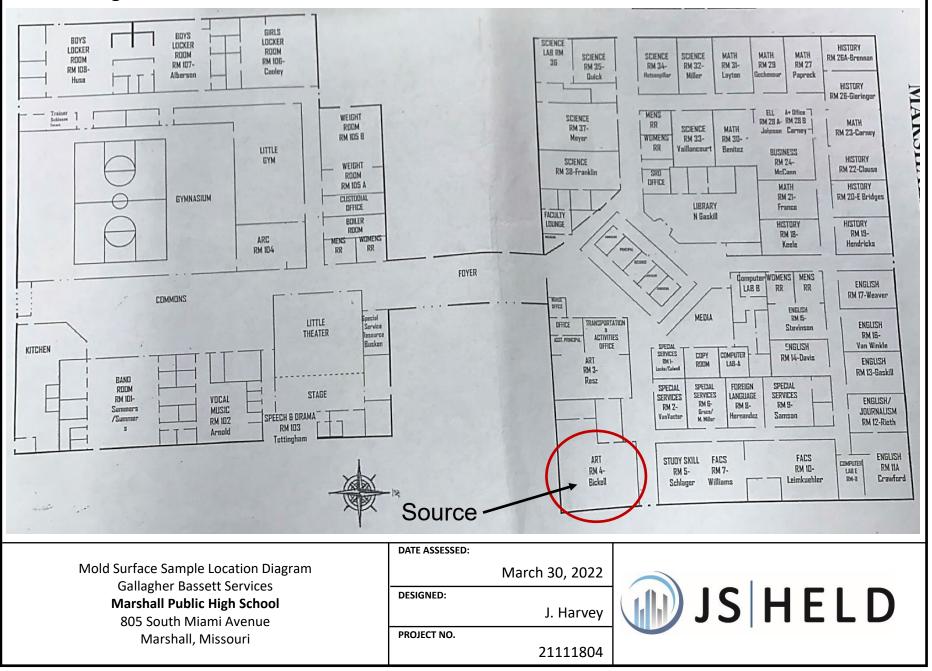
Marshall High School

Combustion Byproduct Sample Location Diagram Gallagher Bassett Services Marshall Public High School 805 South Miami Avenue Marshall, Missouri DATE ASSESSED: DESIGNED: J. Harvey PROJECT NO. 21111804

APPENDIX E

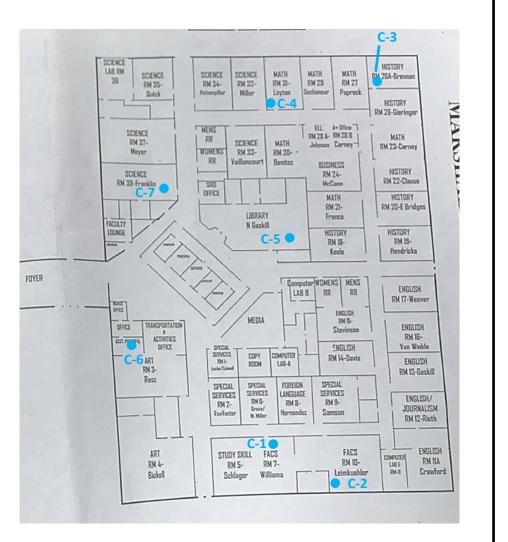
MOLD SURFACE SAMPLE LOCATION DIAGRAMS

Mold Surface Sample Location Diagram Appendix E


Legend

Mold Surface Sample

	DATE ASSESSED:		
Mold Surface Sample Location Diagram Gallagher Bassett Services Marshall Public High School 805 South Miami Avenue Marshall, Missouri	DESIGNED: PROJECT NO.	March 30, 2022 J. Harvey 21111804	JSHELD


Marshall High School - Overview

Marshall High School

Surface/Tape Lift Samples Location Descriptions:

C-1: Room 7 – Carpet. C-2: Room 10 – Carpet. C-3: Room 26 – Carpet. C-4: Room 31 – Carpet. C-5: Library – Carpet. C-6: Assistant Principal's Office – Carpet C-7: Room 28 – Carpet.

	DATE ASSESSED:		
Mold Surface Sample Location Diagram Gallagher Bassett Services		March 30, 2022	
Marshall Public High School 805 South Miami Avenue	DESIGNED:	J. Harvey	JS HELD
Marshall, Missouri	PROJECT NO.		
		21111804	

APPENDIX F

ENTHALPY COMPREHENSIVE AIR SURVEY LABORATORY ANALYTICAL REPORT

Analytical Report

Client:	JS Held, LLC 50 Jericho Quadrangle Ste 117 Jericho, NY 11753 US	COC: Laboratory ID:	99670 99670-1
Project:	James Harvey Marshall H.S.21111804 805 S. Miami Ave. Marshall, MO 65340	Received Date: Approved Date: Scanned Date:	03/31/2022
Client Sample ID: Volume: Date Sampled: Sample Type:	24 L 03/30/2022	Report Date:	

Comp-Air Survey Analysis

Applicable methods for this analytical technique include (with relevant modifications) US EPA TO-17 and ISO 16000-6. A scan was made for all compounds contained in the Air Survey Analysis List (TB503 Quantitative and Semiquantitative List). All compounds detected are listed below.

Comp-Air Survey Analysis Report Description

The Comp-Air (Comprehensive-Air) Survey Analysis is designed to provide additional information beyond the high quality chemical data from the air sample. This additional information may aid in interpretation of results.

Your Report is divided into several sections describing different aspects of the chemical composition of your sample.

1. Sample Summary: listing of some of the aggregate values from this air sample (e.g., Total VOCs).

2. Top 5: listing of the five highest concentration compounds in the air sample from both the quantitative TO17 and Semiguantitative Compounds (see below for a description of TO17 and Semiguantitative Compounds).

3. TO17 Compounds: listing of the chemical compounds characterized by EPA method TO17. Some of these are Hazardous Air Pollutants (HAPs) and others are typical of industrial/manufacturing sources. Accuracy for TO17 compounds is within ±15%.

4. Semiquantitative Compounds: listing of chemical compounds that have not been calibrated but have some reference information indicating the validity of the compound identification, an acceptable reference library match, or some other supporting evidence of identification. Also listed in this section are compounds that are not specificially identified but for which some information is available (e.g., C10-C12 Hydrocarbons; probably an alcohol). Instrument and media response have not been confirmed for most chemical compounds reported semiquantitatively, conferring an accuracy on the order of ±50% based on an instrument and media response of unity. Semiquantitative results should be interpreted relative to other chemical compounds.

5. Supplemental Information: Odorants: listing of the odor characteristics of chemical compounds present in this air sample. Almost all chemical compounds have an odor and a mixture of various chemical compounds could alter the odor characteristics. Some chemical compounds have a strong odor at relatively low concentrations so the individual chemical compound concentrations may be of secondary importance relative to the odor characteristics for odor concerns.

6. Supplemental Information: EPA Hazardous Air Pollutants (HAPs): listing of the chemical compounds detected in this air sample that are known or suspected to have serious health or environmental effects (also known as air toxics). HAPs include VOCs, metals, some pesticides/insecticides that are primarily semi-volatile, inorganic compounds, and very volatile organic compounds. Of the 187 compounds or groups defined as HAPs, approximately 65 are VOCs that can be detected with this analysis.

7. Additional Information: definitions, calculations, and other useful information.

Sample Summary

General information regarding the sample and aggregate concentrations, e.g., Total VOCs, are listed below. The top five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds are also listed. The full list of compounds and their concentrations in this air sample are listed later in the report and may be displayed more than once depending on the categorization of specific compounds.

	Sample Concentration	Reporting Limit	
Compound	ng/L	ng/L	Additional Information
Total VOCs	5900	200	Total volatile organic compounds calculated based on internal standard ratio; does not include C1, C2, or methanol.
	Sample Concentration	Reporting Limit	
Compound	ng/L	ng/L	Additional Information
Total Mold VOCs (TMVOC)	5	3	TMVOC is an assessment of the quantity of actively growing mold in the sample location.

Top 5

The top five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds are listed below.

Semiquantitative Compounds		Sample Concentration		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Dipropylene glycol methyl ether	13588-28-8; 34590-94-8	420	69	4	912	DPGME
Texanol-B	74367-34-3	250	28	4	1127	
Texanol-A	74367-33-2	200	23	4	1122	

EPA Method TO-17			Sample Concentration		Reporting Limit		
	Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
	Ethanol	64-17-5	1500	770	2.1	480]*
	Isopropanol	67-63-0	150	62	1.0	517	J*

TO17 Compounds

EPA Method TO17 focuses on chemical compounds that are typical of industrial/manufacturing sources, many of these compounds are also found in commercial and residential environments. Accuracy for these chemical compounds is within ±15%.

This section lists all the TO17 compounds in alphabetical order (compounds not present or with concentrations below the reporting limit are listed with '<'; compounds above the reporting limit have bold text for the Sample Concentration). The concentrations are reported in two different units for easy comparison to exposure limits or other information. The Retention Index (RI) indicates volatility relative to adjacent n-alkanes. A more detailed description of reporting units and RI can be found at the end of the report.

		Sam Concen		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Acetone	67-64-1	61	25	1.0	509	
Acetonitrile	75-05-8	0.5	0.3	0.4	522	
Acrylonitrile	107-13-1	< 0.2	< 0.09	0.2	543	
Benzene	71-43-2	0.4	0.1	0.2	631	
Bromobenzene	108-86-1	< 0.2	< 0.03	0.2	866	
Bromochloromethane	74-97-5	< 0.2	< 0.04	0.2	603	
Bromodichloromethane	75-27-4	< 0.2	< 0.03	0.2	682	
Bromoform	75-25-2	< 0.2	< 0.02	0.2	837	
1,3-Butadiene	106-99-0	< 0.2	< 0.09	0.2	389	
tert-Butylbenzene	98-06-6	< 0.2	< 0.04	0.2	900	
sec-Butylbenzene	135-98-8	< 0.2	< 0.04	0.2	914	
n-Butylbenzene	104-51-8	< 0.2	< 0.04	0.2	949	
Carbon Disulfide	75-15-0	< 0.2	< 0.07	0.2	520	
Carbon Tetrachloride	56-23-5	0.7	0.1	0.2	623	
Chlorobenzene	108-90-7	< 0.2	< 0.04	0.2	791	
Chlorodibromomethane	124-48-1	< 0.2	< 0.02	0.2	759	
2-Chloroethanol	107-07-3	< 0.2	< 0.06	0.2	675	
Chloroform	67-66-3	0.3	0.05	0.2	608	
Chloroprene	126-99-8	< 0.2	< 0.06	0.2	571	
3-Chloropropene	107-05-1	< 0.2	< 0.07	0.2	527	
4-Chlorotoluene	106-43-4	< 0.2	< 0.04	0.2	883	
2-Chlorotoluene	95-49-8	< 0.2	< 0.04	0.2	877	
Cyclohexane	110-82-7	0.3	0.08	0.2	620	
1,2-Dibromo-3-chloropropane	96-12-8	< 0.4	< 0.04	0.4	991	
						·

Client Sample ID: Rm 7 Laboratory ID: 99670-1

Analytical Report

		Sample		Reporting		
Compound	CAS	Concen ng/L	tration ppb	Limit ng/L	RI	Additional Information
1,2-Dibromoethane	106-93-4	< 0.2	< 0.03	0.2	766	
Dibromomethane	74-95-3	< 0.2	< 0.03	0.2	674	
trans 1,4-Dichloro-2-butene	110-57-6	< 0.2	< 0.03	0.2	865	
cis 1,4-Dichloro-2-butene	1476-11-5	< 0.2	< 0.04	0.2	848	
1,2-Dichlorobenzene	95-50-1	< 0.2	< 0.04	0.2	951	
1,3-Dichlorobenzene	541-73-1	< 0.2	< 0.03	0.2	923	
1,4-Dichlorobenzene	106-46-7	2.9	0.5	0.2	930	
1,1-Dichloroethane	75-34-3	< 0.2	< 0.05	0.2	567	
1,2-Dichloroethane	107-06-2	< 0.2	< 0.05	0.2	633	
cis 1,2-Dichloroethene	156-59-2	< 0.2	< 0.05	0.2	593	
trans 1,2-Dichloroethene	156-60-5	< 0.2	< 0.05	0.2	548	
1,1-Dichloroethene	75-35-4	< 0.2	< 0.05	0.2	508	
2,2-Dichloropropane	594-20-7	< 0.2	< 0.04	0.2	593	
1,2-Dichloropropane	78-87-5	< 0.2	< 0.04	0.2	670	
1,3-Dichloropropane	142-28-9	< 0.2	< 0.04	0.2	748	
trans 1,3-Dichloropropene	10061-02-6	< 0.2	< 0.05	0.2	729	
1,1-Dichloropropene	563-58-6	< 0.2	< 0.05	0.2	623	
cis 1,3-Dichloropropene	10061-01-5	< 0.2	< 0.05	0.2	701	
Diethyl ether	60-29-7	< 0.2	< 0.07	0.2	493	
1,4-Dioxane	123-91-1	< 0.4	< 0.1	0.4	673	
Ethanol	64-17-5	1500	770	2.1	480]*
Ethylacetate	141-78-6	4.6	1.2	0.2	594	
Ethylbenzene	100-41-4	0.4	0.09	0.2	795	
Ethylmethacrylate	97-63-2	< 0.2	< 0.04	0.2	731	
4-Ethyltoluene	622-96-8	< 0.2	< 0.04	0.2	878	
Hexachlorobutadiene	87-68-3	< 0.2	< 0.02	0.2	1036	
Hexane (C 6)	110-54-3	0.8	0.2	0.2	562	
Isooctane	540-84-1	< 0.2	< 0.04	0.2	638	2,2,4-Trimethylpentane
Isopropanol	67-63-0	150	62	1.0	517]*
F - F						

Client Sample ID: Rm 7 Laboratory ID: 99670-1

Analytical Report

Compound p-Isopropyltoluene Methacrylonitrile	99-87-6	ng/L	ppb			
Methacrylonitrile		0 5	1 I I	ng/L	RI	Additional Information
	126-08-7	0.5	0.09	0.2	924	
	120-90-7	< 0.2	< 0.07	0.2	600	
Methyl methacrylate	80-62-6	< 0.2	< 0.06	0.2	672	
Methyl Tertiary Butyl Ether	1634-04-4	< 0.2	< 0.06	0.2	547	МТВЕ
2-Methyl-1-propano	78-83-1	< 0.2	< 0.07	0.2		Isobutyl alcohol
4-Methyl-2-pentanone	108-10-1	1.6	0.4	0.2	707	Methyl isobutyl ketone (MIBK)
Methylacrylate	96-33-3	< 0.2	< 0.06	0.2	595	
Methylene Chloride	75-09-2	0.5	0.1	0.2	533	
2-Methylnaphthalene	91-57-6	< 0.4	< 0.07	0.4	1095	
Naphthalene	91-20-3	< 0.4	< 0.08	0.4	1042	
Nitrobenzene	98-95-3	< 0.8	< 0.2	0.8	999	
Pentachloroethane	76-01-7	< 0.2	< 0.03	0.2	902	
Propionitrile	107-12-0	< 0.2	< 0.09	0.2	593	
n-Propylbenzene	103-65-1	< 0.2	< 0.04	0.2	871	
Styrene	100-42-5	0.5	0.1	0.2	825	
1,1,2,2-Tetrachloroethane	79-34-5	< 0.2	< 0.03	0.2	863	
1,1,1,2-Tetrachloroethane	630-20-6	< 0.2	< 0.03	0.2	794	
Tetrachloroethene	127-18-4	< 0.2	< 0.03	0.2	746	
Tetrahydrofurar	109-99-9	< 0.2	< 0.07	0.2	604	
Toluene	108-88-3	3.4	0.9	0.2	719	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	0.5	0.07	0.2	510	
1,2,4-Trichlorobenzene	120-82-1	< 0.2	< 0.03	0.2	1030	
1,2,3-Trichlorobenzene	87-61-6	< 0.2	< 0.03	0.2	1052	
1,1,2-Trichloroethane	79-00-5	< 0.2	< 0.04	0.2	739	
1,1,1-Trichloroethane	71-55-6	< 0.2	< 0.04	0.2	616	
Trichloroethene	79-01-6	< 0.2	< 0.04	0.2	660	
1,2,3-Trichloropropane	96-18-4	< 0.2	< 0.03	0.2	867	
1,3,5-Trimethylbenzene	108-67-8	< 0.2	< 0.04	0.2	881	
1,2,4-Trimethylbenzene	95-63-6	< 0.2	< 0.04	0.2	903	
m,p-Xylene	108-38-3; 106-42-3	1.1	0.2	0.4	802	

Analytical Report

		Sample Concentration		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
o-Xylene	95-47-6	0.4	0.09	0.2	825	

Compound Notes

J*

The accuracy of this determination may be degraded because the reported value exceeded the calibrated range by more than a factor of 10.

Semiquantitative Compounds

Semiquantitative data includes compounds that have not been calibrated but have some reference information indicating the validity of the compound identification, an acceptable reference library match, or some other supporting evidence as part of the extensive Prism compound database.

This section lists the Semiquantitative compounds detected in this air sample above the reporting limit in alphabetical order. The concentrations are reported in two different units for easy comparison to exposure limits or other information. Note that the conversion to ppb requires the molecular weight of the chemical compound so those compounds that are non-specific (e.g., C10-C12 Hydrocarbon) do not have a concentration in ppb listed. The Retention Index (RI) indicates volatility relative to adjacent n-alkanes. A more detailed description of these terms can be found at the end of the report.

		San Concer		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
2,6-Dimethyl-7-octen-2-ol	18479-58-8	7	1	4	963	
Acetaldehyde	75-07-0	60	33	4	399	
Benzaldehyde	100-52-7	7	2	4	903	
Butane (C 4)	106-97-8	10	4	4	384	
1-Butanol	71-36-3	30	10	4	654	
1-Butoxy-2-propanol	5131-66-8	4	0.8	4	864	
2-Butoxyethanol	111-76-2	22	4	4	843	
Butoxyethoxyethanol	112-34-5	45	7	4	1029	
4-tert-Butylcyclohexyl acetate	32210-23-4	5	0.6	4	1078	
C12-C14 Hydrocarbon	N/A	8	N/A	4	1051	Contains silicon and oxygen; appears to be a siloxane
C7-C9 Hydrocarbon	N/A	10	N/A	4	755	Sum of two overlapping hydrocarbons; one is n-butyl acetate (CAS); one is hexanal (CAS)
Diethylene glycol ethyl ether	111-90-0	29	5	4	922	DEGMEE; Carbitol
Dipropylene glycol methyl ether	13588-28-8; 34590-94-8	420	69	4	912	DPGME
Dodecane (C 12)	112-40-3	8	1	4	1008	
2-Ethyl-1-hexanol	104-76-7	18	3	4	936	
Ethylene Glycol	107-21-1	57	22	4	715	
Isobutane	75-28-5	10	4	4	359	
Isohexadecane	4390-04-9	7	0.8	4	1077	
Isoprene	78-79-5	7	3	4	497	
Limonene	138-86-3 or 5989-27-5	50	9	4	923	Limonene (CAS 138-86-3) or d- Limonene (CAS 5989-27-5)
Methoxy-2-propanol	107-98-2	7	2	4	654	PGME

		Sarr Concer		Reporting Limit		Additional Information
Compound	CAS	ng/L	ppb	ng/L	RI	
2-Methylbutane	78-78-4	6	2	4	447	
Nonanal	124-19-6	5	0.9	4	983	
Octamethylcyclotetrasiloxane (D4)	556-67-2	5	0.4	4	859	
Pentane (C 5)	109-66-0	23	8	4	475	
1-Propanol	71-23-8	7	3	4	569	
n-Propylacetate	109-60-4	7	2	4	674	
Propylene glycol	57-55-6	14	4	4	747	
Tetradecane (C 14)	629-59-4	6	0.7	4	1097	
2,4,7,9-Tetramethyl-5-decyne-4,7-diol	126-86-3	34	4	4	1135	
Texanol-A	74367-33-2	200	23	4	1122	
Texanol-B	74367-34-3	250	28	4	1127	
Tridecane (C 13)	629-50-5	6	0.8	4	1054	

These results pertain only to this sample as it was collected and to the items reported. These results have been reviewed and approved by the Laboratory Director or authorized representative.

là ha Se

Alice E. Delia, Ph.D., Laboratory Director

Enthalpy Analytical, LLC (MTP) 2625 Denison Dr. Mt. Pleasant, MI 48858 989-772-5088

Supplemental Information: Odorants

Many chemical compounds have odors associated with them, some pleasant and some unpleasant. These odors can combine to create different odors, making odor identification more difficult. The odor descriptions for the compounds reported in this air sample are listed below as well as some of the more common sources.

Compound	CAS	Conc. (ng/L)	Conc. (ppb)	Odor Range (ppb)	Odor Description
Acetaldehyde	75-07-0	60	33	2 - 1,000,000	pungent, fruity, suffocating, fresh, green
Acetone	67-64-1	61	25	400 - 11,745,000	sweet, fruity, etherous
Acetonitrile	75-05-8	0.5	0.3	13,000 - 1,161,000	etherish
Benzaldehyde	100-52-7	7	2	2 - 783,000	bitter almond, fruit, vanilla
Benzene	71-43-2	0.4	0.1	470 - 313,000	aromatic, sweet, solvent, empyreumatic
Butane (C 4)	106-97-8	10	4	421 - 5,048,000	natural gas
1-Butanol	71-36-3	30	10	3 - 990,000	sweet, malty, alcohol, medicinal
2-Butoxyethanol	111-76-2	22	4	43 - 390	sweet, ester, musty
Carbon Tetrachloride	56-23-5	0.7	0.1	1,680 - 720,000	sweet, ethereal, dry cleaner, aromatic
Chloroform	67-66-3	0.3	0.05	102 - 1,413,000	sweet, etherous, suffocating
Cyclohexane	110-82-7	0.3	0.08	520 - 784,000	aromatic, chloroform, pungent, sweet
1,4-Dichlorobenzene	106-46-7	2.9	0.5	121 - 15,000	camphor, mothballs
Diethylene glycol ethyl ether	111-90-0	29	5	200 - 1,090	ethereal, mild, pleasant
Ethanol	64-17-5	1500	770	90 - 40,334,000	vinous, alcohol
2-Ethyl-1-hexanol	104-76-7	18	3	75 - 150	citrus, fatty, floral, fresh, fruity, green, musty, oily, sweet
Ethylacetate	141-78-6	4.6	1.2	90 - 190,000	fruity, sweet, fingernail polish, etherous
Ethylbenzene	100-41-4	0.4	0.09	2 - 18,000	oily, solvent
Ethylene Glycol	107-21-1	57	22	5,120 -	-
Hexane (C 6)	110-54-3	0.8	0.2	1,500 - 248,000	gasoline
Isoprene	78-79-5	7	3	47 - 3,590	aromatic
Isopropanol	67-63-0	150	62	1,000 - 2,197,000	sharp, rubbing alcohol
Limonene	138-86-3 or 5989- 27-5	50	9	2 - 310	lemon, plastic, citrus, rubber, terpeny
Methoxy-2-propanol	107-98-2	7	2	8,390 - 33,000	etherish, ammonia
4-Methyl-2-pentanone	108-10-1	1.6	0.4	30 - 16,000	camphor, dairy, fruity, green, herbal, pleasant, sharp, solvent, spicy, sweet

				-	
Compound	CAS	Conc. (ng/L)	Conc. (ppb)	Odor Range (ppb)	Odor Description
Methylene Chloride	75-09-2	0.5	0.1	1,200 - 440,000	sweet
Pentane (C 5)	109-66-0	23	8	1,290 - 1,147,000	sweet
1-Propanol	71-23-8	7	3	31 - 10,172,000	sweet, alcohol
n-Propylacetate	109-60-4	7	2	48 - 87,000	sweet, ester
Propylene glycol	57-55-6	14	4	5,140 -	_
Styrene	100-42-5	0.5	0.1	3 - 61,000	sharp, sweet
Toluene	108-88-3	3.4	0.9	21 - 157,000	sour, burnt
m,p-Xylene	108-38-3; 106-42-3	1.1	0.2	12 - 316,000	sweet, empyreumatic
o-Xylene	95-47-6	0.4	0.09	12 - 316,000	sweet, empyreumatic

Supplemental Information: EPA Hazardous Air Pollutants (HAPs)

Hazardous air pollutants, also known as toxic air pollutants or air toxics, are those pollutants that are known or suspected to cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse environmental effects. Of the 187 compounds or groups defined as HAPs, approximately 65 can be detected with this analysis. Listed below are those HAPs that were detected in this air sample. For more information about HAPs visit the EPA <u>Air Toxics website</u>. The exposure limits listed below can also be found in the <u>NIOSH Guide to Chemical Hazards</u>.

Compound	CAS	Conc. (ng/L)	NIOSH TWA REL	Potential Health Effects
Benzene	71-43-2	0.4	320 ng/L (100 ppb)	Gasoline. Less common sources include some discontinued solvents; printing and lithography; paints and coatings; rubber; dry cleaning; adhesives; detergents
Carbon Tetrachloride	56-23-5	0.7	Carcinogen	Solvent; metal degreasing; refrigerant; agricultural fumigant; fire retardant (former use)
Chloroform	67-66-3	0.3	Carcinogen	Formed during the chlorination of drinking water, wastewater and swimming pools. Also pulp and paper mills, hazardous waste sites, and sanitary landfills
1,4-Dichlorobenzene	106-46-7	2.9	Carcinogen	Moth balls/crystals; room deodorant
Ethylbenzene	100-41-4	0.4	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; solvent; pesticide
Methylene Chloride	75-09-2	0.5	Carcinogen	Automotive products; degreasing solvent; paint stripper; adhesive remover; aerosol propellant; insecticide
Styrene	100-42-5	0.5	215,000 ng/L (50,000 ppb)	Polystyrene foam; synthetic rubber; flavoring agent
Toluene	108-88-3	3.4	375,000 ng/L (100,000 ppb)	Gasoline; adhesives (building and arts/crafts); contact cement; solvent; heavy duty cleaner
m,p-Xylene	108-38-3; 106-42-3	1.1	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; adhesives and cements; solvent; print cartridges
o-Xylene	95-47-6	0.4	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; adhesives and cements; solvent; print cartridges

Additional Information

Glossary of Terms

Total VOCs (TVOC): TVOC is one of the samples with each other or with target I_{TVOC} $\binom{ng}{L} = \frac{\left[\frac{(A_s - A_b) \times W_s}{A_i}\right]}{L_s}$ uality indicators. It allows comparison of multiple to the calculation between 2 and 45 contains between 2 and 45 contains at the calculation of the calculati contain between 3 and 15 carbon atoms (along with the associated hydrogen, as well as oxygen, nitrogen, sulfur, silicon, etc.), although certain compounds outside this range of carbon atoms may be included depending on the type of compound.

Where:

As - C3-C15 TIC (Total Ion Chromatogram from GC-MS) area of the sample Ab - C3-C15 TIC area of the media blank Ws - Weight of the internal standard added in ng Ai – average TIC area of the internal standard peak(s) Ls – Volume of the sample in L

CAS: The Chemical Abstract Service (CAS) assigns a unique number to chemical compounds, commonly referred to as the CAS number. This number is usually the best way to search for additional information about the compound since some compounds may have many names but only one CAS number.

Reporting Units - ng/L: Most concentrations for air samples will be reported in units of ng/L, which translates to ng of

that specific chemical compound present per liter of air sampled. Concentration in ng/L is equivalent to $\mu g/m^3$. Reporting Units - ppb: Some sections o^{Conc} (*ppb*) = $\frac{Conc}{\frac{ng}{L} \times 24.04(\frac{L}{mol})}{\frac{MW(\frac{g}{mol})}{\frac{mol}{mol}}}$ h compound concentrations displayed in or reference limits. The concentration in units of ppb (parts per billion), which are or reference limits. The concentration in ng/L (or µg/m³ can be converted easily to ppb using the following formula derived from the Ideal Gas Law.

Where:

Vm = Molar Volume as 24.04 L/mol at 1 atm pressure and 20 °C (68 °F) MW = Molecular Weight in g/mol

Reporting Limit: The Reporting Limit column displays the lowest possible concentration that could be reported for that compound for that sample and analysis. Typically the reporting limit is displayed in units of ng/L but other units may be used as appropriate.

Retention Index (RI): The retention index is a means of converting a compound GC-MS retention time, which is dependent on the type of system and specific operating parameters, into an independent and universal value based on the elution of the adjacent n-alkanes. Each n-alkane is assigned a retention index based on its carbon number, e.g., pentane (C5) has a retention index of 500 and hexane (C6) has a retention index of 600, etc. For example, a hydrocarbon with a retention index of 550 would be expected to elute at the midpoint between pentane and hexane. Using the elution of the n-alkanes as the $RI_x = 100n + 100 \times \frac{(RT_x - RT_n)}{(RT_{n+1} - RT_n)}$ retention index of organic compounds to be applicable across almost any GC-MS GC-MS instruments used by Prism, can be determined using the following formula derived from the Kovats isothermal retention index.

Where:

RIx – retention index of target compound x n – Carbon number of n-alkane eluting before the target compound x RTx – retention time of target compound x

RTn - retention time of n-alkane eluting before target compound x RTn+1 - retention time of n-alkane eluting after target compound x

Odor Description: Description of the odor (e.g., fruity)

HAPs: Hazardous Air Pollutants

NIOSH: National Institute for Occupational Safety and Health

TWA: Time Weighted Average

REL: Recommended Exposure Limit

Ca: Potential carcinogen

Sources for Additional Compound Information:

The compound information displayed in this report (e.g., odor description, exposure limits, etc.) is gathered from a variety of sources, including but not limited to, the <u>NIST Chemistry Webbook</u>, the <u>NIOSH Pocket Guide to Chemical</u> <u>Hazards</u>, the <u>Household Products Database</u>, the University of Akron <u>Chemical Database</u>, the <u>WISER</u> (for Emergency Responders), <u>IRIS</u>, <u>ToxNet</u>, <u>ATSDR</u>. Prism does not guarantee the accuracy of this information or endorse any of the views or opinions expressed.

This analysis was performed by Enthalpy Analytical, LLC (MTP). The results contained in this report are dependent upon a number of factors over which Enthalpy Analytical, LLC (MTP) has no control, which may include, but are not limited to, the sampling technique utilized, the size or source of sample, the ability of the sampler to collect a proper or suitable sample, the compounds which make up the TVOC, and/or the type of mold(s) present. Therefore, the opinions contained in this report may be invalid and cannot be considered or construed as definitive and neither Prism, nor its agents, officers, directors, employees, or successors shall be liable for any claims, actions, causes of action, costs, loss of service, medical or other expenses or any compensation whatsoever which may now or hereafter occur or accrue based upon the information or opinions contained herein.

Analytical Report

Client:	JS Held, LLC 50 Jericho Quadrangle Ste 117 Jericho, NY 11753 US	COC: Laboratory ID:	99670 99670-2
Project:	James Harvey Marshall H.S.21111804 805 S. Miami Ave. Marshall, MO 65340	Received Date: Approved Date: Scanned Date:	03/31/2022
Client Sample ID: Volume: Date Sampled: Sample Type:	24 L 03/30/2022	Report Date:	

Comp-Air Survey Analysis

Applicable methods for this analytical technique include (with relevant modifications) US EPA TO-17 and ISO 16000-6. A scan was made for all compounds contained in the Air Survey Analysis List (TB503 Quantitative and Semiquantitative List). All compounds detected are listed below.

Comp-Air Survey Analysis Report Description

The Comp-Air (Comprehensive-Air) Survey Analysis is designed to provide additional information beyond the high quality chemical data from the air sample. This additional information may aid in interpretation of results.

Your Report is divided into several sections describing different aspects of the chemical composition of your sample.

1. Sample Summary: listing of some of the aggregate values from this air sample (e.g., Total VOCs).

2. Top 5: listing of the five highest concentration compounds in the air sample from both the quantitative TO17 and Semiguantitative Compounds (see below for a description of TO17 and Semiguantitative Compounds).

3. TO17 Compounds: listing of the chemical compounds characterized by EPA method TO17. Some of these are Hazardous Air Pollutants (HAPs) and others are typical of industrial/manufacturing sources. Accuracy for TO17 compounds is within ±15%.

4. Semiquantitative Compounds: listing of chemical compounds that have not been calibrated but have some reference information indicating the validity of the compound identification, an acceptable reference library match, or some other supporting evidence of identification. Also listed in this section are compounds that are not specificially identified but for which some information is available (e.g., C10-C12 Hydrocarbons; probably an alcohol). Instrument and media response have not been confirmed for most chemical compounds reported semiquantitatively, conferring an accuracy on the order of ±50% based on an instrument and media response of unity. Semiquantitative results should be interpreted relative to other chemical compounds.

5. Supplemental Information: Odorants: listing of the odor characteristics of chemical compounds present in this air sample. Almost all chemical compounds have an odor and a mixture of various chemical compounds could alter the odor characteristics. Some chemical compounds have a strong odor at relatively low concentrations so the individual chemical compound concentrations may be of secondary importance relative to the odor characteristics for odor concerns.

6. Supplemental Information: EPA Hazardous Air Pollutants (HAPs): listing of the chemical compounds detected in this air sample that are known or suspected to have serious health or environmental effects (also known as air toxics). HAPs include VOCs, metals, some pesticides/insecticides that are primarily semi-volatile, inorganic compounds, and very volatile organic compounds. Of the 187 compounds or groups defined as HAPs, approximately 65 are VOCs that can be detected with this analysis.

7. Additional Information: definitions, calculations, and other useful information.

Sample Summary

General information regarding the sample and aggregate concentrations, e.g., Total VOCs, are listed below. The top five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds are also listed. The full list of compounds and their concentrations in this air sample are listed later in the report and may be displayed more than once depending on the categorization of specific compounds.

	Sample Concentration	Reporting Limit	_
Compound	ng/L	ng/L	Additional Information
Total VOCs	6000	200	Total volatile organic compounds calculated based on internal standard ratio; does not include C1, C2, or methanol.
	Sample Concentration	Reporting Limit	
Compound	ng/L	ng/L	Additional Information
Total Mold VOCs (TMVOC)	5	3	TMVOC is an assessment of the quantity of actively growing mold in the sample location.

Top 5

The top five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds are listed below.

Semiquantitative Compounds		Sam Concen	•	Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Dipropylene glycol methyl ether	13588-28-8; 34590-94-8	450	73	4	912	DPGME
Texanol-B	74367-34-3	300	34	4	1127	
Texanol-A	74367-33-2	240	26	4	1122	

EPA Method TO-17			Sample Reporting Concentration Limit				
C	Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
	Ethanol	64-17-5	1400	720	2.1	480]*
	Isopropanol	67-63-0	120	47	1.0	517	J*

TO17 Compounds

EPA Method TO17 focuses on chemical compounds that are typical of industrial/manufacturing sources, many of these compounds are also found in commercial and residential environments. Accuracy for these chemical compounds is within ±15%.

This section lists all the TO17 compounds in alphabetical order (compounds not present or with concentrations below the reporting limit are listed with '<'; compounds above the reporting limit have bold text for the Sample Concentration). The concentrations are reported in two different units for easy comparison to exposure limits or other information. The Retention Index (RI) indicates volatility relative to adjacent n-alkanes. A more detailed description of reporting units and RI can be found at the end of the report.

		Sam Concen		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Acetone	67-64-1	62	26	1.0	509	
Acetonitrile	75-05-8	0.6	0.4	0.4	522	
Acrylonitrile	107-13-1	< 0.2	< 0.09	0.2	543	
Benzene	71-43-2	0.4	0.1	0.2	631	
Bromobenzene	108-86-1	< 0.2	< 0.03	0.2	866	
Bromochloromethane	74-97-5	< 0.2	< 0.04	0.2	603	
Bromodichloromethane	75-27-4	< 0.2	< 0.03	0.2	682	
Bromoform	75-25-2	< 0.2	< 0.02	0.2	837	
1,3-Butadiene	106-99-0	< 0.2	< 0.09	0.2	389	
tert-Butylbenzene	98-06-6	< 0.2	< 0.04	0.2	900	
sec-Butylbenzene	135-98-8	< 0.2	< 0.04	0.2	914	
n-Butylbenzene	104-51-8	< 0.2	< 0.04	0.2	949	
Carbon Disulfide	75-15-0	< 0.2	< 0.07	0.2	520	
Carbon Tetrachloride	56-23-5	0.7	0.1	0.2	623	
Chlorobenzene	108-90-7	< 0.2	< 0.04	0.2	791	
Chlorodibromomethane	124-48-1	< 0.2	< 0.02	0.2	759	
2-Chloroethanol	107-07-3	< 0.2	< 0.06	0.2	675	
Chloroform	67-66-3	0.3	0.05	0.2	608	
Chloroprene	126-99-8	< 0.2	< 0.06	0.2	571	
3-Chloropropene	107-05-1	< 0.2	< 0.07	0.2	527	
4-Chlorotoluene	106-43-4	< 0.2	< 0.04	0.2	883	
2-Chlorotoluene	95-49-8	< 0.2	< 0.04	0.2	877	
Cyclohexane	110-82-7	0.3	0.08	0.2	620	
1,2-Dibromo-3-chloropropane	96-12-8	< 0.4	< 0.04	0.4	991	
						·

Compound		Sarr Concer	ple tration	Reporting Limit		RI Additional Information
	CAS	ng/L	ppb	ng/L	RI	
1,2-Dibromoethane	106-93-4	< 0.2	< 0.03	0.2	766	
Dibromomethane	74-95-3	< 0.2	< 0.03	0.2	674	
trans 1,4-Dichloro-2-butene	110-57-6	< 0.2	< 0.04	0.2	865	
cis 1,4-Dichloro-2-butene	1476-11-5	< 0.2	< 0.04	0.2	848	
1,2-Dichlorobenzene	95-50-1	< 0.2	< 0.03	0.2	951	
1,3-Dichlorobenzene	541-73-1	< 0.2	< 0.03	0.2	923	
1,4-Dichlorobenzene	106-46-7	3.1	0.5	0.2	930	
1,1-Dichloroethane	75-34-3	< 0.2	< 0.05	0.2	567	
1,2-Dichloroethane	107-06-2	< 0.2	< 0.05	0.2	633	
cis 1,2-Dichloroethene	156-59-2	< 0.2	< 0.05	0.2	593	
trans 1,2-Dichloroethene	156-60-5	< 0.2	< 0.05	0.2	548	
1,1-Dichloroethene	75-35-4	< 0.2	< 0.05	0.2	508	
2,2-Dichloropropane	594-20-7	< 0.2	< 0.04	0.2	593	
1,2-Dichloropropane	78-87-5	< 0.2	< 0.04	0.2	670	
1,3-Dichloropropane	142-28-9	< 0.2	< 0.04	0.2	748	
trans 1,3-Dichloropropene	10061-02-6	< 0.2	< 0.05	0.2	729	
1,1-Dichloropropene	563-58-6	< 0.2	< 0.05	0.2	623	-
cis 1,3-Dichloropropene	10061-01-5	< 0.2	< 0.05	0.2	701	
Diethyl ether	60-29-7	< 0.2	< 0.07	0.2	493	
1,4-Dioxane	123-91-1	< 0.4	< 0.1	0.4	673	
Ethanol	64-17-5	1400	720	2.1	480]*
Ethylacetate	141-78-6	3.4	0.9	0.2	594	
Ethylbenzene	100-41-4	0.4	0.09	0.2	795	
Ethylmethacrylate	97-63-2	< 0.2	< 0.04	0.2	731	
4-Ethyltoluene	622-96-8	< 0.2	< 0.04	0.2	878	
Hexachlorobutadiene	87-68-3	< 0.2	< 0.02	0.2	1036	
Hexane (C 6)	110-54-3	0.8	0.2	0.2	562	
Isooctane	540-84-1	< 0.2	< 0.04	0.2	638	2,2,4-Trimethylpentane
Isopropanol	67-63-0	120	47	1.0	517]*
Isopropylbenzene	98-82-8	< 0.2	< 0.04	0.2	846	

		Sam Concer		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
p-Isopropyltoluene	99-87-6	0.6	0.1	0.2	924	
Methacrylonitrile	126-98-7	< 0.2	< 0.07	0.2	600	
Methyl methacrylate	80-62-6	< 0.2	< 0.06	0.2	672	
Methyl Tertiary Butyl Ether	1634-04-4	< 0.2	< 0.06	0.2	547	МТВЕ
2-Methyl-1-propanol	78-83-1	< 0.2	< 0.07	0.2		Isobutyl alcohol
4-Methyl-2-pentanone	108-10-1	2.2	0.5	0.2	707	Methyl isobutyl ketone (MIBK)
Methylacrylate	96-33-3	< 0.2	< 0.06	0.2	595	
Methylene Chloride	75-09-2	0.4	0.1	0.2	533	
2-Methylnaphthalene	91-57-6	< 0.4	< 0.07	0.4	1095	
Naphthalene	91-20-3	< 0.4	< 0.08	0.4	1042	
Nitrobenzene	98-95-3	< 0.8	< 0.2	0.8	999	
Pentachloroethane	76-01-7	< 0.2	< 0.03	0.2	902	
Propionitrile	107-12-0	< 0.2	< 0.09	0.2	593	
n-Propylbenzene	103-65-1	< 0.2	< 0.04	0.2	871	
Styrene	100-42-5	0.5	0.1	0.2	825	
1,1,2,2-Tetrachloroethane	79-34-5	< 0.2	< 0.03	0.2	863	
1,1,1,2-Tetrachloroethane	630-20-6	< 0.2	< 0.03	0.2	794	
Tetrachloroethene	127-18-4	< 0.2	< 0.03	0.2	746	
Tetrahydrofuran	109-99-9	< 0.2	< 0.07	0.2	604	
Toluene	108-88-3	3.3	0.9	0.2	719	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	0.5	0.07	0.2	510	
1,2,4-Trichlorobenzene	120-82-1	< 0.2	< 0.03	0.2	1030	
1,2,3-Trichlorobenzene	87-61-6	< 0.2	< 0.03	0.2	1052	
1,1,2-Trichloroethane	79-00-5	< 0.2	< 0.04	0.2	739	
1,1,1-Trichloroethane	71-55-6	< 0.2	< 0.04	0.2	616	
Trichloroethene	79-01-6	< 0.2	< 0.04	0.2	660	
1,2,3-Trichloropropane	96-18-4	< 0.2	< 0.03	0.2	867	
1,3,5-Trimethylbenzene	108-67-8	< 0.2	< 0.04	0.2	881	
1,2,4-Trimethylbenzene	95-63-6	< 0.2	< 0.04	0.2	903	
m,p-Xylene	108-38-3; 106-42-3	1.1	0.2	0.4	802	

Analytical Report

		Sample Concentration								
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information				
o-Xylene	95-47-6	0.4	0.09	0.2	825					

Compound Notes

J*

The accuracy of this determination may be degraded because the reported value exceeded the calibrated range by more than a factor of 10.

Semiquantitative Compounds

Semiquantitative data includes compounds that have not been calibrated but have some reference information indicating the validity of the compound identification, an acceptable reference library match, or some other supporting evidence as part of the extensive Prism compound database.

This section lists the Semiquantitative compounds detected in this air sample above the reporting limit in alphabetical order. The concentrations are reported in two different units for easy comparison to exposure limits or other information. Note that the conversion to ppb requires the molecular weight of the chemical compound so those compounds that are non-specific (e.g., C10-C12 Hydrocarbon) do not have a concentration in ppb listed. The Retention Index (RI) indicates volatility relative to adjacent n-alkanes. A more detailed description of these terms can be found at the end of the report.

		Sarr Concer		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
2,6-Dimethyl-7-octen-2-ol	18479-58-8	8	1	4	963	
Acetaldehyde	75-07-0	51	28	4	399	
Benzaldehyde	100-52-7	7	2	4	903	
Butane (C 4)	106-97-8	9	4	4	384	
1-Butanol	71-36-3	27	9	4	654	
2-Butoxyethanol	111-76-2	24	5	4	843	
Butoxyethoxyethanol	112-34-5	42	6	4	1029	
4-tert-Butylcyclohexyl acetate	32210-23-4	6	0.7	4	1078	
C12-C14 Hydrocarbon	N/A	10	N/A	4	1051	Contains silicon and oxygen; appears to be a siloxane
C12-C14 Hydrocarbon	N/A	5	N/A	4	1037	Cyclic; may be a terpene
C7-C9 Hydrocarbon	N/A	10	N/A	4	755	Sum of two overlapping hydrocarbons; one is n-butyl acetate (CAS); one is hexanal (CAS)
Decanal	112-31-2	6	0.9	4	1032	
Diethylene glycol ethyl ether	111-90-0	15	3	4	922	DEGMEE; Carbitol
Dipropylene glycol methyl ether	13588-28-8; 34590-94-8	450	73	4	912	DPGME
Dodecane (C 12)	112-40-3	8	1	4	1008	
2-Ethyl-1-hexanol	104-76-7	18	3	4	936	
Ethylene Glycol	107-21-1	53	20	4	714	
Isobutane	75-28-5	9	4	4	359	
Isohexadecane	4390-04-9	7	0.7	4	1077	
Isoprene	78-79-5	8	3	4	497	
Limonene	138-86-3 or 5989-27-5	70	12	4	923	Limonene (CAS 138-86-3) or d- Limonene (CAS 5989-27-5)

		Sample Concentration				
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Methoxy-2-propanol	107-98-2	7	2	4	654	PGME
2-Methylbutane	78-78-4	5	2	4	447	
Nonanal	124-19-6	5	0.8	4	983	
Octamethylcyclotetrasiloxane (D4)	556-67-2	6	0.5	4	859	
Pentane (C 5)	109-66-0	25	8	4	475	
1-Propanol	71-23-8	6	2	4	569	
n-Propylacetate	109-60-4	9	2	4	674	
Propylene glycol	57-55-6	14	5	4	747	
Tetradecane (C 14)	629-59-4	5	0.6	4	1097	
2,4,7,9-Tetramethyl-5-decyne-4,7-diol	126-86-3	47	5	4	1135	
Texanol-A	74367-33-2	240	26	4	1122	
Texanol-B	74367-34-3	300	34	4	1127	
Tridecane (C 13)	629-50-5	6	0.8	4	1054	

These results pertain only to this sample as it was collected and to the items reported.

These results have been reviewed and approved by the Laboratory Director or authorized representative.

lia Sela

Alice E. Delia, Ph.D., Laboratory Director

Enthalpy Analytical, LLC (MTP) 2625 Denison Dr. Mt. Pleasant, MI 48858 989-772-5088

Supplemental Information: Odorants

Many chemical compounds have odors associated with them, some pleasant and some unpleasant. These odors can combine to create different odors, making odor identification more difficult. The odor descriptions for the compounds reported in this air sample are listed below as well as some of the more common sources.

Compound	CAS	Conc. (ng/L)	Conc. (ppb)	Odor Range (ppb)	Odor Description
Acetaldehyde	75-07-0	51	28	2 - 1,000,000	pungent, fruity, suffocating, fresh, green
Acetone	67-64-1	62	26	400 - 11,745,000	sweet, fruity, etherous
Acetonitrile	75-05-8	0.6	0.4	13,000 - 1,161,000	etherish
Benzaldehyde	100-52-7	7	2	2 - 783,000	bitter almond, fruit, vanilla
Benzene	71-43-2	0.4	0.1	470 - 313,000	aromatic, sweet, solvent, empyreumatic
Butane (C 4)	106-97-8	9	4	421 - 5,048,000	natural gas
1-Butanol	71-36-3	27	9	3 - 990,000	sweet, malty, alcohol, medicinal
2-Butoxyethanol	111-76-2	24	5	43 - 390	sweet, ester, musty
Carbon Tetrachloride	56-23-5	0.7	0.1	1,680 - 720,000	sweet, ethereal, dry cleaner, aromatic
Chloroform	67-66-3	0.3	0.05	102 - 1,413,000	sweet, etherous, suffocating
Cyclohexane	110-82-7	0.3	0.08	520 - 784,000	aromatic, chloroform, pungent, sweet
1,4-Dichlorobenzene	106-46-7	3.1	0.5	121 - 15,000	camphor, mothballs
Diethylene glycol ethyl ether	111-90-0	15	3	200 - 1,090	ethereal, mild, pleasant
Ethanol	64-17-5	1400	720	90 - 40,334,000	vinous, alcohol
2-Ethyl-1-hexanol	104-76-7	18	3	75 - 150	citrus, fatty, floral, fresh, fruity, green, musty, oily, sweet
Ethylacetate	141-78-6	3.4	0.9	90 - 190,000	fruity, sweet, fingernail polish, etherous
Ethylbenzene	100-41-4	0.4	0.09	2 - 18,000	oily, solvent
Ethylene Glycol	107-21-1	53	20	5,120 -	-
Hexane (C 6)	110-54-3	0.8	0.2	1,500 - 248,000	gasoline
Isoprene	78-79-5	8	3	47 - 3,590	aromatic
Isopropanol	67-63-0	120	47	1,000 - 2,197,000	sharp, rubbing alcohol
Limonene	138-86-3 or 5989- 27-5	70	12	2 - 310	lemon, plastic, citrus, rubber, terpeny
Methoxy-2-propanol	107-98-2	7	2	8,390 - 33,000	etherish, ammonia
4-Methyl-2-pentanone	108-10-1	2.2	0.5	30 - 16,000	camphor, dairy, fruity, green, herbal, pleasant, sharp, solvent, spicy, sweet

				-	
Compound	CAS	Conc. (ng/L)	Conc. (ppb)	Odor Range (ppb)	Odor Description
Methylene Chloride	75-09-2	0.4	0.1	1,200 - 440,000	sweet
Naphthalene	91-20-3	< 0.4	< 0.08	2 - 1,012	tar, creosote, mothballs, empyreumatic
Pentane (C 5)	109-66-0	25	8	1,290 - 1,147,000	sweet
1-Propanol	71-23-8	6	2	31 - 10,172,000	sweet, alcohol
n-Propylacetate	109-60-4	9	2	48 - 87,000	sweet, ester
Propylene glycol	57-55-6	14	5	5,140 -	-
Styrene	100-42-5	0.5	0.1	3 - 61,000	sharp, sweet
Toluene	108-88-3	3.3	0.9	21 - 157,000	sour, burnt
m,p-Xylene	108-38-3; 106-42-3	1.1	0.2	12 - 316,000	sweet, empyreumatic
o-Xylene	95-47-6	0.4	0.09	12 - 316,000	sweet, empyreumatic

Supplemental Information: EPA Hazardous Air Pollutants (HAPs)

Hazardous air pollutants, also known as toxic air pollutants or air toxics, are those pollutants that are known or suspected to cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse environmental effects. Of the 187 compounds or groups defined as HAPs, approximately 65 can be detected with this analysis. Listed below are those HAPs that were detected in this air sample. For more information about HAPs visit the EPA <u>Air Toxics website</u>. The exposure limits listed below can also be found in the <u>NIOSH Guide to Chemical Hazards</u>.

CAS	Conc. (ng/L)	NIOSH TWA REL	Potential Health Effects
71-43-2	0.4	320 ng/L (100 ppb)	Gasoline. Less common sources include some discontinued solvents; printing and lithography; paints and coatings; rubber; dry cleaning; adhesives; detergents
56-23-5	0.7	Carcinogen	Solvent; metal degreasing; refrigerant; agricultural fumigant; fire retardant (former use)
67-66-3	0.3	Carcinogen	Formed during the chlorination of drinking water, wastewater and swimming pools. Also pulp and paper mills, hazardous waste sites, and sanitary landfills
106-46-7	3.1	Carcinogen	Moth balls/crystals; room deodorant
100-41-4	0.4	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; solvent; pesticide
75-09-2	0.4	Carcinogen	Automotive products; degreasing solvent; paint stripper; adhesive remover; aerosol propellant; insecticide
91-20-3	< 0.4	50,000 ng/L (10,000 ppb)	Gasoline; diesel; Moth balls/crystals; insecticide
100-42-5	0.5	215,000 ng/L (50,000 ppb)	Polystyrene foam; synthetic rubber; flavoring agent
108-88-3	3.3	375,000 ng/L (100,000 ppb)	Gasoline; adhesives (building and arts/crafts); contact cement; solvent; heavy duty cleaner
108-38-3; 106-42-3	1.1	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; adhesives and cements; solvent; print cartridges
95-47-6	0.4	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; adhesives and cements; solvent; print cartridges
	71-43-2 56-23-5 67-66-3 106-46-7 100-41-4 75-09-2 91-20-3 100-42-5 108-38-3; 106-38-3; 106-42-3	CAS (ng/L) 71-43-2 0.4 56-23-5 0.7 67-66-3 0.3 106-46-7 3.1 100-41-4 0.4 75-09-2 0.4 91-20-3 < 0.4	CAS (ng/L) TWA REL 71-43-2 0.4 320 ng/L (100 ppb) 56-23-5 0.7 Carcinogen 67-66-3 0.3 Carcinogen 106-46-7 3.1 Carcinogen 100-41-4 0.4 435,000 ng/L (100,000 ppb) 75-09-2 0.4 Carcinogen 91-20-3 < 0.4

Additional Information

Glossary of Terms

Total VOCs (TVOC): TVOC is one of the samples with each other or with target I_{TVOC} $\binom{ng}{L} = \frac{\left[\frac{(A_s - A_b) \times W_s}{A_i}\right]}{L_s}$ uality indicators. It allows comparison of multiple to the calculation between 2 and 45 contains between 2 and 45 contains at the calculation of the calculati contain between 3 and 15 carbon atoms (along with the associated hydrogen, as well as oxygen, nitrogen, sulfur, silicon, etc.), although certain compounds outside this range of carbon atoms may be included depending on the type of compound.

Where:

As - C3-C15 TIC (Total Ion Chromatogram from GC-MS) area of the sample Ab - C3-C15 TIC area of the media blank Ws - Weight of the internal standard added in ng Ai – average TIC area of the internal standard peak(s) Ls – Volume of the sample in L

CAS: The Chemical Abstract Service (CAS) assigns a unique number to chemical compounds, commonly referred to as the CAS number. This number is usually the best way to search for additional information about the compound since some compounds may have many names but only one CAS number.

Reporting Units - ng/L: Most concentrations for air samples will be reported in units of ng/L, which translates to ng of

that specific chemical compound present per liter of air sampled. Concentration in ng/L is equivalent to $\mu g/m^3$. Reporting Units - ppb: Some sections o^{Conc} (*ppb*) = $\frac{Conc}{\frac{ng}{L} \times 24.04(\frac{L}{mol})}{\frac{MW(\frac{g}{mol})}{\frac{mol}{mol}}}$ h compound concentrations displayed in or reference limits. The concentration in units of ppb (parts per billion), which are or reference limits. The concentration in ng/L (or µg/m³ can be converted easily to ppb using the following formula derived from the Ideal Gas Law.

Where:

Vm = Molar Volume as 24.04 L/mol at 1 atm pressure and 20 °C (68 °F) MW = Molecular Weight in g/mol

Reporting Limit: The Reporting Limit column displays the lowest possible concentration that could be reported for that compound for that sample and analysis. Typically the reporting limit is displayed in units of ng/L but other units may be used as appropriate.

Retention Index (RI): The retention index is a means of converting a compound GC-MS retention time, which is dependent on the type of system and specific operating parameters, into an independent and universal value based on the elution of the adjacent n-alkanes. Each n-alkane is assigned a retention index based on its carbon number, e.g., pentane (C5) has a retention index of 500 and hexane (C6) has a retention index of 600, etc. For example, a hydrocarbon with a retention index of 550 would be expected to elute at the midpoint between pentane and hexane. Using the elution of the n-alkanes as the $RI_x = 100n + 100 \times \frac{(RT_x - RT_n)}{(RT_{n+1} - RT_n)}$ retention index of organic compounds to be applicable across almost any GC-MS GC-MS instruments used by Prism, can be determined using the following formula derived from the Kovats isothermal retention index.

Where:

RIx – retention index of target compound x n – Carbon number of n-alkane eluting before the target compound x RTx – retention time of target compound x

RTn – retention time of n-alkane eluting before target compound x RTn+1 – retention time of n-alkane eluting after target compound x

Odor Description: Description of the odor (e.g., fruity)

HAPs: Hazardous Air Pollutants

NIOSH: National Institute for Occupational Safety and Health

TWA: Time Weighted Average

REL: Recommended Exposure Limit

Ca: Potential carcinogen

Sources for Additional Compound Information:

The compound information displayed in this report (e.g., odor description, exposure limits, etc.) is gathered from a variety of sources, including but not limited to, the <u>NIST Chemistry Webbook</u>, the <u>NIOSH Pocket Guide to Chemical Hazards</u>, the <u>Household Products Database</u>, the University of Akron <u>Chemical Database</u>, the <u>WISER</u> (for Emergency Responders), <u>IRIS</u>, <u>ToxNet</u>, <u>ATSDR</u>. Prism does not guarantee the accuracy of this information or endorse any of the views or opinions expressed.

This analysis was performed by Enthalpy Analytical, LLC (MTP). The results contained in this report are dependent upon a number of factors over which Enthalpy Analytical, LLC (MTP) has no control, which may include, but are not limited to, the sampling technique utilized, the size or source of sample, the ability of the sampler to collect a proper or suitable sample, the compounds which make up the TVOC, and/or the type of mold(s) present. Therefore, the opinions contained in this report may be invalid and cannot be considered or construed as definitive and neither Prism, nor its agents, officers, directors, employees, or successors shall be liable for any claims, actions, causes of action, costs, loss of service, medical or other expenses or any compensation whatsoever which may now or hereafter occur or accrue based upon the information or opinions contained herein.

Analytical Report

Client:	JS Held, LLC 50 Jericho Quadrangle Ste 117 Jericho, NY 11753 US	COC: Laboratory ID:	99670 99670-3
Project:	James Harvey Marshall H.S.21111804 805 S. Miami Ave. Marshall, MO 65340	Received Date: Approved Date: Scanned Date:	03/31/2022
Client Sample ID: Volume: Date Sampled: Sample Type:	24 L 03/30/2022	Report Date:	

Comp-Air Survey Analysis

Applicable methods for this analytical technique include (with relevant modifications) US EPA TO-17 and ISO 16000-6. A scan was made for all compounds contained in the Air Survey Analysis List (TB503 Quantitative and Semiquantitative List). All compounds detected are listed below.

Comp-Air Survey Analysis Report Description

The Comp-Air (Comprehensive-Air) Survey Analysis is designed to provide additional information beyond the high quality chemical data from the air sample. This additional information may aid in interpretation of results.

Your Report is divided into several sections describing different aspects of the chemical composition of your sample.

1. Sample Summary: listing of some of the aggregate values from this air sample (e.g., Total VOCs).

2. Top 5: listing of the five highest concentration compounds in the air sample from both the quantitative TO17 and Semiguantitative Compounds (see below for a description of TO17 and Semiguantitative Compounds).

3. TO17 Compounds: listing of the chemical compounds characterized by EPA method TO17. Some of these are Hazardous Air Pollutants (HAPs) and others are typical of industrial/manufacturing sources. Accuracy for TO17 compounds is within ±15%.

4. Semiquantitative Compounds: listing of chemical compounds that have not been calibrated but have some reference information indicating the validity of the compound identification, an acceptable reference library match, or some other supporting evidence of identification. Also listed in this section are compounds that are not specificially identified but for which some information is available (e.g., C10-C12 Hydrocarbons; probably an alcohol). Instrument and media response have not been confirmed for most chemical compounds reported semiquantitatively, conferring an accuracy on the order of ±50% based on an instrument and media response of unity. Semiquantitative results should be interpreted relative to other chemical compounds.

5. Supplemental Information: Odorants: listing of the odor characteristics of chemical compounds present in this air sample. Almost all chemical compounds have an odor and a mixture of various chemical compounds could alter the odor characteristics. Some chemical compounds have a strong odor at relatively low concentrations so the individual chemical compound concentrations may be of secondary importance relative to the odor characteristics for odor concerns.

6. Supplemental Information: EPA Hazardous Air Pollutants (HAPs): listing of the chemical compounds detected in this air sample that are known or suspected to have serious health or environmental effects (also known as air toxics). HAPs include VOCs, metals, some pesticides/insecticides that are primarily semi-volatile, inorganic compounds, and very volatile organic compounds. Of the 187 compounds or groups defined as HAPs, approximately 65 are VOCs that can be detected with this analysis.

7. Additional Information: definitions, calculations, and other useful information.

Sample Summary

General information regarding the sample and aggregate concentrations, e.g., Total VOCs, are listed below. The top five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds are also listed. The full list of compounds and their concentrations in this air sample are listed later in the report and may be displayed more than once depending on the categorization of specific compounds.

	Sample Concentration	Reporting Limit	
Compound	ng/L	ng/L	Additional Information
Total VOCs	4200	200	Total volatile organic compounds calculated based on internal standard ratio; does not include C1, C2, or methanol.
	Sample Concentration	Reporting Limit	
Compound	ng/L	ng/L	Additional Information
Total Mold VOCs (TMVOC)	6	3	TMVOC is an assessment of the quantity of actively growing mold in the sample location.

Top 5

The top five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds are listed below.

Semiquantitative Compounds		Sam Concen	•	Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Texanol-B	74367-34-3	280	31	4	1127	
Dipropylene glycol methyl ether	13588-28-8; 34590-94-8	240	39	4	912	DPGME
Texanol-A	74367-33-2	220	25	4	1122	

EPA Method TO-17				Sample Repo Concentration Lir			
	Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
	Ethanol	64-17-5	790	410	2.1	480]*
	Isopropanol	67-63-0	130	52	1.0	517	J*

TO17 Compounds

EPA Method TO17 focuses on chemical compounds that are typical of industrial/manufacturing sources, many of these compounds are also found in commercial and residential environments. Accuracy for these chemical compounds is within ±15%.

This section lists all the TO17 compounds in alphabetical order (compounds not present or with concentrations below the reporting limit are listed with '<'; compounds above the reporting limit have bold text for the Sample Concentration). The concentrations are reported in two different units for easy comparison to exposure limits or other information. The Retention Index (RI) indicates volatility relative to adjacent n-alkanes. A more detailed description of reporting units and RI can be found at the end of the report.

		Sam Concen		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Acetone	67-64-1	49	20	1.0	509	
Acetonitrile	75-05-8	< 0.4	< 0.2	0.4	522	
Acrylonitrile	107-13-1	< 0.2	< 0.09	0.2	543	
Benzene	71-43-2	0.4	0.1	0.2	631	
Bromobenzene	108-86-1	< 0.2	< 0.03	0.2	866	
Bromochloromethane	74-97-5	< 0.2	< 0.04	0.2	603	
Bromodichloromethane	75-27-4	< 0.2	< 0.03	0.2	682	
Bromoform	75-25-2	< 0.2	< 0.02	0.2	837	
1,3-Butadiene	106-99-0	< 0.2	< 0.09	0.2	389	
tert-Butylbenzene	98-06-6	< 0.2	< 0.04	0.2	900	
sec-Butylbenzene	135-98-8	< 0.2	< 0.04	0.2	914	
n-Butylbenzene	104-51-8	< 0.2	< 0.04	0.2	949	
Carbon Disulfide	75-15-0	< 0.2	< 0.07	0.2	520	
Carbon Tetrachloride	56-23-5	0.7	0.1	0.2	623	
Chlorobenzene	108-90-7	< 0.2	< 0.04	0.2	791	
Chlorodibromomethane	124-48-1	< 0.2	< 0.02	0.2	759	
2-Chloroethanol	107-07-3	< 0.2	< 0.06	0.2	675	
Chloroform	67-66-3	0.2	0.05	0.2	608	
Chloroprene	126-99-8	< 0.2	< 0.06	0.2	571	
3-Chloropropene	107-05-1	< 0.2	< 0.07	0.2	527	
4-Chlorotoluene	106-43-4	< 0.2	< 0.04	0.2	883	
2-Chlorotoluene	95-49-8	< 0.2	< 0.04	0.2	877	
Cyclohexane	110-82-7	0.3	0.07	0.2	620	
1,2-Dibromo-3-chloropropane	96-12-8	< 0.4	< 0.04	0.4	991	
						· · · · · · · · · · · · · · · · · · ·

y Frisin Analytical Technologies		Laboratory ID: 99670-3						
		Sam Concer	Reporting Limit					
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information		
1,2-Dibromoethane	106-93-4	< 0.2	< 0.03	0.2	766			
Dibromomethane	74-95-3	< 0.2	< 0.03	0.2	674			
trans 1,4-Dichloro-2-butene	110-57-6	< 0.2	< 0.04	0.2	865			
cis 1,4-Dichloro-2-butene	1476-11-5	< 0.2	< 0.04	0.2	848			
1,2-Dichlorobenzene	95-50-1	< 0.2	< 0.03	0.2	951			
1,3-Dichlorobenzene	541-73-1	< 0.2	< 0.03	0.2	923			
1,4-Dichlorobenzene	106-46-7	2.5	0.4	0.2	930			
1,1-Dichloroethane	75-34-3	< 0.2	< 0.05	0.2	567			
1,2-Dichloroethane	107-06-2	< 0.2	< 0.05	0.2	633			
cis 1,2-Dichloroethene	156-59-2	< 0.2	< 0.05	0.2	593			
trans 1,2-Dichloroethene	156-60-5	< 0.2	< 0.05	0.2	548			
1,1-Dichloroethene	75-35-4	< 0.2	< 0.05	0.2	508			
2,2-Dichloropropane	594-20-7	< 0.2	< 0.04	0.2	593			
1,2-Dichloropropane	78-87-5	< 0.2	< 0.04	0.2	670			
1,3-Dichloropropane	142-28-9	< 0.2	< 0.04	0.2	748			
trans 1,3-Dichloropropene	10061-02-6	< 0.2	< 0.05	0.2	729			
1,1-Dichloropropene	563-58-6	< 0.2	< 0.05	0.2	623			
cis 1,3-Dichloropropene	10061-01-5	< 0.2	< 0.05	0.2	701			
Diethyl ether	60-29-7	< 0.2	< 0.07	0.2	493			
1,4-Dioxane	123-91-1	< 0.4	< 0.1	0.4	673			
Ethanol	64-17-5	790	410	2.1	480]*		
Ethylacetate	141-78-6	2.3	0.6	0.2	594			
Ethylbenzene	100-41-4	0.4	0.08	0.2	795			
Ethylmethacrylate	97-63-2	< 0.2	< 0.04	0.2	731			
4-Ethyltoluene	622-96-8	< 0.2	< 0.04	0.2	878			
Hexachlorobutadiene	87-68-3	< 0.2	< 0.02	0.2	1036			
Hexane (C 6)	110-54-3	0.8	0.2	0.2	562			
Isooctane	540-84-1	< 0.2	< 0.04	0.2	638	2,2,4-Trimethylpentane		
Isopropanol	67-63-0	130	52	1.0	517]*		
Isopropylbenzene	98-82-8	< 0.2	< 0.04	0.2	846			
	· ·							

		Sam Concer	Reporting Limit			
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
p-Isopropyltoluene	99-87-6	0.4	0.07	0.2	924	
Methacrylonitrile	126-98-7	< 0.2	< 0.07	0.2	600	
Methyl methacrylate	80-62-6	< 0.2	< 0.06	0.2	672	
Methyl Tertiary Butyl Ether	1634-04-4	< 0.2	< 0.06	0.2	547	MTBE
2-Methyl-1-propanol	78-83-1	0.9	0.3	0.2	625	Isobutyl alcohol
4-Methyl-2-pentanone	108-10-1	1.3	0.3	0.2	707	Methyl isobutyl ketone (MIBK)
Methylacrylate	96-33-3	< 0.2	< 0.06	0.2	595	
Methylene Chloride	75-09-2	0.5	0.1	0.2	533	
2-Methylnaphthalene	91-57-6	< 0.4	< 0.07	0.4	1095	
Naphthalene	91-20-3	< 0.4	< 0.08	0.4	1042	
Nitrobenzene	98-95-3	< 0.8	< 0.2	0.8	999	
Pentachloroethane	76-01-7	< 0.2	< 0.03	0.2	902	
Propionitrile	107-12-0	< 0.2	< 0.09	0.2	593	
n-Propylbenzene	103-65-1	< 0.2	< 0.04	0.2	871	
Styrene	100-42-5	0.5	0.1	0.2	825	
1,1,2,2-Tetrachloroethane	79-34-5	< 0.2	< 0.03	0.2	863	
1,1,1,2-Tetrachloroethane	630-20-6	< 0.2	< 0.03	0.2	794	
Tetrachloroethene	127-18-4	< 0.2	< 0.03	0.2	746	
Tetrahydrofuran	109-99-9	< 0.2	< 0.07	0.2	604	
Toluene	108-88-3	3.1	0.8	0.2	719	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	0.5	0.07	0.2	510	
1,2,4-Trichlorobenzene	120-82-1	< 0.2	< 0.03	0.2	1030	
1,2,3-Trichlorobenzene	87-61-6	< 0.2	< 0.03	0.2	1052	
1,1,2-Trichloroethane	79-00-5	< 0.2	< 0.04	0.2	739	
1,1,1-Trichloroethane	71-55-6	< 0.2	< 0.04	0.2	616	
Trichloroethene	79-01-6	< 0.2	< 0.04	0.2	660	
1,2,3-Trichloropropane	96-18-4	< 0.2	< 0.03	0.2	867	
1,3,5-Trimethylbenzene	108-67-8	< 0.2	< 0.04	0.2	881	
1,2,4-Trimethylbenzene	95-63-6	< 0.2	< 0.04	0.2	903	
m,p-Xylene	108-38-3; 106-42-3	0.9	0.2	0.4	802	

Analytical Report

		Sample Concentration		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
o-Xylene	95-47-6	0.3	0.07	0.2	825	

Compound Notes

J*

The accuracy of this determination may be degraded because the reported value exceeded the calibrated range by more than a factor of 10.

Semiquantitative Compounds

Semiquantitative data includes compounds that have not been calibrated but have some reference information indicating the validity of the compound identification, an acceptable reference library match, or some other supporting evidence as part of the extensive Prism compound database.

This section lists the Semiquantitative compounds detected in this air sample above the reporting limit in alphabetical order. The concentrations are reported in two different units for easy comparison to exposure limits or other information. Note that the conversion to ppb requires the molecular weight of the chemical compound so those compounds that are non-specific (e.g., C10-C12 Hydrocarbon) do not have a concentration in ppb listed. The Retention Index (RI) indicates volatility relative to adjacent n-alkanes. A more detailed description of these terms can be found at the end of the report.

		San Concer		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
2,6-Dimethyl-7-octen-2-ol	18479-58-8	5	0.7	4	963	
Acetaldehyde	75-07-0	22	12	4	399	
Benzaldehyde	100-52-7	5	1	4	903	
Butane (C 4)	106-97-8	10	4	4	384	
1-Butanol	71-36-3	23	8	4	653	
2-Butoxyethanol	111-76-2	17	3	4	843	
Butoxyethoxyethanol	112-34-5	17	3	4	1029	
C12-C14 Hydrocarbon	N/A	7	N/A	4	1051	Contains silicon and oxygen; appears to be a siloxane
C14-C16 Hydrocarbon	N/A	4	N/A	4	1210	May contain oxygen
C7-C9 Hydrocarbon	N/A	9	N/A	4	755	Sum of two overlapping hydrocarbons; one is n-butyl acetate (CAS); one is hexanal (CAS)
Decanal	112-31-2	5	0.8	4	1032	
Diethylene glycol ethyl ether	111-90-0	11	2	4	922	DEGMEE; Carbitol
Dipropylene glycol methyl ether	13588-28-8; 34590-94-8	240	39	4	912	DPGME
Dodecane (C 12)	112-40-3	6	0.8	4	1008	
2-Ethyl-1-hexanol	104-76-7	19	3	4	936	
Ethylene Glycol	107-21-1	73	28	4	715	
Isobutane	75-28-5	10	4	4	359	
Isohexadecane	4390-04-9	6	0.6	4	1077	
Isoprene	78-79-5	6	2	4	497	
Limonene	138-86-3 or 5989-27-5	23	4	4	923	Limonene (CAS 138-86-3) or d- Limonene (CAS 5989-27-5)
Methoxy-2-propanol	107-98-2	6	2	4	654	PGME

		Sample Reporting Concentration Limit		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
2-Methylbutane	78-78-4	5	2	4	447	
Pentane (C 5)	109-66-0	18	6	4	475	
n-Propylacetate	109-60-4	5	1	4	674	
Propylene glycol	57-55-6	13	4	4	747	
2,4,7,9-Tetramethyl-5-decyne-4,7-diol	126-86-3	12	1	4	1135	
Texanol-A	74367-33-2	220	25	4	1122	
Texanol-B	74367-34-3	280	31	4	1127	

These results pertain only to this sample as it was collected and to the items reported. These results have been reviewed and approved by the Laboratory Director or authorized representative.

lia Sela

Alice E. Delia, Ph.D., Laboratory Director

Enthalpy Analytical, LLC (MTP) 2625 Denison Dr. Mt. Pleasant, MI 48858 989-772-5088

Supplemental Information: Odorants

Many chemical compounds have odors associated with them, some pleasant and some unpleasant. These odors can combine to create different odors, making odor identification more difficult. The odor descriptions for the compounds reported in this air sample are listed below as well as some of the more common sources.

Compound	CAS	Conc. (ng/L)	Conc. (ppb)	Odor Range (ppb)	Odor Description
Acetaldehyde	75-07-0	22	12	2 - 1,000,000	pungent, fruity, suffocating, fresh, green
Acetone	67-64-1	49	20	400 - 11,745,000	sweet, fruity, etherous
Benzaldehyde	100-52-7	5	1	2 - 783,000	bitter almond, fruit, vanilla
Benzene	71-43-2	0.4	0.1	470 - 313,000	aromatic, sweet, solvent, empyreumatic
Butane (C 4)	106-97-8	10	4	421 - 5,048,000	natural gas
1-Butanol	71-36-3	23	8	3 - 990,000	sweet, malty, alcohol, medicinal
2-Butoxyethanol	111-76-2	17	3	43 - 390	sweet, ester, musty
Carbon Tetrachloride	56-23-5	0.7	0.1	1,680 - 720,000	sweet, ethereal, dry cleaner, aromatic
Chloroform	67-66-3	0.2	0.05	102 - 1,413,000	sweet, etherous, suffocating
Cyclohexane	110-82-7	0.3	0.07	520 - 784,000	aromatic, chloroform, pungent, sweet
1,4-Dichlorobenzene	106-46-7	2.5	0.4	121 - 15,000	camphor, mothballs
Diethylene glycol ethyl ether	111-90-0	11	2	200 - 1,090	ethereal, mild, pleasant
Ethanol	64-17-5	790	410	90 - 40,334,000	vinous, alcohol
2-Ethyl-1-hexanol	104-76-7	19	3	75 - 150	citrus, fatty, floral, fresh, fruity, green, musty, oily, sweet
Ethylacetate	141-78-6	2.3	0.6	90 - 190,000	fruity, sweet, fingernail polish, etherous
Ethylbenzene	100-41-4	0.4	0.08	2 - 18,000	oily, solvent
Ethylene Glycol	107-21-1	73	28	5,120 -	_
Hexane (C 6)	110-54-3	0.8	0.2	1,500 - 248,000	gasoline
Isoprene	78-79-5	6	2	47 - 3,590	aromatic
Isopropanol	67-63-0	130	52	1,000 - 2,197,000	sharp, rubbing alcohol
Limonene	138-86-3 or 5989- 27-5	23	4	2 - 310	lemon, plastic, citrus, rubber, terpeny
Methoxy-2-propanol	107-98-2	6	2	8,390 - 33,000	etherish, ammonia
2-Methyl-1-propanol	78-83-1	0.9	0.3	10 - 165,000	sweet, fusel, musty, alcohol, rubber, latex
4-Methyl-2-pentanone	108-10-1	1.3	0.3	30 - 16,000	camphor, dairy, fruity, green, herbal, pleasant, sharp, solvent, spicy, sweet

				-	
Compound	CAS	Conc. (ng/L)	Conc. (ppb)	Odor Range (ppb)	Odor Description
Methylene Chloride	75-09-2	0.5	0.1	1,200 - 440,000	sweet
Pentane (C 5)	109-66-0	18	6	1,290 - 1,147,000	sweet
n-Propylacetate	109-60-4	5	1	48 - 87,000	sweet, ester
Propylene glycol	57-55-6	13	4	5,140 -	_
Styrene	100-42-5	0.5	0.1	3 - 61,000	sharp, sweet
Toluene	108-88-3	3.1	0.8	21 - 157,000	sour, burnt
m,p-Xylene	108-38-3; 106-42-3	0.9	0.2	12 - 316,000	sweet, empyreumatic
o-Xylene	95-47-6	0.3	0.07	12 - 316,000	sweet, empyreumatic

Supplemental Information: EPA Hazardous Air Pollutants (HAPs)

Hazardous air pollutants, also known as toxic air pollutants or air toxics, are those pollutants that are known or suspected to cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse environmental effects. Of the 187 compounds or groups defined as HAPs, approximately 65 can be detected with this analysis. Listed below are those HAPs that were detected in this air sample. For more information about HAPs visit the EPA <u>Air Toxics website</u>. The exposure limits listed below can also be found in the <u>NIOSH Guide to Chemical Hazards</u>.

Compound	CAS	Conc. (ng/L)	NIOSH TWA REL	Potential Health Effects
Benzene	71-43-2	0.4	320 ng/L (100 ppb)	Gasoline. Less common sources include some discontinued solvents; printing and lithography; paints and coatings; rubber; dry cleaning; adhesives; detergents
Carbon Tetrachloride	56-23-5	0.7	Carcinogen	Solvent; metal degreasing; refrigerant; agricultural fumigant; fire retardant (former use)
Chloroform	67-66-3	0.2	Carcinogen	Formed during the chlorination of drinking water, wastewater and swimming pools. Also pulp and paper mills, hazardous waste sites, and sanitary landfills
1,4-Dichlorobenzene	106-46-7	2.5	Carcinogen	Moth balls/crystals; room deodorant
Ethylbenzene	100-41-4	0.4	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; solvent; pesticide
Methylene Chloride	75-09-2	0.5	Carcinogen	Automotive products; degreasing solvent; paint stripper; adhesive remover; aerosol propellant; insecticide
Styrene	100-42-5	0.5	215,000 ng/L (50,000 ppb)	Polystyrene foam; synthetic rubber; flavoring agent
Toluene	108-88-3	3.1	375,000 ng/L (100,000 ppb)	Gasoline; adhesives (building and arts/crafts); contact cement; solvent; heavy duty cleaner
m,p-Xylene	108-38-3; 106-42-3	0.9	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; adhesives and cements; solvent; print cartridges
o-Xylene	95-47-6	0.3	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; adhesives and cements; solvent; print cartridges

Additional Information

Glossary of Terms

Total VOCs (TVOC): TVOC is one of the samples with each other or with target I_{TVOC} $\binom{ng}{L} = \frac{\left[\frac{(A_s - A_b) \times W_s}{A_i}\right]}{L_s}$ uality indicators. It allows comparison of multiple to the calculation between 2 and 45 contains between 2 and 45 contains at the calculation of the calculati contain between 3 and 15 carbon atoms (along with the associated hydrogen, as well as oxygen, nitrogen, sulfur, silicon, etc.), although certain compounds outside this range of carbon atoms may be included depending on the type of compound.

Where:

As - C3-C15 TIC (Total Ion Chromatogram from GC-MS) area of the sample Ab - C3-C15 TIC area of the media blank Ws - Weight of the internal standard added in ng Ai – average TIC area of the internal standard peak(s) Ls – Volume of the sample in L

CAS: The Chemical Abstract Service (CAS) assigns a unique number to chemical compounds, commonly referred to as the CAS number. This number is usually the best way to search for additional information about the compound since some compounds may have many names but only one CAS number.

Reporting Units - ng/L: Most concentrations for air samples will be reported in units of ng/L, which translates to ng of

that specific chemical compound present per liter of air sampled. Concentration in ng/L is equivalent to $\mu g/m^3$. Reporting Units - ppb: Some sections o^{Conc} (*ppb*) = $\frac{Conc}{\frac{ng}{L} \times 24.04(\frac{L}{mol})}{\frac{MW(\frac{g}{mol})}{\frac{mol}{mol}}}$ h compound concentrations displayed in or reference limits. The concentration in units of ppb (parts per billion), which are or reference limits. The concentration in ng/L (or µg/m³ can be converted easily to ppb using the following formula derived from the Ideal Gas Law.

Where:

Vm = Molar Volume as 24.04 L/mol at 1 atm pressure and 20 °C (68 °F) MW = Molecular Weight in g/mol

Reporting Limit: The Reporting Limit column displays the lowest possible concentration that could be reported for that compound for that sample and analysis. Typically the reporting limit is displayed in units of ng/L but other units may be used as appropriate.

Retention Index (RI): The retention index is a means of converting a compound GC-MS retention time, which is dependent on the type of system and specific operating parameters, into an independent and universal value based on the elution of the adjacent n-alkanes. Each n-alkane is assigned a retention index based on its carbon number, e.g., pentane (C5) has a retention index of 500 and hexane (C6) has a retention index of 600, etc. For example, a hydrocarbon with a retention index of 550 would be expected to elute at the midpoint between pentane and hexane. Using the elution of the n-alkanes as the $RI_x = 100n + 100 \times \frac{(RT_x - RT_n)}{(RT_{n+1} - RT_n)}$ retention index of organic compounds to be applicable across almost any GC-MS GC-MS instruments used by Prism, can be determined using the following formula derived from the Kovats isothermal retention index.

Where:

RIx – retention index of target compound x n – Carbon number of n-alkane eluting before the target compound x RTx – retention time of target compound x

RTn – retention time of n-alkane eluting before target compound x RTn+1 – retention time of n-alkane eluting after target compound x

Odor Description: Description of the odor (e.g., fruity)

HAPs: Hazardous Air Pollutants

NIOSH: National Institute for Occupational Safety and Health

TWA: Time Weighted Average

REL: Recommended Exposure Limit

Ca: Potential carcinogen

Sources for Additional Compound Information:

The compound information displayed in this report (e.g., odor description, exposure limits, etc.) is gathered from a variety of sources, including but not limited to, the <u>NIST Chemistry Webbook</u>, the <u>NIOSH Pocket Guide to Chemical Hazards</u>, the <u>Household Products Database</u>, the University of Akron <u>Chemical Database</u>, the <u>WISER</u> (for Emergency Responders), <u>IRIS</u>, <u>ToxNet</u>, <u>ATSDR</u>. Prism does not guarantee the accuracy of this information or endorse any of the views or opinions expressed.

This analysis was performed by Enthalpy Analytical, LLC (MTP). The results contained in this report are dependent upon a number of factors over which Enthalpy Analytical, LLC (MTP) has no control, which may include, but are not limited to, the sampling technique utilized, the size or source of sample, the ability of the sampler to collect a proper or suitable sample, the compounds which make up the TVOC, and/or the type of mold(s) present. Therefore, the opinions contained in this report may be invalid and cannot be considered or construed as definitive and neither Prism, nor its agents, officers, directors, employees, or successors shall be liable for any claims, actions, causes of action, costs, loss of service, medical or other expenses or any compensation whatsoever which may now or hereafter occur or accrue based upon the information or opinions contained herein.

Analytical Report

Client:	JS Held, LLC 50 Jericho Quadrangle Ste 117 Jericho, NY 11753 US	COC: Laboratory ID:	99670 99670-4
Project:	James Harvey Marshall H.S.21111804 805 S. Miami Ave. Marshall, MO 65340	Received Date: Approved Date: Scanned Date:	03/31/2022
Client Sample ID: Volume: Date Sampled: Sample Type:	24 L 03/30/2022	Report Date:	

Comp-Air Survey Analysis

Applicable methods for this analytical technique include (with relevant modifications) US EPA TO-17 and ISO 16000-6. A scan was made for all compounds contained in the Air Survey Analysis List (TB503 Quantitative and Semiquantitative List). All compounds detected are listed below.

Comp-Air Survey Analysis Report Description

The Comp-Air (Comprehensive-Air) Survey Analysis is designed to provide additional information beyond the high quality chemical data from the air sample. This additional information may aid in interpretation of results.

Your Report is divided into several sections describing different aspects of the chemical composition of your sample.

1. Sample Summary: listing of some of the aggregate values from this air sample (e.g., Total VOCs).

2. Top 5: listing of the five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds (see below for a description of TO17 and Semiquantitative Compounds).

3. TO17 Compounds: listing of the chemical compounds characterized by EPA method TO17. Some of these are Hazardous Air Pollutants (HAPs) and others are typical of industrial/manufacturing sources. Accuracy for TO17 compounds is within ±15%.

4. Semiquantitative Compounds: listing of chemical compounds that have not been calibrated but have some reference information indicating the validity of the compound identification, an acceptable reference library match, or some other supporting evidence of identification. Also listed in this section are compounds that are not specificially identified but for which some information is available (e.g., C10-C12 Hydrocarbons; probably an alcohol). Instrument and media response have not been confirmed for most chemical compounds reported semiquantitatively, conferring an accuracy on the order of ±50% based on an instrument and media response of unity. Semiquantitative results should be interpreted relative to other chemical compounds.

5. Supplemental Information: Odorants: listing of the odor characteristics of chemical compounds present in this air sample. Almost all chemical compounds have an odor and a mixture of various chemical compounds could alter the odor characteristics. Some chemical compounds have a strong odor at relatively low concentrations so the individual chemical compound concentrations may be of secondary importance relative to the odor characteristics for odor concerns.

6. Supplemental Information: EPA Hazardous Air Pollutants (HAPs): listing of the chemical compounds detected in this air sample that are known or suspected to have serious health or environmental effects (also known as air toxics). HAPs include VOCs, metals, some pesticides/insecticides that are primarily semi-volatile, inorganic compounds, and very volatile organic compounds. Of the 187 compounds or groups defined as HAPs, approximately 65 are VOCs that can be detected with this analysis.

7. Additional Information: definitions, calculations, and other useful information.

Sample Summary

General information regarding the sample and aggregate concentrations, e.g., Total VOCs, are listed below. The top five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds are also listed. The full list of compounds and their concentrations in this air sample are listed later in the report and may be displayed more than once depending on the categorization of specific compounds.

	Sample Concentration	Reporting Limit	
Compound	ng/L	ng/L	Additional Information
Total VOCs	5000	200	Total volatile organic compounds calculated based on internal standard ratio; does not include C1, C2, or methanol.
	Sample Concentration	Reporting Limit	
Compound	ng/L	ng/L	Additional Information
Total Mold VOCs (TMVOC)	7	3	TMVOC is an assessment of the quantity of actively growing mold in the sample location.

Top 5

The top five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds are listed below.

Semiquantitative Compounds		Sample Concentration		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Texanol-B	74367-34-3	330	37	4	1127	
Dipropylene glycol methyl ether	13588-28-8; 34590-94-8	320	52	4	912	DPGME
Texanol-A	74367-33-2	260	29	4	1122	

EPA Method TO-17			Sample Concentration		Reporting Limit		
C	ompound	CAS	ng/L	ppb	ng/L	RI	Additional Information
	Ethanol	64-17-5	1100	580	2.1	480]*
1	Isopropanol	67-63-0	110	46	1.0	517]*

TO17 Compounds

EPA Method TO17 focuses on chemical compounds that are typical of industrial/manufacturing sources, many of these compounds are also found in commercial and residential environments. Accuracy for these chemical compounds is within ±15%.

This section lists all the TO17 compounds in alphabetical order (compounds not present or with concentrations below the reporting limit are listed with '<'; compounds above the reporting limit have bold text for the Sample Concentration). The concentrations are reported in two different units for easy comparison to exposure limits or other information. The Retention Index (RI) indicates volatility relative to adjacent n-alkanes. A more detailed description of reporting units and RI can be found at the end of the report.

			Reporting Limit		
CAS	ng/L	ppb	ng/L	RI	Additional Information
67-64-1	48	20	1.0	509	
75-05-8	0.6	0.4	0.4	522	
107-13-1	< 0.2	< 0.09	0.2	543	
71-43-2	0.4	0.1	0.2	631	
108-86-1	< 0.2	< 0.03	0.2	866	
74-97-5	< 0.2	< 0.04	0.2	603	
75-27-4	< 0.2	< 0.03	0.2	682	
75-25-2	< 0.2	< 0.02	0.2	837	
106-99-0	< 0.2	< 0.09	0.2	389	
98-06-6	< 0.2	< 0.04	0.2	900	
135-98-8	< 0.2	< 0.04	0.2	914	
104-51-8	< 0.2	< 0.04	0.2	949	
75-15-0	< 0.2	< 0.07	0.2	520	
56-23-5	0.7	0.1	0.2	623	
108-90-7	< 0.2	< 0.04	0.2	791	
124-48-1	< 0.2	< 0.02	0.2	759	
107-07-3	< 0.2	< 0.06	0.2	675	
67-66-3	0.2	0.05	0.2	608	
126-99-8	< 0.2	< 0.06	0.2	571	
107-05-1	< 0.2	< 0.07	0.2	527	
106-43-4	< 0.2	< 0.04	0.2	883	
95-49-8	< 0.2	< 0.04	0.2	877	
110-82-7	0.3	0.1	0.2	620	
96-12-8	< 0.4	< 0.04	0.4	991	
	67-64-1 75-05-8 107-13-1 71-43-2 108-86-1 74-97-5 75-27-4 75-25-2 106-99-0 98-06-6 135-98-8 104-51-8 75-15-0 56-23-5 108-90-7 124-48-1 107-07-3 67-66-3 126-99-8 107-05-1 106-43-4 95-49-8 110-82-7	Concen CAS ng/L 67-64-1 48 75-05-8 0.6 107-13-1 < 0.2	C 11 67-64-1 48 20 75-05-8 0.6 0.4 107-13-1 < 0.2	Concentration Limit CAS ng/L ppb ng/L 67-64-1 48 20 1.0 75-05-8 0.6 0.4 0.4 107-13-1 < 0.2	ConcentrationLimitCASng/Lppbng/LRI $67-64-1$ 48201.0509 $75-05-8$ 0.60.40.4522 $107-13-1$ < 0.2 < 0.09 0.2543 $71-43-2$ 0.40.10.2631 $108-86-1$ < 0.2 < 0.03 0.2866 $74-97-5$ < 0.2 < 0.03 0.2603 $75-27-4$ < 0.2 < 0.03 0.2682 $75-25-2$ < 0.2 < 0.03 0.2889 $98-06-6$ < 0.2 < 0.09 0.2389 $98-06-6$ < 0.2 < 0.04 0.2900 $135-98-8$ < 0.2 < 0.04 0.2914 $104-51-8$ < 0.2 < 0.04 0.2914 $104-51-8$ < 0.2 < 0.04 0.2929 $75-15-0$ < 0.2 < 0.04 0.2759 $108-90-7$ < 0.2 < 0.04 0.2759 $107-07-3$ < 0.2 < 0.06 0.2759 $107-07-3$ < 0.2 < 0.06 0.2671 $107-05-1$ < 0.2 < 0.07 0.2527 $106-43-4$ < 0.2 < 0.04 0.2883 $95-49-8$ < 0.2 < 0.04 0.2873 $95-49-8$ < 0.2 < 0.04 0.2874 $10-82-7$ 0.3 0.1 0.2 874

riisiii Analyticai technologies		Laboratory ID: 99670-4					
		Sam Concer	Reporting Limit				
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information	
1,2-Dibromoethane	106-93-4	< 0.2	< 0.03	0.2	766		
Dibromomethane	74-95-3	< 0.2	< 0.03	0.2	674		
trans 1,4-Dichloro-2-butene	110-57-6	< 0.2	< 0.04	0.2	865		
cis 1,4-Dichloro-2-butene	1476-11-5	< 0.2	< 0.04	0.2	848		
1,2-Dichlorobenzene	95-50-1	< 0.2	< 0.03	0.2	951		
1,3-Dichlorobenzene	541-73-1	< 0.2	< 0.03	0.2	923		
1,4-Dichlorobenzene	106-46-7	2.3	0.4	0.2	930		
1,1-Dichloroethane	75-34-3	< 0.2	< 0.05	0.2	567		
1,2-Dichloroethane	107-06-2	< 0.2	< 0.05	0.2	633		
cis 1,2-Dichloroethene	156-59-2	< 0.2	< 0.05	0.2	593		
trans 1,2-Dichloroethene	156-60-5	< 0.2	< 0.05	0.2	548		
1,1-Dichloroethene	75-35-4	< 0.2	< 0.05	0.2	508		
2,2-Dichloropropane	594-20-7	< 0.2	< 0.04	0.2	593		
1,2-Dichloropropane	78-87-5	< 0.2	< 0.04	0.2	670		
1,3-Dichloropropane	142-28-9	< 0.2	< 0.04	0.2	748		
trans 1,3-Dichloropropene	10061-02-6	< 0.2	< 0.05	0.2	729		
1,1-Dichloropropene	563-58-6	< 0.2	< 0.05	0.2	623		
cis 1,3-Dichloropropene	10061-01-5	< 0.2	< 0.05	0.2	701		
Diethyl ether	60-29-7	< 0.2	< 0.07	0.2	493		
1,4-Dioxane	123-91-1	< 0.4	< 0.1	0.4	673		
Ethanol	64-17-5	1100	580	2.1	480]*	
Ethylacetate	141-78-6	4.8	1.3	0.2	594		
Ethylbenzene	100-41-4	0.4	0.1	0.2	795		
Ethylmethacrylate	97-63-2	< 0.2	< 0.04	0.2	731		
4-Ethyltoluene	622-96-8	< 0.2	< 0.04	0.2	878	-	
Hexachlorobutadiene	87-68-3	< 0.2	< 0.02	0.2	1036	-	
Hexane (C 6)	110-54-3	0.8	0.2	0.2	562	-	
Isooctane	540-84-1	< 0.2	< 0.04	0.2	638	2,2,4-Trimethylpentane	
Isopropanol	67-63-0	110	46	1.0	517]*	
Isopropylbenzene	98-82-8	< 0.2	< 0.04	0.2	846		

Analytical Report

ieny Filsin Analytical Technologies	Laboratory ID: 99670-4		D: 99670-4			
Compound		Sam Concer		Reporting Limit		
	CAS	ng/L	ppb	ng/L	RI	Additional Information
p-Isopropyltoluene	99-87-6	0.4	0.07	0.2	924	
Methacrylonitrile	126-98-7	< 0.2	< 0.07	0.2	600	
Methyl methacrylate	80-62-6	< 0.2	< 0.06	0.2	672	
Methyl Tertiary Butyl Ether	1634-04-4	< 0.2	< 0.06	0.2	547	МТВЕ
2-Methyl-1-propanol	78-83-1	0.8	0.3	0.2	625	Isobutyl alcohol
4-Methyl-2-pentanone	108-10-1	1.3	0.3	0.2	707	Methyl isobutyl ketone (MIBK)
Methylacrylate	96-33-3	< 0.2	< 0.06	0.2	595	
Methylene Chloride	75-09-2	0.5	0.1	0.2	533	
2-Methylnaphthalene	91-57-6	< 0.4	< 0.07	0.4	1095	
Naphthalene	91-20-3	< 0.4	< 0.08	0.4	1042	
Nitrobenzene	98-95-3	< 0.8	< 0.2	0.8	999	
Pentachloroethane	76-01-7	< 0.2	< 0.03	0.2	902	
Propionitrile	107-12-0	< 0.2	< 0.09	0.2	593	
n-Propylbenzene	103-65-1	< 0.2	< 0.04	0.2	871	
Styrene	100-42-5	0.6	0.1	0.2	825	
1,1,2,2-Tetrachloroethane	79-34-5	< 0.2	< 0.03	0.2	863	
1,1,1,2-Tetrachloroethane	630-20-6	< 0.2	< 0.03	0.2	794	
Tetrachloroethene	127-18-4	< 0.2	< 0.03	0.2	746	
Tetrahydrofuran	109-99-9	< 0.2	< 0.07	0.2	604	
Toluene	108-88-3	3.6	0.9	0.2	719	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	0.5	0.07	0.2	510	
1,2,4-Trichlorobenzene	120-82-1	< 0.2	< 0.03	0.2	1030	
1,2,3-Trichlorobenzene	87-61-6	< 0.2	< 0.03	0.2	1052	
1,1,2-Trichloroethane	79-00-5	< 0.2	< 0.04	0.2	739	
1,1,1-Trichloroethane	71-55-6	< 0.2	< 0.04	0.2	616	-
Trichloroethene	79-01-6	< 0.2	< 0.04	0.2	660	-
1,2,3-Trichloropropane	96-18-4	< 0.2	< 0.03	0.2	867	-
1,3,5-Trimethylbenzene	108-67-8	< 0.2	< 0.04	0.2	881	-
1,2,4-Trimethylbenzene	95-63-6	< 0.2	< 0.04	0.2	903	-
m,p-Xylene	108-38-3; 106-42-3	1.1	0.3	0.4	802	
					-	

		Sample Concentration		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
o-Xylene	95-47-6	0.4	0.09	0.2	825	

Compound Notes

J*

The accuracy of this determination may be degraded because the reported value exceeded the calibrated range by more than a factor of 10.

Semiquantitative Compounds

Semiquantitative data includes compounds that have not been calibrated but have some reference information indicating the validity of the compound identification, an acceptable reference library match, or some other supporting evidence as part of the extensive Prism compound database.

This section lists the Semiquantitative compounds detected in this air sample above the reporting limit in alphabetical order. The concentrations are reported in two different units for easy comparison to exposure limits or other information. Note that the conversion to ppb requires the molecular weight of the chemical compound so those compounds that are non-specific (e.g., C10-C12 Hydrocarbon) do not have a concentration in ppb listed. The Retention Index (RI) indicates volatility relative to adjacent n-alkanes. A more detailed description of these terms can be found at the end of the report.

		San Concer		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
2,6-Dimethyl-7-octen-2-ol	18479-58-8	4	0.6	4	963	
Acetaldehyde	75-07-0	33	18	4	399	
Benzaldehyde	100-52-7	6	1	4	903	
Butane (C 4)	106-97-8	13	5	4	384	
1-Butanol	71-36-3	36	12	4	653	
1-Butoxy-2-propanol	5131-66-8	5	0.9	4	864	
2-Butoxyethanol	111-76-2	26	5	4	843	
Butoxyethoxyethanol	112-34-5	18	3	4	1029	
C12-C14 Hydrocarbon	N/A	5	N/A	4	1051	Contains silicon and oxygen; appears to be a siloxane
C7-C9 Hydrocarbon	N/A	11	N/A	4	755	Sum of two overlapping hydrocarbons; one is n-butyl acetate (CAS); one is hexanal (CAS)
Diethylene glycol ethyl ether	111-90-0	8	1	4	922	DEGMEE; Carbitol
Dipropylene glycol methyl ether	13588-28-8; 34590-94-8	320	52	4	912	DPGME
Dodecane (C 12)	112-40-3	7	1	4	1008	
2-Ethyl-1-hexanol	104-76-7	18	3	4	936	
Ethylene Glycol	107-21-1	58	22	4	714	
Isobutane	75-28-5	9	4	4	359	
Isohexadecane	4390-04-9	5	0.6	4	1077	
Isoprene	78-79-5	4	2	4	497	
Limonene	138-86-3 or 5989-27-5	22	4	4	923	Limonene (CAS 138-86-3) or d- Limonene (CAS 5989-27-5)
Methoxy-2-propanol	107-98-2	6	2	4	654	PGME
2-Methylbutane	78-78-4	6	2	4	447	

		Sample Reporting Concentration Limit				
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Nonanal	124-19-6	6	1	4	983	
Pentane (C 5)	109-66-0	17	6	4	475	
Propylene glycol	57-55-6	8	3	4	747	
2,4,7,9-Tetramethyl-5-decyne-4,7-diol	126-86-3	9	0.9	4	1135	
Texanol-A	74367-33-2	260	29	4	1122	
Texanol-B	74367-34-3	330	37	4	1127	
Tridecane (C 13)	629-50-5	5	0.7	4	1054	

These results pertain only to this sample as it was collected and to the items reported. These results have been reviewed and approved by the Laboratory Director or authorized representative.

thia Sela

Alice E. Delia, Ph.D., Laboratory Director

Enthalpy Analytical, LLC (MTP) 2625 Denison Dr. Mt. Pleasant, MI 48858 989-772-5088

Supplemental Information: Odorants

Many chemical compounds have odors associated with them, some pleasant and some unpleasant. These odors can combine to create different odors, making odor identification more difficult. The odor descriptions for the compounds reported in this air sample are listed below as well as some of the more common sources.

Compound	CAS	Conc. (ng/L)	Conc. (ppb)	Odor Range (ppb)	Odor Description	
Acetaldehyde	75-07-0	33	18	2 - 1,000,000	pungent, fruity, suffocating, fresh, green	
Acetone	67-64-1	48	20	400 - 11,745,000	sweet, fruity, etherous	
Acetonitrile	75-05-8	0.6	0.4	13,000 - 1,161,000	etherish	
Benzaldehyde	100-52-7	6	1	2 - 783,000	bitter almond, fruit, vanilla	
Benzene	71-43-2	0.4	0.1	470 - 313,000	aromatic, sweet, solvent, empyreumatic	
Butane (C 4)	106-97-8	13	5	421 - 5,048,000	natural gas	
1-Butanol	71-36-3	36	12	3 - 990,000	sweet, malty, alcohol, medicinal	
2-Butoxyethanol	111-76-2	26	5	43 - 390	sweet, ester, musty	
Carbon Tetrachloride	56-23-5	0.7	0.1	1,680 - 720,000	sweet, ethereal, dry cleaner, aromatic	
Chloroform	67-66-3	0.2	0.05	102 - 1,413,000	sweet, etherous, suffocating	
Cyclohexane	110-82-7	0.3	0.1	520 - 784,000	aromatic, chloroform, pungent, sweet	
1,4-Dichlorobenzene	106-46-7	2.3	0.4	121 - 15,000	camphor, mothballs	
Diethylene glycol ethyl ether	111-90-0	8	1	200 - 1,090	ethereal, mild, pleasant	
Ethanol	64-17-5	1100	580	90 - 40,334,000	vinous, alcohol	
2-Ethyl-1-hexanol	104-76-7	18	3	75 - 150	citrus, fatty, floral, fresh, fruity, green, musty, oily, sweet	
Ethylacetate	141-78-6	4.8	1.3	90 - 190,000	fruity, sweet, fingernail polish, etherous	
Ethylbenzene	100-41-4	0.4	0.1	2 - 18,000	oily, solvent	
Ethylene Glycol	107-21-1	58	22	5,120 -	_	
Hexane (C 6)	110-54-3	0.8	0.2	1,500 - 248,000	gasoline	
Isoprene	78-79-5	4	2	47 - 3,590	aromatic	
Isopropanol	67-63-0	110	46	1,000 - 2,197,000	sharp, rubbing alcohol	
Limonene	138-86-3 or 5989- 27-5	22	4	2 - 310	lemon, plastic, citrus, rubber, terpeny	
Methoxy-2-propanol	107-98-2	6	2	8,390 - 33,000	etherish, ammonia	
2-Methyl-1-propanol	78-83-1	0.8	0.3	10 - 165,000	sweet, fusel, musty, alcohol, rubber, latex	

				-	
Compound	CAS	Conc. (ng/L)	Conc. (ppb)	Odor Range (ppb)	Odor Description
4-Methyl-2-pentanone	108-10-1	1.3	0.3	30 - 16,000	camphor, dairy, fruity, green, herbal, pleasant, sharp solvent, spicy, sweet
Methylene Chloride	75-09-2	0.5	0.1	1,200 - 440,000	sweet
Pentane (C 5)	109-66-0	17	6	1,290 - 1,147,000	sweet
Propylene glycol	57-55-6	8	3	5,140 -	-
Styrene	100-42-5	0.6	0.1	3 - 61,000	sharp, sweet
Toluene	108-88-3	3.6	0.9	21 - 157,000	sour, burnt
m,p-Xylene	108-38-3; 106-42-3	1.1	0.3	12 - 316,000	sweet, empyreumatic
o-Xylene	95-47-6	0.4	0.09	12 - 316,000	sweet, empyreumatic

Supplemental Information: EPA Hazardous Air Pollutants (HAPs)

Hazardous air pollutants, also known as toxic air pollutants or air toxics, are those pollutants that are known or suspected to cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse environmental effects. Of the 187 compounds or groups defined as HAPs, approximately 65 can be detected with this analysis. Listed below are those HAPs that were detected in this air sample. For more information about HAPs visit the EPA <u>Air Toxics website</u>. The exposure limits listed below can also be found in the <u>NIOSH Guide to Chemical Hazards</u>.

Compound	CAS	Conc. (ng/L)	NIOSH TWA REL	Potential Health Effects
Benzene	71-43-2	0.4	320 ng/L (100 ppb)	Gasoline. Less common sources include some discontinued solvents; printing and lithography; paints and coatings; rubber; dry cleaning; adhesives; detergents
Carbon Tetrachloride	56-23-5	0.7	Carcinogen	Solvent; metal degreasing; refrigerant; agricultural fumigant; fire retardant (former use)
Chloroform	67-66-3	0.2	Carcinogen	Formed during the chlorination of drinking water, wastewater and swimming pools. Also pulp and paper mills, hazardous waste sites, and sanitary landfills
1,4-Dichlorobenzene	106-46-7	2.3	Carcinogen	Moth balls/crystals; room deodorant
Ethylbenzene	100-41-4	0.4	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; solvent; pesticide
Methylene Chloride	75-09-2	0.5	Carcinogen	Automotive products; degreasing solvent; paint stripper; adhesive remover; aerosol propellant; insecticide
Styrene	100-42-5	0.6	215,000 ng/L (50,000 ppb)	Polystyrene foam; synthetic rubber; flavoring agent
Toluene	108-88-3	3.6	375,000 ng/L (100,000 ppb)	Gasoline; adhesives (building and arts/crafts); contact cement; solvent; heavy duty cleaner
m,p-Xylene	108-38-3; 106-42-3	1.1	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; adhesives and cements; solvent; print cartridges
o-Xylene	95-47-6	0.4	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; adhesives and cements; solvent; print cartridges

Additional Information

Glossary of Terms

Total VOCs (TVOC): TVOC is one of the samples with each other or with target I_{TVOC} $\binom{ng}{L} = \frac{\left[\frac{(A_s - A_b) \times W_s}{A_i}\right]}{L_s}$ uality indicators. It allows comparison of multiple to the calculation between 2 and 45 contains between 2 and 45 contains at the calculation of the calculati contain between 3 and 15 carbon atoms (along with the associated hydrogen, as well as oxygen, nitrogen, sulfur, silicon, etc.), although certain compounds outside this range of carbon atoms may be included depending on the type of compound.

Where:

As - C3-C15 TIC (Total Ion Chromatogram from GC-MS) area of the sample Ab - C3-C15 TIC area of the media blank Ws - Weight of the internal standard added in ng Ai – average TIC area of the internal standard peak(s) Ls – Volume of the sample in L

CAS: The Chemical Abstract Service (CAS) assigns a unique number to chemical compounds, commonly referred to as the CAS number. This number is usually the best way to search for additional information about the compound since some compounds may have many names but only one CAS number.

Reporting Units - ng/L: Most concentrations for air samples will be reported in units of ng/L, which translates to ng of

that specific chemical compound present per liter of air sampled. Concentration in ng/L is equivalent to $\mu g/m^3$. Reporting Units - ppb: Some sections o^{Conc} (*ppb*) = $\frac{Conc}{\frac{ng}{L} \times 24.04(\frac{L}{mol})}{\frac{MW(\frac{g}{mol})}{\frac{mol}{mol}}}$ h compound concentrations displayed in or reference limits. The concentration in units of ppb (parts per billion), which are or reference limits. The concentration in ng/L (or µg/m³ can be converted easily to ppb using the following formula derived from the Ideal Gas Law.

Where:

Vm = Molar Volume as 24.04 L/mol at 1 atm pressure and 20 °C (68 °F) MW = Molecular Weight in g/mol

Reporting Limit: The Reporting Limit column displays the lowest possible concentration that could be reported for that compound for that sample and analysis. Typically the reporting limit is displayed in units of ng/L but other units may be used as appropriate.

Retention Index (RI): The retention index is a means of converting a compound GC-MS retention time, which is dependent on the type of system and specific operating parameters, into an independent and universal value based on the elution of the adjacent n-alkanes. Each n-alkane is assigned a retention index based on its carbon number, e.g., pentane (C5) has a retention index of 500 and hexane (C6) has a retention index of 600, etc. For example, a hydrocarbon with a retention index of 550 would be expected to elute at the midpoint between pentane and hexane. Using the elution of the n-alkanes as the $RI_x = 100n + 100 \times \frac{(RT_x - RT_n)}{(RT_{n+1} - RT_n)}$ retention index of organic compounds to be applicable across almost any GC-MS GC-MS instruments used by Prism, can be determined using the following formula derived from the Kovats isothermal retention index.

Where:

RIx – retention index of target compound x n – Carbon number of n-alkane eluting before the target compound x RTx – retention time of target compound x

RTn – retention time of n-alkane eluting before target compound x RTn+1 – retention time of n-alkane eluting after target compound x

Odor Description: Description of the odor (e.g., fruity)

HAPs: Hazardous Air Pollutants

NIOSH: National Institute for Occupational Safety and Health

TWA: Time Weighted Average

REL: Recommended Exposure Limit

Ca: Potential carcinogen

Sources for Additional Compound Information:

The compound information displayed in this report (e.g., odor description, exposure limits, etc.) is gathered from a variety of sources, including but not limited to, the <u>NIST Chemistry Webbook</u>, the <u>NIOSH Pocket Guide to Chemical Hazards</u>, the <u>Household Products Database</u>, the University of Akron <u>Chemical Database</u>, the <u>WISER</u> (for Emergency Responders), <u>IRIS</u>, <u>ToxNet</u>, <u>ATSDR</u>. Prism does not guarantee the accuracy of this information or endorse any of the views or opinions expressed.

This analysis was performed by Enthalpy Analytical, LLC (MTP). The results contained in this report are dependent upon a number of factors over which Enthalpy Analytical, LLC (MTP) has no control, which may include, but are not limited to, the sampling technique utilized, the size or source of sample, the ability of the sampler to collect a proper or suitable sample, the compounds which make up the TVOC, and/or the type of mold(s) present. Therefore, the opinions contained in this report may be invalid and cannot be considered or construed as definitive and neither Prism, nor its agents, officers, directors, employees, or successors shall be liable for any claims, actions, causes of action, costs, loss of service, medical or other expenses or any compensation whatsoever which may now or hereafter occur or accrue based upon the information or opinions contained herein.

Analytical Report

Client:	JS Held, LLC 50 Jericho Quadrangle Ste 117 Jericho, NY 11753 US	COC: Laboratory ID:	99670 99670-5
,	James Harvey Marshall H.S.21111804 805 S. Miami Ave. Marshall, MO 65340	Received Date: Approved Date: Scanned Date:	03/31/2022
Client Sample ID: Volume: Date Sampled: Sample Type:	24 L 03/30/2022	Report Date:	

Comp-Air Survey Analysis

Applicable methods for this analytical technique include (with relevant modifications) US EPA TO-17 and ISO 16000-6. A scan was made for all compounds contained in the Air Survey Analysis List (TB503 Quantitative and Semiquantitative List). All compounds detected are listed below.

Comp-Air Survey Analysis Report Description

The Comp-Air (Comprehensive-Air) Survey Analysis is designed to provide additional information beyond the high quality chemical data from the air sample. This additional information may aid in interpretation of results.

Your Report is divided into several sections describing different aspects of the chemical composition of your sample.

1. Sample Summary: listing of some of the aggregate values from this air sample (e.g., Total VOCs).

2. Top 5: listing of the five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds (see below for a description of TO17 and Semiquantitative Compounds).

3. TO17 Compounds: listing of the chemical compounds characterized by EPA method TO17. Some of these are Hazardous Air Pollutants (HAPs) and others are typical of industrial/manufacturing sources. Accuracy for TO17 compounds is within ±15%.

4. Semiquantitative Compounds: listing of chemical compounds that have not been calibrated but have some reference information indicating the validity of the compound identification, an acceptable reference library match, or some other supporting evidence of identification. Also listed in this section are compounds that are not specificially identified but for which some information is available (e.g., C10-C12 Hydrocarbons; probably an alcohol). Instrument and media response have not been confirmed for most chemical compounds reported semiquantitatively, conferring an accuracy on the order of ±50% based on an instrument and media response of unity. Semiquantitative results should be interpreted relative to other chemical compounds.

5. Supplemental Information: Odorants: listing of the odor characteristics of chemical compounds present in this air sample. Almost all chemical compounds have an odor and a mixture of various chemical compounds could alter the odor characteristics. Some chemical compounds have a strong odor at relatively low concentrations so the individual chemical compound concentrations may be of secondary importance relative to the odor characteristics for odor concerns.

6. Supplemental Information: EPA Hazardous Air Pollutants (HAPs): listing of the chemical compounds detected in this air sample that are known or suspected to have serious health or environmental effects (also known as air toxics). HAPs include VOCs, metals, some pesticides/insecticides that are primarily semi-volatile, inorganic compounds, and very volatile organic compounds. Of the 187 compounds or groups defined as HAPs, approximately 65 are VOCs that can be detected with this analysis.

7. Additional Information: definitions, calculations, and other useful information.

Sample Summary

General information regarding the sample and aggregate concentrations, e.g., Total VOCs, are listed below. The top five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds are also listed. The full list of compounds and their concentrations in this air sample are listed later in the report and may be displayed more than once depending on the categorization of specific compounds.

	Sample Concentration	Reporting Limit	_
Compound	ng/L	ng/L	Additional Information
Total VOCs	< 200	200	Total volatile organic compounds calculated based on internal standard ratio; does not include C1, C2, or methanol.
	Sample Concentration	Reporting Limit	
Compound	ng/L	ng/L	Additional Information
Total Mold VOCs (TMVOC)	< 3	3	TMVOC is an assessment of the quantity of actively growing mold in the sample location.

Top 5

The top five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds are listed below.

EPA Method TO-17			Sam Concen	•	Reporting Limit		
	Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
	Ethanol	64-17-5	8.8	4.6	2.1	480	
	Ethylacetate	141-78-6	0.4	0.1	0.2	594	

TO17 Compounds

EPA Method TO17 focuses on chemical compounds that are typical of industrial/manufacturing sources, many of these compounds are also found in commercial and residential environments. Accuracy for these chemical compounds is within ±15%.

This section lists all the TO17 compounds in alphabetical order (compounds not present or with concentrations below the reporting limit are listed with '<'; compounds above the reporting limit have bold text for the Sample Concentration). The concentrations are reported in two different units for easy comparison to exposure limits or other information. The Retention Index (RI) indicates volatility relative to adjacent n-alkanes. A more detailed description of reporting units and RI can be found at the end of the report.

		Sam Concen		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Acetone	67-64-1	< 1	< 0.4	1.0	509	
Acetonitrile	75-05-8	< 0.4	< 0.2	0.4	522	
Acrylonitrile	107-13-1	< 0.2	< 0.09	0.2	543	
Benzene	71-43-2	< 0.2	< 0.06	0.2	631	
Bromobenzene	108-86-1	< 0.2	< 0.03	0.2	866	
Bromochloromethane	74-97-5	< 0.2	< 0.04	0.2	603	
Bromodichloromethane	75-27-4	< 0.2	< 0.03	0.2	682	
Bromoform	75-25-2	< 0.2	< 0.02	0.2	837	
1,3-Butadiene	106-99-0	< 0.2	< 0.09	0.2	389	
tert-Butylbenzene	98-06-6	< 0.2	< 0.04	0.2	900	
sec-Butylbenzene	135-98-8	< 0.2	< 0.04	0.2	914	
n-Butylbenzene	104-51-8	< 0.2	< 0.04	0.2	949	
Carbon Disulfide	75-15-0	< 0.2	< 0.07	0.2	520	
Carbon Tetrachloride	56-23-5	< 0.2	< 0.03	0.2	623	
Chlorobenzene	108-90-7	< 0.2	< 0.04	0.2	791	
Chlorodibromomethane	124-48-1	< 0.2	< 0.02	0.2	759	
2-Chloroethanol	107-07-3	< 0.2	< 0.06	0.2	675	
Chloroform	67-66-3	< 0.2	< 0.04	0.2	608	
Chloroprene	126-99-8	< 0.2	< 0.06	0.2	571	
3-Chloropropene	107-05-1	< 0.2	< 0.07	0.2	527	
4-Chlorotoluene	106-43-4	< 0.2	< 0.04	0.2	883	
2-Chlorotoluene	95-49-8	< 0.2	< 0.04	0.2	877	
Cyclohexane	110-82-7	< 0.2	< 0.06	0.2	620	
1,2-Dibromo-3-chloropropane	96-12-8	< 0.4	< 0.04	0.4	991	

Analytical Report

any riisin Analyticar recimologies		Laboratory II				
Compound		Sample Concentration		Reporting Limit		
	CAS	ng/L	ppb	ng/L	RI	Additional Information
1,2-Dibromoethane	106-93-4	< 0.2	< 0.03	0.2	766	
Dibromomethane	74-95-3	< 0.2	< 0.03	0.2	674	
trans 1,4-Dichloro-2-butene	110-57-6	< 0.2	< 0.04	0.2	865	
cis 1,4-Dichloro-2-butene	1476-11-5	< 0.2	< 0.04	0.2	848	
1,2-Dichlorobenzene	95-50-1	< 0.2	< 0.03	0.2	951	
1,3-Dichlorobenzene	541-73-1	< 0.2	< 0.03	0.2	923	
1,4-Dichlorobenzene	106-46-7	< 0.2	< 0.03	0.2	930	
1,1-Dichloroethane	75-34-3	< 0.2	< 0.05	0.2	567	
1,2-Dichloroethane	107-06-2	< 0.2	< 0.05	0.2	633	
cis 1,2-Dichloroethene	156-59-2	< 0.2	< 0.05	0.2	593	
trans 1,2-Dichloroethene	156-60-5	< 0.2	< 0.05	0.2	548	
1,1-Dichloroethene	75-35-4	< 0.2	< 0.05	0.2	508	
2,2-Dichloropropane	594-20-7	< 0.2	< 0.04	0.2	593	
1,2-Dichloropropane	78-87-5	< 0.2	< 0.04	0.2	670	
1,3-Dichloropropane	142-28-9	< 0.2	< 0.04	0.2	748	
trans 1,3-Dichloropropene	10061-02-6	< 0.2	< 0.05	0.2	729	
1,1-Dichloropropene	563-58-6	< 0.2	< 0.05	0.2	623	
cis 1,3-Dichloropropene	10061-01-5	< 0.2	< 0.05	0.2	701	
Diethyl ether	60-29-7	< 0.2	< 0.07	0.2	493	
1,4-Dioxane	123-91-1	< 0.4	< 0.1	0.4	673	
Ethanol	64-17-5	< 2.1	< 1.1	2.1	480	
Ethanol	64-17-5	8.8	4.6	2.1	480	
Ethylacetate	141-78-6	< 0.2	< 0.06	0.2	594	
Ethylacetate	141-78-6	0.4	0.1	0.2	594	-
Ethylbenzene	100-41-4	< 0.2	< 0.05	0.2	795	
Ethylmethacrylate	97-63-2	< 0.2	< 0.04	0.2	731	
4-Ethyltoluene	622-96-8	< 0.2	< 0.04	0.2	878	
Hexachlorobutadiene	87-68-3	< 0.2	< 0.02	0.2	1036	
Hexane (C 6)	110-54-3	< 0.2	< 0.06	0.2	562	
Isooctane	540-84-1	< 0.2	< 0.04	0.2	638	2,2,4-Trimethylpentane

Analytical Report

eny Frism Analytical recimologies		Laboratory ID: 99670-5				
Compound		Sam Concer		Reporting Limit		Additional Information
	CAS	ng/L	ppb	ng/L	RI	
Isopropanol	67-63-0	< 1	< 0.4	1.0	517	
Isopropylbenzene	98-82-8	< 0.2	< 0.04	0.2	846	
p-Isopropyltoluene	99-87-6	< 0.2	< 0.04	0.2	924	
Methacrylonitrile	126-98-7	< 0.2	< 0.07	0.2	600	
Methyl methacrylate	80-62-6	< 0.2	< 0.06	0.2	672	
Methyl Tertiary Butyl Ether	1634-04-4	< 0.2	< 0.06	0.2	547	МТВЕ
2-Methyl-1-propanol	78-83-1	< 0.2	< 0.07	0.2		Isobutyl alcohol
4-Methyl-2-pentanone	108-10-1	< 0.2	< 0.05	0.2	707	Methyl isobutyl ketone (MIBK)
Methylacrylate	96-33-3	< 0.2	< 0.06	0.2	595	
Methylene Chloride	75-09-2	< 0.2	< 0.06	0.2	533	
2-Methylnaphthalene	91-57-6	< 0.4	< 0.07	0.4	1095	
Naphthalene	91-20-3	< 0.4	< 0.08	0.4	1042	
Nitrobenzene	98-95-3	< 0.8	< 0.2	0.8	999	
Pentachloroethane	76-01-7	< 0.2	< 0.03	0.2	902	
Propionitrile	107-12-0	< 0.2	< 0.09	0.2	593	
n-Propylbenzene	103-65-1	< 0.2	< 0.04	0.2	871	
Styrene	100-42-5	< 0.2	< 0.05	0.2	825	
1,1,2,2-Tetrachloroethane	79-34-5	< 0.2	< 0.03	0.2	863	
1,1,1,2-Tetrachloroethane	630-20-6	< 0.2	< 0.03	0.2	794	
Tetrachloroethene	127-18-4	< 0.2	< 0.03	0.2	746	
Tetrahydrofuran	109-99-9	< 0.2	< 0.07	0.2	604	
Toluene	108-88-3	< 0.2	< 0.05	0.2	719	
,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	< 0.2	< 0.03	0.2	510	
1,2,4-Trichlorobenzene	120-82-1	< 0.2	< 0.03	0.2	1030	
1,2,3-Trichlorobenzene	87-61-6	< 0.2	< 0.03	0.2	1052	
1,1,2-Trichloroethane	79-00-5	< 0.2	< 0.04	0.2	739	
1,1,1-Trichloroethane	71-55-6	< 0.2	< 0.04	0.2	616	
Trichloroethene	79-01-6	< 0.2	< 0.04	0.2	660	
1,2,3-Trichloropropane	96-18-4	< 0.2	< 0.03	0.2	867	
1,3,5-Trimethylbenzene	108-67-8	< 0.2	< 0.04	0.2	881	

		Sam Concen		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
1,2,4-Trimethylbenzene	95-63-6	< 0.2	< 0.04	0.2	903	
m,p-Xylene	108-38-3; 106-42-3	< 0.4	< 0.09	0.4	802	
o-Xylene	95-47-6	< 0.2	< 0.05	0.2	825	

Semiquantitative Compounds

Semiquantitative data includes compounds that have not been calibrated but have some reference information indicating the validity of the compound identification, an acceptable reference library match, or some other supporting evidence as part of the extensive Prism compound database.

This section lists the Semiquantitative compounds detected in this air sample above the reporting limit in alphabetical order. The concentrations are reported in two different units for easy comparison to exposure limits or other information. Note that the conversion to ppb requires the molecular weight of the chemical compound so those compounds that are non-specific (e.g., C10-C12 Hydrocarbon) do not have a concentration in ppb listed. The Retention Index (RI) indicates volatility relative to adjacent n-alkanes. A more detailed description of these terms can be found at the end of the report.

No Semiquantitative compounds are present in this sample.

These results pertain only to this sample as it was collected and to the items reported. These results have been reviewed and approved by the Laboratory Director or authorized representative.

Alice E. Delia, Ph.D., Laboratory Director

Enthalpy Analytical, LLC (MTP) 2625 Denison Dr. Mt. Pleasant, MI 48858 989-772-5088

Supplemental Information: Odorants

Many chemical compounds have odors associated with them, some pleasant and some unpleasant. These odors can combine to create different odors, making odor identification more difficult. The odor descriptions for the compounds reported in this air sample are listed below as well as some of the more common sources.

Compound	CAS	Conc. (ng/L)	Conc. (ppb)	Odor Range (ppb)	Odor Description
Ethanol	64-17-5	8.8	4.6	90 - 40,334,000	vinous, alcohol
Ethylacetate	141-78-6	0.4	0.1	90 - 190,000	fruity, sweet, fingernail polish, etherous

Supplemental Information: EPA Hazardous Air Pollutants (HAPs)

Hazardous air pollutants, also known as toxic air pollutants or air toxics, are those pollutants that are known or suspected to cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse environmental effects. Of the 187 compounds or groups defined as HAPs, approximately 65 can be detected with this analysis. Listed below are those HAPs that were detected in this air sample. For more information about HAPs visit the EPA <u>Air Toxics website</u>. The exposure limits listed below can also be found in the <u>NIOSH Guide to Chemical Hazards</u>.

No EPA Hazardous Air Pollutants are present in this sample.

Additional Information

Glossary of Terms

Total VOCs (TVOC): TVOC is one of the samples with each other or with target I_{TVOC} $\binom{ng}{L} = \frac{\left[\frac{(A_s - A_b) \times W_s}{A_i}\right]}{L_s}$ uality indicators. It allows comparison of multiple root and 15 contain between 2 and 15 contains between 2 and 15 contains a state of the same state of the sam contain between 3 and 15 carbon atoms (along with the associated hydrogen, as well as oxygen, nitrogen, sulfur, silicon, etc.), although certain compounds outside this range of carbon atoms may be included depending on the type of compound.

Where:

As - C3-C15 TIC (Total Ion Chromatogram from GC-MS) area of the sample Ab - C3-C15 TIC area of the media blank Ws - Weight of the internal standard added in ng Ai – average TIC area of the internal standard peak(s) Ls – Volume of the sample in L

CAS: The Chemical Abstract Service (CAS) assigns a unique number to chemical compounds, commonly referred to as the CAS number. This number is usually the best way to search for additional information about the compound since some compounds may have many names but only one CAS number.

Reporting Units - ng/L: Most concentrations for air samples will be reported in units of ng/L, which translates to ng of

that specific chemical compound present per liter of air sampled. Concentration in ng/L is equivalent to $\mu g/m^3$. Reporting Units - ppb: Some sections o^{Conc} (*ppb*) = $\frac{Conc}{\frac{ng}{L} \times 24.04(\frac{L}{mol})}{\frac{MW(\frac{g}{mol})}{\frac{mol}{mol}}}$ h compound concentrations displayed in or reference limits. The concentration in units of ppb (parts per billion), which are or reference limits. The concentration in ng/L (or µg/m³ can be converted easily to ppb using the following formula derived from the Ideal Gas Law.

Where:

Vm = Molar Volume as 24.04 L/mol at 1 atm pressure and 20 °C (68 °F) MW = Molecular Weight in g/mol

Reporting Limit: The Reporting Limit column displays the lowest possible concentration that could be reported for that compound for that sample and analysis. Typically the reporting limit is displayed in units of ng/L but other units may be used as appropriate.

Retention Index (RI): The retention index is a means of converting a compound GC-MS retention time, which is dependent on the type of system and specific operating parameters, into an independent and universal value based on the elution of the adjacent n-alkanes. Each n-alkane is assigned a retention index based on its carbon number, e.g., pentane (C5) has a retention index of 500 and hexane (C6) has a retention index of 600, etc. For example, a hydrocarbon with a retention index of 550 would be expected to elute at the midpoint between pentane and hexane. Using the elution of the n-alkanes as the $RI_x = 100n + 100 \times \frac{(RT_x - RT_n)}{(RT_{n+1} - RT_n)}$ retention index of organic compounds to be applicable across almost any GC-MS GC-MS instruments used by Prism, can be determined using the following formula derived from the Kovats isothermal retention index.

Where:

RIx – retention index of target compound x n – Carbon number of n-alkane eluting before the target compound x RTx – retention time of target compound x

RTn – retention time of n-alkane eluting before target compound x RTn+1 – retention time of n-alkane eluting after target compound x

Odor Description: Description of the odor (e.g., fruity)

HAPs: Hazardous Air Pollutants

NIOSH: National Institute for Occupational Safety and Health

TWA: Time Weighted Average

REL: Recommended Exposure Limit

Ca: Potential carcinogen

Sources for Additional Compound Information:

The compound information displayed in this report (e.g., odor description, exposure limits, etc.) is gathered from a variety of sources, including but not limited to, the <u>NIST Chemistry Webbook</u>, the <u>NIOSH Pocket Guide to Chemical</u> <u>Hazards</u>, the <u>Household Products Database</u>, the University of Akron <u>Chemical Database</u>, the <u>WISER</u> (for Emergency Responders), <u>IRIS</u>, <u>ToxNet</u>, <u>ATSDR</u>. Prism does not guarantee the accuracy of this information or endorse any of the views or opinions expressed.

This analysis was performed by Enthalpy Analytical, LLC (MTP). The results contained in this report are dependent upon a number of factors over which Enthalpy Analytical, LLC (MTP) has no control, which may include, but are not limited to, the sampling technique utilized, the size or source of sample, the ability of the sampler to collect a proper or suitable sample, the compounds which make up the TVOC, and/or the type of mold(s) present. Therefore, the opinions contained in this report may be invalid and cannot be considered or construed as definitive and neither Prism, nor its agents, officers, directors, employees, or successors shall be liable for any claims, actions, causes of action, costs, loss of service, medical or other expenses or any compensation whatsoever which may now or hereafter occur or accrue based upon the information or opinions contained herein.

Analytical Report

Client:	JS Held, LLC 50 Jericho Quadrangle Ste 117 Jericho, NY 11753 US	COC: Laboratory ID:	99670 99670-6
Project:	James Harvey Marshall H.S.21111804 805 S. Miami Ave. Marshall, MO 65340	Received Date: Approved Date: Scanned Date:	03/31/2022
Client Sample ID: Volume: Date Sampled: Sample Type:	24 L 03/30/2022	Report Date:	

Comp-Air Survey Analysis

Applicable methods for this analytical technique include (with relevant modifications) US EPA TO-17 and ISO 16000-6. A scan was made for all compounds contained in the Air Survey Analysis List (TB503 Quantitative and Semiquantitative List). All compounds detected are listed below.

Comp-Air Survey Analysis Report Description

The Comp-Air (Comprehensive-Air) Survey Analysis is designed to provide additional information beyond the high quality chemical data from the air sample. This additional information may aid in interpretation of results.

Your Report is divided into several sections describing different aspects of the chemical composition of your sample.

1. Sample Summary: listing of some of the aggregate values from this air sample (e.g., Total VOCs).

2. Top 5: listing of the five highest concentration compounds in the air sample from both the quantitative TO17 and Semiguantitative Compounds (see below for a description of TO17 and Semiguantitative Compounds).

3. TO17 Compounds: listing of the chemical compounds characterized by EPA method TO17. Some of these are Hazardous Air Pollutants (HAPs) and others are typical of industrial/manufacturing sources. Accuracy for TO17 compounds is within ±15%.

4. Semiquantitative Compounds: listing of chemical compounds that have not been calibrated but have some reference information indicating the validity of the compound identification, an acceptable reference library match, or some other supporting evidence of identification. Also listed in this section are compounds that are not specificially identified but for which some information is available (e.g., C10-C12 Hydrocarbons; probably an alcohol). Instrument and media response have not been confirmed for most chemical compounds reported semiquantitatively, conferring an accuracy on the order of ±50% based on an instrument and media response of unity. Semiquantitative results should be interpreted relative to other chemical compounds.

5. Supplemental Information: Odorants: listing of the odor characteristics of chemical compounds present in this air sample. Almost all chemical compounds have an odor and a mixture of various chemical compounds could alter the odor characteristics. Some chemical compounds have a strong odor at relatively low concentrations so the individual chemical compound concentrations may be of secondary importance relative to the odor characteristics for odor concerns.

6. Supplemental Information: EPA Hazardous Air Pollutants (HAPs): listing of the chemical compounds detected in this air sample that are known or suspected to have serious health or environmental effects (also known as air toxics). HAPs include VOCs, metals, some pesticides/insecticides that are primarily semi-volatile, inorganic compounds, and very volatile organic compounds. Of the 187 compounds or groups defined as HAPs, approximately 65 are VOCs that can be detected with this analysis.

7. Additional Information: definitions, calculations, and other useful information.

Sample Summary

General information regarding the sample and aggregate concentrations, e.g., Total VOCs, are listed below. The top five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds are also listed. The full list of compounds and their concentrations in this air sample are listed later in the report and may be displayed more than once depending on the categorization of specific compounds.

	Sample Concentration	Reporting Limit	_
Compound	ng/L	ng/L	Additional Information
Total VOCs	3800	200	Total volatile organic compounds calculated based on internal standard ratio; does not include C1, C2, or methanol.
	Sample Concentration	Reporting Limit	
Compound	ng/L	ng/L	Additional Information
Total Mold VOCs (TMVOC)	4	3	TMVOC is an assessment of the quantity of actively growing mold in the sample location.

Top 5

The top five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds are listed below.

Semiquantitative Compounds	Sample I Concentration		Reporting Limit			
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Dipropylene glycol methyl ether	13588-28-8; 34590-94-8	270	44	4	913	DPGME
Texanol-B	74367-34-3	230	25	4	1129	
Texanol-A	74367-33-2	170	19	4	1124	

EPA Method TO-17			Sam Concen		Reporting Limit		
	Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
	Ethanol	64-17-5	720	380	2.1	483]*
	Acetone	67-64-1	49	20	1.0	511	

TO17 Compounds

EPA Method TO17 focuses on chemical compounds that are typical of industrial/manufacturing sources, many of these compounds are also found in commercial and residential environments. Accuracy for these chemical compounds is within ±15%.

This section lists all the TO17 compounds in alphabetical order (compounds not present or with concentrations below the reporting limit are listed with '<'; compounds above the reporting limit have bold text for the Sample Concentration). The concentrations are reported in two different units for easy comparison to exposure limits or other information. The Retention Index (RI) indicates volatility relative to adjacent n-alkanes. A more detailed description of reporting units and RI can be found at the end of the report.

		Sam Concen		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Acetone	67-64-1	49	20	1.0	511	
Acetonitrile	75-05-8	< 0.4	< 0.2	0.4	524	
Acrylonitrile	107-13-1	< 0.2	< 0.09	0.2	545	
Benzene	71-43-2	0.4	0.1	0.2	632	
Bromobenzene	108-86-1	< 0.2	< 0.03	0.2	866	
Bromochloromethane	74-97-5	< 0.2	< 0.04	0.2	604	
Bromodichloromethane	75-27-4	< 0.2	< 0.03	0.2	682	
Bromoform	75-25-2	< 0.2	< 0.02	0.2	838	
1,3-Butadiene	106-99-0	< 0.2	< 0.09	0.2	391	
tert-Butylbenzene	98-06-6	< 0.2	< 0.04	0.2	900	
sec-Butylbenzene	135-98-8	< 0.2	< 0.04	0.2	914	
n-Butylbenzene	104-51-8	< 0.2	< 0.04	0.2	949	
Carbon Disulfide	75-15-0	< 0.2	< 0.07	0.2	521	
Carbon Tetrachloride	56-23-5	0.9	0.1	0.2	624	
Chlorobenzene	108-90-7	< 0.2	< 0.04	0.2	792	
Chlorodibromomethane	124-48-1	< 0.2	< 0.02	0.2	760	
2-Chloroethanol	107-07-3	< 0.2	< 0.06	0.2	675	
Chloroform	67-66-3	0.2	0.04	0.2	609	
Chloroprene	126-99-8	< 0.2	< 0.06	0.2	573	
3-Chloropropene	107-05-1	< 0.2	< 0.07	0.2	529	
4-Chlorotoluene	106-43-4	< 0.2	< 0.04	0.2	884	
2-Chlorotoluene	95-49-8	< 0.2	< 0.04	0.2	877	
Cyclohexane	110-82-7	0.2	0.07	0.2	621	
1,2-Dibromo-3-chloropropane	96-12-8	< 0.4	< 0.04	0.4	991	

Analytical Report

		Sample Concentration		Reporting Limit		
Compound	CAS	S ng/L ppb	ppb	ng/L	RI	Additional Information
1,2-Dibromoethane	106-93-4	< 0.2	< 0.03	0.2	766	
Dibromomethane	74-95-3	< 0.2	< 0.03	0.2	675	
trans 1,4-Dichloro-2-butene	110-57-6	< 0.2	< 0.04	0.2	865	
cis 1,4-Dichloro-2-butene	1476-11-5	< 0.2	< 0.04	0.2	849	
1,2-Dichlorobenzene	95-50-1	< 0.2	< 0.03	0.2	951	
1,3-Dichlorobenzene	541-73-1	< 0.2	< 0.03	0.2	923	
1,4-Dichlorobenzene	106-46-7	3.5	0.6	0.2	930	
1,1-Dichloroethane	75-34-3	< 0.2	< 0.05	0.2	569	
1,2-Dichloroethane	107-06-2	< 0.2	< 0.05	0.2	634	
cis 1,2-Dichloroethene	156-59-2	< 0.2	< 0.05	0.2	594	
trans 1,2-Dichloroethene	156-60-5	< 0.2	< 0.05	0.2	549	
1,1-Dichloroethene	75-35-4	< 0.2	< 0.05	0.2	510	
2,2-Dichloropropane	594-20-7	< 0.2	< 0.04	0.2	594	
1,2-Dichloropropane	78-87-5	< 0.2	< 0.04	0.2	671	
1,3-Dichloropropane	142-28-9	< 0.2	< 0.04	0.2	749	
trans 1,3-Dichloropropene	10061-02-6	< 0.2	< 0.05	0.2	729	
1,1-Dichloropropene	563-58-6	< 0.2	< 0.05	0.2	624	
cis 1,3-Dichloropropene	10061-01-5	< 0.2	< 0.05	0.2	701	
Diethyl ether	60-29-7	< 0.2	< 0.07	0.2	497	
1,4-Dioxane	123-91-1	< 0.4	< 0.1	0.4	673	
Ethanol	64-17-5	720	380	2.1	483]*
Ethylacetate	141-78-6	2.0	0.6	0.2	595	
Ethylbenzene	100-41-4	0.3	0.07	0.2	796	
Ethylmethacrylate	97-63-2	< 0.2	< 0.04	0.2	732	
4-Ethyltoluene	622-96-8	< 0.2	< 0.04	0.2	878	
Hexachlorobutadiene	87-68-3	< 0.2	< 0.02	0.2	1037	-
Hexane (C 6)	110-54-3	0.8	0.2	0.2	563	
Isooctane	540-84-1	< 0.2	< 0.04	0.2	638	2,2,4-Trimethylpentane
Isopropanol	67-63-0	44	18	1.0	519	
Isopropylbenzene	98-82-8	< 0.2	< 0.04	0.2	847	

Analytical Report

		Sam Concer	nple ntration	Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
p-Isopropyltoluene	99-87-6	0.5	0.08	0.2	924	
Methacrylonitrile	126-98-7	< 0.2	< 0.07	0.2	601	
Methyl methacrylate	80-62-6	< 0.2	< 0.06	0.2	672	-
Methyl Tertiary Butyl Ether	1634-04-4	< 0.2	< 0.06	0.2	549	MTBE
2-Methyl-1-propanol	78-83-1	< 0.2	< 0.07	0.2		Isobutyl alcohol
4-Methyl-2-pentanone	108-10-1	2.9	0.7	0.2	707	Methyl isobutyl ketone (MIBK)
Methylacrylate	96-33-3	< 0.2	< 0.06	0.2	596	
Methylene Chloride	75-09-2	0.6	0.2	0.2	535	
2-Methylnaphthalene	91-57-6	< 0.4	< 0.07	0.4	1096	
Naphthalene	91-20-3	0.4	0.08	0.4	1043	
Nitrobenzene	98-95-3	< 0.8	< 0.2	0.8	999	
Pentachloroethane	76-01-7	< 0.2	< 0.03	0.2	902	
Propionitrile	107-12-0	< 0.2	< 0.09	0.2	594	
n-Propylbenzene	103-65-1	< 0.2	< 0.04	0.2	871	
Styrene	100-42-5	0.4	0.09	0.2	826	
1,1,2,2-Tetrachloroethane	79-34-5	< 0.2	< 0.03	0.2	863	
1,1,1,2-Tetrachloroethane	630-20-6	< 0.2	< 0.03	0.2	796	
Tetrachloroethene	127-18-4	< 0.2	< 0.03	0.2	746	
Tetrahydrofuran	109-99-9	< 0.2	< 0.07	0.2	605	
Toluene	108-88-3	3.1	0.8	0.2	719	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	0.5	0.07	0.2	512	
1,2,4-Trichlorobenzene	120-82-1	< 0.2	< 0.03	0.2	1030	
1,2,3-Trichlorobenzene	87-61-6	< 0.2	< 0.03	0.2	1053	
1,1,2-Trichloroethane	79-00-5	< 0.2	< 0.04	0.2	740	-
1,1,1-Trichloroethane	71-55-6	< 0.2	< 0.04	0.2	617	
Trichloroethene	79-01-6	< 0.2	< 0.04	0.2	661	
1,2,3-Trichloropropane	96-18-4	< 0.2	< 0.03	0.2	867	
1,3,5-Trimethylbenzene	108-67-8	< 0.2	< 0.04	0.2	881	
1,2,4-Trimethylbenzene	95-63-6	< 0.2	< 0.04	0.2	903	
m,p-Xylene	108-38-3; 106-42-3	0.9	0.2	0.4	803	
						· · · · · · · · · · · · · · · · · · ·

Analytical Report

		Sample Concentration		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
o-Xylene	95-47-6	0.3	0.06	0.2	826	

Compound Notes

J*

The accuracy of this determination may be degraded because the reported value exceeded the calibrated range by more than a factor of 10.

Semiquantitative Compounds

Semiquantitative data includes compounds that have not been calibrated but have some reference information indicating the validity of the compound identification, an acceptable reference library match, or some other supporting evidence as part of the extensive Prism compound database.

This section lists the Semiquantitative compounds detected in this air sample above the reporting limit in alphabetical order. The concentrations are reported in two different units for easy comparison to exposure limits or other information. Note that the conversion to ppb requires the molecular weight of the chemical compound so those compounds that are non-specific (e.g., C10-C12 Hydrocarbon) do not have a concentration in ppb listed. The Retention Index (RI) indicates volatility relative to adjacent n-alkanes. A more detailed description of these terms can be found at the end of the report.

		Sarr Concer		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
2,6-Dimethyl-7-octen-2-ol	18479-58-8	6	1	4	963	
Acetaldehyde	75-07-0	20	11	4	404	
Benzaldehyde	100-52-7	5	1	4	903	
Butane (C 4)	106-97-8	5	2	4	383	
1-Butanol	71-36-3	22	7	4	654	
2-Butoxyethanol	111-76-2	16	3	4	844	
Butoxyethoxyethanol	112-34-5	29	4	4	1030	
4-tert-Butylcyclohexyl acetate	32210-23-4	5	0.7	4	1080	
C12-C14 Hydrocarbon	N/A	7	N/A	4	1052	Contains silicon and oxygen; appears to be a siloxane
C7-C9 Hydrocarbon	N/A	7	N/A	4	756	Sum of two overlapping hydrocarbons; one is n-butyl acetate (CAS); one is hexanal (CAS)
Decanal	112-31-2	7	1	4	1033	
Diethylene glycol ethyl ether	111-90-0	9	2	4	922	DEGMEE; Carbitol
Dipropylene glycol methyl ether	13588-28-8; 34590-94-8	270	44	4	913	DPGME
Dodecane (C 12)	112-40-3	6	0.8	4	1009	
2-Ethyl-1-hexanol	104-76-7	15	3	4	936	
Ethylene Glycol	107-21-1	43	17	4	715	
Isobutane	75-28-5	4	2	4	340	
Isoprene	78-79-5	7	2	4	501	
Limonene	138-86-3 or 5989-27-5	25	4	4	923	Limonene (CAS 138-86-3) or d- Limonene (CAS 5989-27-5)
Methoxy-2-propanol	107-98-2	7	2	4	655	PGME
Pentane (C 5)	109-66-0	27	9	4	479	

		Sample Reporti Concentration Limit				
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Propylene glycol	57-55-6	14	4	4	747	
Tetradecane (C 14)	629-59-4	4	0.5	4	1099	
2,4,7,9-Tetramethyl-5-decyne-4,7-diol	126-86-3	30	3	4	1136	
Texanol-A	74367-33-2	170	19	4	1124	
Texanol-B	74367-34-3	230	25	4	1129	
Tridecane (C 13)	629-50-5	5	0.6	4	1055	

These results pertain only to this sample as it was collected and to the items reported. These results have been reviewed and approved by the Laboratory Director or authorized representative.

lia Sela

Alice E. Delia, Ph.D., Laboratory Director

Enthalpy Analytical, LLC (MTP) 2625 Denison Dr. Mt. Pleasant, MI 48858 989-772-5088

Supplemental Information: Odorants

Many chemical compounds have odors associated with them, some pleasant and some unpleasant. These odors can combine to create different odors, making odor identification more difficult. The odor descriptions for the compounds reported in this air sample are listed below as well as some of the more common sources.

Compound	CAS	Conc. (ng/L)	Conc. (ppb)	Odor Range (ppb)	Odor Description
Acetaldehyde	75-07-0	20	11	2 - 1,000,000	pungent, fruity, suffocating, fresh, green
Acetone	67-64-1	49	20	400 - 11,745,000	sweet, fruity, etherous
Benzaldehyde	100-52-7	5	1	2 - 783,000	bitter almond, fruit, vanilla
Benzene	71-43-2	0.4	0.1	470 - 313,000	aromatic, sweet, solvent, empyreumatic
Butane (C 4)	106-97-8	5	2	421 - 5,048,000	natural gas
1-Butanol	71-36-3	22	7	3 - 990,000	sweet, malty, alcohol, medicinal
2-Butoxyethanol	111-76-2	16	3	43 - 390	sweet, ester, musty
Carbon Tetrachloride	56-23-5	0.9	0.1	1,680 - 720,000	sweet, ethereal, dry cleaner, aromatic
Chloroform	67-66-3	0.2	0.04	102 - 1,413,000	sweet, etherous, suffocating
Cyclohexane	110-82-7	0.2	0.07	520 - 784,000	aromatic, chloroform, pungent, sweet
1,4-Dichlorobenzene	106-46-7	3.5	0.6	121 - 15,000	camphor, mothballs
Diethylene glycol ethyl ether	111-90-0	9	2	200 - 1,090	ethereal, mild, pleasant
Ethanol	64-17-5	720	380	90 - 40,334,000	vinous, alcohol
2-Ethyl-1-hexanol	104-76-7	15	3	75 - 150	citrus, fatty, floral, fresh, fruity, green, musty, oily, sweet
Ethylacetate	141-78-6	2.0	0.6	90 - 190,000	fruity, sweet, fingernail polish, etherous
Ethylbenzene	100-41-4	0.3	0.07	2 - 18,000	oily, solvent
Ethylene Glycol	107-21-1	43	17	5,120 -	-
Hexane (C 6)	110-54-3	0.8	0.2	1,500 - 248,000	gasoline
Isoprene	78-79-5	7	2	47 - 3,590	aromatic
Isopropanol	67-63-0	44	18	1,000 - 2,197,000	sharp, rubbing alcohol
Limonene	138-86-3 or 5989- 27-5	25	4	2 - 310	lemon, plastic, citrus, rubber, terpeny
Methoxy-2-propanol	107-98-2	7	2	8,390 - 33,000	etherish, ammonia
4-Methyl-2-pentanone	108-10-1	2.9	0.7	30 - 16,000	camphor, dairy, fruity, green, herbal, pleasant, sharp, solvent, spicy, sweet
Methylene Chloride	75-09-2	0.6	0.2	1,200 - 440,000	sweet

Analytical Report

Client Sample ID: Rm 26 Laboratory ID: 99670-6

Compound	CAS	Conc. (ng/L)	Conc. (ppb)	Odor Range (ppb)	Odor Description
Naphthalene	91-20-3	0.4	0.08	2 - 1,012	tar, creosote, mothballs, empyreumatic
Pentane (C 5)	109-66-0	27	9	1,290 - 1,147,000	sweet
Propylene glycol	57-55-6	14	4	5,140 -	-
Styrene	100-42-5	0.4	0.09	3 - 61,000	sharp, sweet
Toluene	108-88-3	3.1	0.8	21 - 157,000	sour, burnt
m,p-Xylene	108-38-3; 106-42-3	0.9	0.2	12 - 316,000	sweet, empyreumatic
o-Xylene	95-47-6	0.3	0.06	12 - 316,000	sweet, empyreumatic

Supplemental Information: EPA Hazardous Air Pollutants (HAPs)

Hazardous air pollutants, also known as toxic air pollutants or air toxics, are those pollutants that are known or suspected to cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse environmental effects. Of the 187 compounds or groups defined as HAPs, approximately 65 can be detected with this analysis. Listed below are those HAPs that were detected in this air sample. For more information about HAPs visit the EPA <u>Air Toxics website</u>. The exposure limits listed below can also be found in the <u>NIOSH Guide to Chemical Hazards</u>.

nued solvents; dry cleaning;
nigant; fire
mills, hazardous
er; adhesive
cement;
; solvent; print
; solvent; print

Additional Information

Glossary of Terms

Total VOCs (TVOC): TVOC is one of the samples with each other or with target I_{TVOC} $\binom{ng}{L} = \frac{\left[\frac{(A_s - A_b) \times W_s}{A_i}\right]}{L_s}$ uality indicators. It allows comparison of multiple to the calculation between 2 and 45 contains between 2 and 45 contains at the calculation of the calculati contain between 3 and 15 carbon atoms (along with the associated hydrogen, as well as oxygen, nitrogen, sulfur, silicon, etc.), although certain compounds outside this range of carbon atoms may be included depending on the type of compound.

Where:

As - C3-C15 TIC (Total Ion Chromatogram from GC-MS) area of the sample Ab - C3-C15 TIC area of the media blank Ws - Weight of the internal standard added in ng Ai – average TIC area of the internal standard peak(s) Ls – Volume of the sample in L

CAS: The Chemical Abstract Service (CAS) assigns a unique number to chemical compounds, commonly referred to as the CAS number. This number is usually the best way to search for additional information about the compound since some compounds may have many names but only one CAS number.

Reporting Units - ng/L: Most concentrations for air samples will be reported in units of ng/L, which translates to ng of

that specific chemical compound present per liter of air sampled. Concentration in ng/L is equivalent to $\mu g/m^3$. Reporting Units - ppb: Some sections o^{Conc} (*ppb*) = $\frac{Conc}{\frac{ng}{L} \times 24.04(\frac{L}{mol})}{\frac{MW(\frac{g}{mol})}{\frac{mol}{mol}}}$ h compound concentrations displayed in or reference limits. The concentration in units of ppb (parts per billion), which are or reference limits. The concentration in ng/L (or µg/m³ can be converted easily to ppb using the following formula derived from the Ideal Gas Law.

Where:

Vm = Molar Volume as 24.04 L/mol at 1 atm pressure and 20 °C (68 °F) MW = Molecular Weight in g/mol

Reporting Limit: The Reporting Limit column displays the lowest possible concentration that could be reported for that compound for that sample and analysis. Typically the reporting limit is displayed in units of ng/L but other units may be used as appropriate.

Retention Index (RI): The retention index is a means of converting a compound GC-MS retention time, which is dependent on the type of system and specific operating parameters, into an independent and universal value based on the elution of the adjacent n-alkanes. Each n-alkane is assigned a retention index based on its carbon number, e.g., pentane (C5) has a retention index of 500 and hexane (C6) has a retention index of 600, etc. For example, a hydrocarbon with a retention index of 550 would be expected to elute at the midpoint between pentane and hexane. Using the elution of the n-alkanes as the $RI_x = 100n + 100 \times \frac{(RT_x - RT_n)}{(RT_{n+1} - RT_n)}$ retention index of organic compounds to be applicable across almost any GC-MS GC-MS instruments used by Prism, can be determined using the following formula derived from the Kovats isothermal retention index.

Where:

RIx – retention index of target compound x n – Carbon number of n-alkane eluting before the target compound x RTx – retention time of target compound x

RTn – retention time of n-alkane eluting before target compound x RTn+1 – retention time of n-alkane eluting after target compound x

Odor Description: Description of the odor (e.g., fruity)

HAPs: Hazardous Air Pollutants

NIOSH: National Institute for Occupational Safety and Health

TWA: Time Weighted Average

REL: Recommended Exposure Limit

Ca: Potential carcinogen

Sources for Additional Compound Information:

The compound information displayed in this report (e.g., odor description, exposure limits, etc.) is gathered from a variety of sources, including but not limited to, the <u>NIST Chemistry Webbook</u>, the <u>NIOSH Pocket Guide to Chemical Hazards</u>, the <u>Household Products Database</u>, the University of Akron <u>Chemical Database</u>, the <u>WISER</u> (for Emergency Responders), <u>IRIS</u>, <u>ToxNet</u>, <u>ATSDR</u>. Prism does not guarantee the accuracy of this information or endorse any of the views or opinions expressed.

This analysis was performed by Enthalpy Analytical, LLC (MTP). The results contained in this report are dependent upon a number of factors over which Enthalpy Analytical, LLC (MTP) has no control, which may include, but are not limited to, the sampling technique utilized, the size or source of sample, the ability of the sampler to collect a proper or suitable sample, the compounds which make up the TVOC, and/or the type of mold(s) present. Therefore, the opinions contained in this report may be invalid and cannot be considered or construed as definitive and neither Prism, nor its agents, officers, directors, employees, or successors shall be liable for any claims, actions, causes of action, costs, loss of service, medical or other expenses or any compensation whatsoever which may now or hereafter occur or accrue based upon the information or opinions contained herein.

Analytical Report

Client:	JS Held, LLC 50 Jericho Quadrangle Ste 117 Jericho, NY 11753 US	COC: Laboratory ID:	99670 99670-7
Project:	James Harvey Marshall H.S.21111804 805 S. Miami Ave. Marshall, MO 65340	Received Date: Approved Date: Scanned Date:	03/31/2022
Client Sample ID: Volume: Date Sampled: Sample Type:	03/30/2022	Report Date:	

Comp-Air Survey Analysis

Applicable methods for this analytical technique include (with relevant modifications) US EPA TO-17 and ISO 16000-6. A scan was made for all compounds contained in the Air Survey Analysis List (TB503 Quantitative and Semiquantitative List). All compounds detected are listed below.

Comp-Air Survey Analysis Report Description

The Comp-Air (Comprehensive-Air) Survey Analysis is designed to provide additional information beyond the high quality chemical data from the air sample. This additional information may aid in interpretation of results.

Your Report is divided into several sections describing different aspects of the chemical composition of your sample.

1. Sample Summary: listing of some of the aggregate values from this air sample (e.g., Total VOCs).

2. Top 5: listing of the five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds (see below for a description of TO17 and Semiquantitative Compounds).

3. TO17 Compounds: listing of the chemical compounds characterized by EPA method TO17. Some of these are Hazardous Air Pollutants (HAPs) and others are typical of industrial/manufacturing sources. Accuracy for TO17 compounds is within ±15%.

4. Semiquantitative Compounds: listing of chemical compounds that have not been calibrated but have some reference information indicating the validity of the compound identification, an acceptable reference library match, or some other supporting evidence of identification. Also listed in this section are compounds that are not specificially identified but for which some information is available (e.g., C10-C12 Hydrocarbons; probably an alcohol). Instrument and media response have not been confirmed for most chemical compounds reported semiquantitatively, conferring an accuracy on the order of ±50% based on an instrument and media response of unity. Semiquantitative results should be interpreted relative to other chemical compounds.

5. Supplemental Information: Odorants: listing of the odor characteristics of chemical compounds present in this air sample. Almost all chemical compounds have an odor and a mixture of various chemical compounds could alter the odor characteristics. Some chemical compounds have a strong odor at relatively low concentrations so the individual chemical compound concentrations may be of secondary importance relative to the odor characteristics for odor concerns.

6. Supplemental Information: EPA Hazardous Air Pollutants (HAPs): listing of the chemical compounds detected in this air sample that are known or suspected to have serious health or environmental effects (also known as air toxics). HAPs include VOCs, metals, some pesticides/insecticides that are primarily semi-volatile, inorganic compounds, and very volatile organic compounds. Of the 187 compounds or groups defined as HAPs, approximately 65 are VOCs that can be detected with this analysis.

7. Additional Information: definitions, calculations, and other useful information.

Sample Summary

General information regarding the sample and aggregate concentrations, e.g., Total VOCs, are listed below. The top five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds are also listed. The full list of compounds and their concentrations in this air sample are listed later in the report and may be displayed more than once depending on the categorization of specific compounds.

	Sample Concentration	Reporting Limit	_
Compound	ng/L	ng/L	Additional Information
Total VOCs	3700	200	Total volatile organic compounds calculated based on internal standard ratio; does not include C1, C2, or methanol.
	Sample Concentration	Reporting Limit	_
Compound	ng/L	ng/L	Additional Information
Total Mold VOCs (TMVOC)	4	3	TMVOC is an assessment of the quantity of actively growing mold in the sample location.

Top 5

The top five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds are listed below.

Semiquantitative Compounds	Sample R Concentration		Reporting Limit			
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Dipropylene glycol methyl ether	13588-28-8; 34590-94-8	190	30	4	913	DPGME
Texanol-B	74367-34-3	170	19	4	1127	
Texanol-A	74367-33-2	130	15	4	1122	
Ethylene Glycol	107-21-1	91	35	4	715	

EPA Method TO-17			Sample Concentration		Reporting Limit			
	Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information	
	Ethanol	64-17-5	820	430	2.1	480]*	

TO17 Compounds

EPA Method TO17 focuses on chemical compounds that are typical of industrial/manufacturing sources, many of these compounds are also found in commercial and residential environments. Accuracy for these chemical compounds is within ±15%.

This section lists all the TO17 compounds in alphabetical order (compounds not present or with concentrations below the reporting limit are listed with '<'; compounds above the reporting limit have bold text for the Sample Concentration). The concentrations are reported in two different units for easy comparison to exposure limits or other information. The Retention Index (RI) indicates volatility relative to adjacent n-alkanes. A more detailed description of reporting units and RI can be found at the end of the report.

		Sam Concen		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Acetone	67-64-1	46	19	1.0	509	
Acetonitrile	75-05-8	< 0.4	< 0.2	0.4	522	
Acrylonitrile	107-13-1	< 0.2	< 0.09	0.2	543	
Benzene	71-43-2	0.4	0.1	0.2	631	
Bromobenzene	108-86-1	< 0.2	< 0.03	0.2	866	
Bromochloromethane	74-97-5	< 0.2	< 0.04	0.2	603	
Bromodichloromethane	75-27-4	< 0.2	< 0.03	0.2	682	
Bromoform	75-25-2	< 0.2	< 0.02	0.2	837	
1,3-Butadiene	106-99-0	< 0.2	< 0.09	0.2	389	
tert-Butylbenzene	98-06-6	< 0.2	< 0.04	0.2	900	
sec-Butylbenzene	135-98-8	< 0.2	< 0.04	0.2	914	
n-Butylbenzene	104-51-8	< 0.2	< 0.04	0.2	949	
Carbon Disulfide	75-15-0	< 0.2	< 0.07	0.2	520	
Carbon Tetrachloride	56-23-5	1.4	0.2	0.2	623	
Chlorobenzene	108-90-7	< 0.2	< 0.04	0.2	791	
Chlorodibromomethane	124-48-1	< 0.2	< 0.02	0.2	759	
2-Chloroethanol	107-07-3	< 0.2	< 0.06	0.2	675	
Chloroform	67-66-3	0.2	0.04	0.2	608	
Chloroprene	126-99-8	< 0.2	< 0.06	0.2	571	
3-Chloropropene	107-05-1	< 0.2	< 0.07	0.2	527	
4-Chlorotoluene	106-43-4	< 0.2	< 0.04	0.2	883	
2-Chlorotoluene	95-49-8	< 0.2	< 0.04	0.2	877	-
Cyclohexane	110-82-7	0.3	0.09	0.2	620	
1,2-Dibromo-3-chloropropane	96-12-8	< 0.4	< 0.04	0.4	991	

Client Sample ID: SE Hallway B/W Rms 36 & 37 Laboratory ID: 99670-7

Compound		Sam Concer	Reporting Limit			
	CAS	ng/L	ppb	ng/L	RI	Additional Information
1,2-Dibromoethane	106-93-4	< 0.2	< 0.03	0.2	766	
Dibromomethane	74-95-3	< 0.2	< 0.03	0.2	674	
trans 1,4-Dichloro-2-butene	110-57-6	< 0.2	< 0.04	0.2	865	
cis 1,4-Dichloro-2-butene	1476-11-5	< 0.2	< 0.04	0.2	848	
1,2-Dichlorobenzene	95-50-1	< 0.2	< 0.03	0.2	951	
1,3-Dichlorobenzene	541-73-1	< 0.2	< 0.03	0.2	923	
1,4-Dichlorobenzene	106-46-7	< 0.2	< 0.03	0.2	930	
1,4-Dichlorobenzene	106-46-7	4.4	0.7	0.2	930	
1,1-Dichloroethane	75-34-3	< 0.2	< 0.05	0.2	567	
1,2-Dichloroethane	107-06-2	< 0.2	< 0.05	0.2	633	
cis 1,2-Dichloroethene	156-59-2	< 0.2	< 0.05	0.2	593	
trans 1,2-Dichloroethene	156-60-5	< 0.2	< 0.05	0.2	548	
1,1-Dichloroethene	75-35-4	< 0.2	< 0.05	0.2	508	
2,2-Dichloropropane	594-20-7	< 0.2	< 0.04	0.2	593	
1,2-Dichloropropane	78-87-5	< 0.2	< 0.04	0.2	670	
1,3-Dichloropropane	142-28-9	< 0.2	< 0.04	0.2	748	
trans 1,3-Dichloropropene	10061-02-6	< 0.2	< 0.05	0.2	729	
1,1-Dichloropropene	563-58-6	< 0.2	< 0.05	0.2	623	
cis 1,3-Dichloropropene	10061-01-5	< 0.2	< 0.05	0.2	701	
Diethyl ether	60-29-7	< 0.2	< 0.07	0.2	493	
1,4-Dioxane	123-91-1	< 0.4	< 0.1	0.4	673	
Ethanol	64-17-5	820	430	2.1	480]*
Ethylacetate	141-78-6	2.3	0.6	0.2	594	
Ethylbenzene	100-41-4	0.3	0.07	0.2	795	
Ethylmethacrylate	97-63-2	< 0.2	< 0.04	0.2	731	
4-Ethyltoluene	622-96-8	< 0.2	< 0.04	0.2	878	
Hexachlorobutadiene	87-68-3	< 0.2	< 0.02	0.2	1036	
Hexane (C 6)	110-54-3	1.5	0.4	0.2	562	
Isooctane	540-84-1	< 0.2	< 0.04	0.2	638	2,2,4-Trimethylpentane
					-	

Client Sample ID: SE Hallway B/W Rms 36 & 37 Laboratory ID: 99670-7

merly Prism Analytical Technologies		Laboratory II				
		Sample F Concentration		Reporting Limit	_	
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Isopropylbenzene	98-82-8	< 0.2	< 0.04	0.2	846	
p-Isopropyltoluene	99-87-6	0.3	0.06	0.2	924	
Methacrylonitrile	126-98-7	< 0.2	< 0.07	0.2	600	
Methyl methacrylate	80-62-6	< 0.2	< 0.06	0.2	672	
Methyl Tertiary Butyl Ether	1634-04-4	< 0.2	< 0.06	0.2	547	MTBE
2-Methyl-1-propanol	78-83-1	< 0.2	< 0.07	0.2		Isobutyl alcohol
4-Methyl-2-pentanone	108-10-1	1.1	0.3	0.2	707	Methyl isobutyl ketone (MIBK)
Methylacrylate	96-33-3	< 0.2	< 0.06	0.2	595	
Methylene Chloride	75-09-2	0.9	0.3	0.2	533	
2-Methylnaphthalene	91-57-6	< 0.4	< 0.07	0.4	1095	
Naphthalene	91-20-3	0.7	0.1	0.4	1042	
Nitrobenzene	98-95-3	< 0.8	< 0.2	0.8	999	
Pentachloroethane	76-01-7	< 0.2	< 0.03	0.2	902	
Propionitrile	107-12-0	< 0.2	< 0.09	0.2	593	
n-Propylbenzene	103-65-1	< 0.2	< 0.04	0.2	871	
Styrene	100-42-5	0.4	0.1	0.2	825	
1,1,2,2-Tetrachloroethane	79-34-5	< 0.2	< 0.03	0.2	863	
1,1,1,2-Tetrachloroethane	630-20-6	< 0.2	< 0.03	0.2	794	
Tetrachloroethene	127-18-4	< 0.2	< 0.03	0.2	746	
Tetrahydrofuran	109-99-9	< 0.2	< 0.07	0.2	604	
Toluene	108-88-3	3.6	1	0.2	719	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	0.5	0.07	0.2	510	
1,2,4-Trichlorobenzene	120-82-1	< 0.2	< 0.03	0.2	1030	
1,2,3-Trichlorobenzene	87-61-6	< 0.2	< 0.03	0.2	1052	
1,1,2-Trichloroethane	79-00-5	< 0.2	< 0.04	0.2	739	
1,1,1-Trichloroethane	71-55-6	< 0.2	< 0.04	0.2	616	
Trichloroethene	79-01-6	< 0.2	< 0.04	0.2	660	
1,2,3-Trichloropropane	96-18-4	< 0.2	< 0.03	0.2	867	
1,3,5-Trimethylbenzene	108-67-8	< 0.2	< 0.04	0.2	881	
1,2,4-Trimethylbenzene	95-63-6	< 0.2	< 0.04	0.2	903	-

Analytical Report

Client Sample ID: SE Hallway B/W Rms 36 & 37 Laboratory ID: 99670-7

		Sample Concentration		Reporting n Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
m,p-Xylene	108-38-3; 106-42-3	1	0.2	0.4	802	
o-Xylene	95-47-6	0.3	0.06	0.2	825	

Compound Notes

J*

The accuracy of this determination may be degraded because the reported value exceeded the calibrated range by more than a factor of 10.

Semiquantitative Compounds

Semiquantitative data includes compounds that have not been calibrated but have some reference information indicating the validity of the compound identification, an acceptable reference library match, or some other supporting evidence as part of the extensive Prism compound database.

This section lists the Semiquantitative compounds detected in this air sample above the reporting limit in alphabetical order. The concentrations are reported in two different units for easy comparison to exposure limits or other information. Note that the conversion to ppb requires the molecular weight of the chemical compound so those compounds that are non-specific (e.g., C10-C12 Hydrocarbon) do not have a concentration in ppb listed. The Retention Index (RI) indicates volatility relative to adjacent n-alkanes. A more detailed description of these terms can be found at the end of the report.

		Sarr Concer		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
2,6-Dimethyl-7-octen-2-ol	18479-58-8	4	0.7	4	963	
Acetaldehyde	75-07-0	26	14	4	399	
Benzaldehyde	100-52-7	5	1	4	903	
Butane (C 4)	106-97-8	5	2	4	384	
1-Butanol	71-36-3	17	6	4	654	
2-Butoxyethanol	111-76-2	13	3	4	843	
Butoxyethoxyethanol	112-34-5	16	2	4	1029	
C12-C14 Hydrocarbon	N/A	6	N/A	4	1051	Contains silicon and oxygen; appears to be a siloxane
C14-C16 Hydrocarbon	N/A	10	N/A	4	1210	May contain oxygen
C7-C9 Hydrocarbon	N/A	6	N/A	4	755	Sum of two overlapping hydrocarbons; one is n-butyl acetate (CAS); one is hexanal (CAS)
Decanal	112-31-2	9	1	4	1033	
Diethylene glycol ethyl ether	111-90-0	9	2	4	922	DEGMEE; Carbitol
Dipropylene glycol methyl ether	13588-28-8; 34590-94-8	190	30	4	913	DPGME
Dodecane (C 12)	112-40-3	5	0.7	4	1008	
2-Ethyl-1-hexanol	104-76-7	15	3	4	936	
Ethylene Glycol	107-21-1	91	35	4	715	
Isobutane	75-28-5	5	2	4	359	
Isoprene	78-79-5	6	2	4	497	
Limonene	138-86-3 or 5989-27-5	17	3	4	923	Limonene (CAS 138-86-3) or d- Limonene (CAS 5989-27-5)
Menthol	89-78-1 or 1490-04-6	5	0.8	4	1028	
Methoxy-2-propanol	107-98-2	6	2	4	654	PGME

Client Sample ID: SE Hallway B/W Rms 36 & 37 Laboratory ID: 99670-7

		Sample Concentration		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Nonanal	124-19-6	5	0.8	4	983	
Pentane (C 5)	109-66-0	22	7	4	475	
Propylene glycol	57-55-6	16	5	4	747	
Tetradecane (C 14)	629-59-4	4	0.5	4	1097	
2,4,7,9-Tetramethyl-5-decyne-4,7-diol	126-86-3	17	2	4	1135	
Texanol-A	74367-33-2	130	15	4	1122	
Texanol-B	74367-34-3	170	19	4	1127	
Tridecane (C 13)	629-50-5	4	0.5	4	1054	

These results pertain only to this sample as it was collected and to the items reported. These results have been reviewed and approved by the Laboratory Director or authorized representative.

thia Sela

Alice E. Delia, Ph.D., Laboratory Director

Enthalpy Analytical, LLC (MTP) 2625 Denison Dr. Mt. Pleasant, MI 48858 989-772-5088

Supplemental Information: Odorants

Many chemical compounds have odors associated with them, some pleasant and some unpleasant. These odors can combine to create different odors, making odor identification more difficult. The odor descriptions for the compounds reported in this air sample are listed below as well as some of the more common sources.

Compound	CAS	Conc. (ng/L)	Conc. (ppb)	Odor Range (ppb)	Odor Description
Acetaldehyde	75-07-0	26	14	2 - 1,000,000	pungent, fruity, suffocating, fresh, green
Acetone	67-64-1	46	19	400 - 11,745,000	sweet, fruity, etherous
Benzaldehyde	100-52-7	5	1	2 - 783,000	bitter almond, fruit, vanilla
Benzene	71-43-2	0.4	0.1	470 - 313,000	aromatic, sweet, solvent, empyreumatic
Butane (C 4)	106-97-8	5	2	421 - 5,048,000	natural gas
1-Butanol	71-36-3	17	6	3 - 990,000	sweet, malty, alcohol, medicinal
2-Butoxyethanol	111-76-2	13	3	43 - 390	sweet, ester, musty
Carbon Tetrachloride	56-23-5	1.4	0.2	1,680 - 720,000	sweet, ethereal, dry cleaner, aromatic
Chloroform	67-66-3	0.2	0.04	102 - 1,413,000	sweet, etherous, suffocating
Cyclohexane	110-82-7	0.3	0.09	520 - 784,000	aromatic, chloroform, pungent, sweet
1,4-Dichlorobenzene	106-46-7	4.4	0.7	121 - 15,000	camphor, mothballs
Diethylene glycol ethyl ether	111-90-0	9	2	200 - 1,090	ethereal, mild, pleasant
Ethanol	64-17-5	820	430	90 - 40,334,000	vinous, alcohol
2-Ethyl-1-hexanol	104-76-7	15	3	75 - 150	citrus, fatty, floral, fresh, fruity, green, musty, oily, sweet
Ethylacetate	141-78-6	2.3	0.6	90 - 190,000	fruity, sweet, fingernail polish, etherous
Ethylbenzene	100-41-4	0.3	0.07	2 - 18,000	oily, solvent
Ethylene Glycol	107-21-1	91	35	5,120 -	-
Hexane (C 6)	110-54-3	1.5	0.4	1,500 - 248,000	gasoline
Isoprene	78-79-5	6	2	47 - 3,590	aromatic
Isopropanol	67-63-0	45	18	1,000 - 2,197,000	sharp, rubbing alcohol
Limonene	138-86-3 or 5989- 27-5	17	3	2 - 310	lemon, plastic, citrus, rubber, terpeny
Menthol	89-78-1 or 1490-04-6	5	0.8	0 - 10,640	caraway, cool, minty, menthol, peppermint, sweet, woody
Methoxy-2-propanol	107-98-2	6	2	8,390 - 33,000	etherish, ammonia
4-Methyl-2-pentanone	108-10-1	1.1	0.3	30 - 16,000	camphor, dairy, fruity, green, herbal, pleasant, sharp, solvent, spicy, sweet

Analytical Report

Client Sample ID: SE Hallway B/W Rms 36 & 37 Laboratory ID: 99670-7

Compound	CAS	Conc. (ng/L)	Conc. (ppb)	Odor Range (ppb)	Odor Description
Methylene Chloride	75-09-2	0.9	0.3	1,200 - 440,000	sweet
Naphthalene	91-20-3	0.7	0.1	2 - 1,012	tar, creosote, mothballs, empyreumatic
Pentane (C 5)	109-66-0	22	7	1,290 - 1,147,000	sweet
Propylene glycol	57-55-6	16	5	5,140 -	-
Styrene	100-42-5	0.4	0.1	3 - 61,000	sharp, sweet
Toluene	108-88-3	3.6	1	21 - 157,000	sour, burnt
m,p-Xylene	108-38-3; 106-42-3	1	0.2	12 - 316,000	sweet, empyreumatic
o-Xylene	95-47-6	0.3	0.06	12 - 316,000	sweet, empyreumatic

Supplemental Information: EPA Hazardous Air Pollutants (HAPs)

Hazardous air pollutants, also known as toxic air pollutants or air toxics, are those pollutants that are known or suspected to cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse environmental effects. Of the 187 compounds or groups defined as HAPs, approximately 65 can be detected with this analysis. Listed below are those HAPs that were detected in this air sample. For more information about HAPs visit the EPA <u>Air Toxics website</u>. The exposure limits listed below can also be found in the <u>NIOSH Guide to Chemical Hazards</u>.

CAS	Conc. (ng/L)	NIOSH TWA REL	Potential Health Effects
71-43-2	0.4	320 ng/L (100 ppb)	Gasoline. Less common sources include some discontinued solvents; printing and lithography; paints and coatings; rubber; dry cleaning; adhesives; detergents
56-23-5	1.4	Carcinogen	Solvent; metal degreasing; refrigerant; agricultural fumigant; fire retardant (former use)
67-66-3	0.2	Carcinogen	Formed during the chlorination of drinking water, wastewater and swimming pools. Also pulp and paper mills, hazardous waste sites, and sanitary landfills
106-46-7	4.4	Carcinogen	Moth balls/crystals; room deodorant
100-41-4	0.3	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; solvent; pesticide
75-09-2	0.9	Carcinogen	Automotive products; degreasing solvent; paint stripper; adhesive remover; aerosol propellant; insecticide
91-20-3	0.7	50,000 ng/L (10,000 ppb)	Gasoline; diesel; Moth balls/crystals; insecticide
100-42-5	0.4	215,000 ng/L (50,000 ppb)	Polystyrene foam; synthetic rubber; flavoring agent
108-88-3	3.6	375,000 ng/L (100,000 ppb)	Gasoline; adhesives (building and arts/crafts); contact cement; solvent; heavy duty cleaner
108-38-3; 106-42-3	1	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; adhesives and cements; solvent; print cartridges
95-47-6	0.3	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; adhesives and cements; solvent; print cartridges
	71-43-2 56-23-5 67-66-3 106-46-7 100-41-4 75-09-2 91-20-3 100-42-5 108-38-3; 106-38-3; 106-42-3	CAS (ng/L) 71-43-2 0.4 56-23-5 1.4 67-66-3 0.2 106-46-7 4.4 100-41-4 0.3 75-09-2 0.9 91-20-3 0.7 100-42-5 0.4 108-88-3 3.6 108-38-3; 106-42-3 1	CAS (ng/L) TWA REL 71-43-2 0.4 320 ng/L (100 ppb) 56-23-5 1.4 Carcinogen 67-66-3 0.2 Carcinogen 106-46-7 4.4 Carcinogen 100-41-4 0.3 435,000 ng/L (100,000 ppb) 75-09-2 0.9 Carcinogen 91-20-3 0.7 50,000 ng/L (10,000 ppb) 100-42-5 0.4 215,000 ng/L (100,000 ppb) 108-88-3 3.6 375,000 ng/L (100,000 ppb) 108-38-3; 1 435,000 ng/L (100,000 ppb) 435,000 ng/L (100,000 ppb) 95-47-6 0.3 435,000 ng/L (100,000 ppb)

Additional Information

Glossary of Terms

Total VOCs (TVOC): TVOC is one of the samples with each other or with target I_{TVOC} $\binom{ng}{L} = \frac{\left[\frac{(A_s - A_b) \times W_s}{A_i}\right]}{L_s}$ uality indicators. It allows comparison of multiple to the calculation between 2 and 45 contains between 2 and 45 contains at the calculation of the calculati contain between 3 and 15 carbon atoms (along with the associated hydrogen, as well as oxygen, nitrogen, sulfur, silicon, etc.), although certain compounds outside this range of carbon atoms may be included depending on the type of compound.

Where:

As - C3-C15 TIC (Total Ion Chromatogram from GC-MS) area of the sample Ab - C3-C15 TIC area of the media blank Ws - Weight of the internal standard added in ng Ai – average TIC area of the internal standard peak(s) Ls – Volume of the sample in L

CAS: The Chemical Abstract Service (CAS) assigns a unique number to chemical compounds, commonly referred to as the CAS number. This number is usually the best way to search for additional information about the compound since some compounds may have many names but only one CAS number.

Reporting Units - ng/L: Most concentrations for air samples will be reported in units of ng/L, which translates to ng of

that specific chemical compound present per liter of air sampled. Concentration in ng/L is equivalent to $\mu g/m^3$. Reporting Units - ppb: Some sections o^{Conc} (*ppb*) = $\frac{Conc}{\frac{ng}{L} \times 24.04(\frac{L}{mol})}{\frac{MW(\frac{g}{mol})}{\frac{mol}{mol}}}$ h compound concentrations displayed in or reference limits. The concentration in units of ppb (parts per billion), which are or reference limits. The concentration in ng/L (or µg/m³ can be converted easily to ppb using the following formula derived from the Ideal Gas Law.

Where:

Vm = Molar Volume as 24.04 L/mol at 1 atm pressure and 20 °C (68 °F) MW = Molecular Weight in g/mol

Reporting Limit: The Reporting Limit column displays the lowest possible concentration that could be reported for that compound for that sample and analysis. Typically the reporting limit is displayed in units of ng/L but other units may be used as appropriate.

Retention Index (RI): The retention index is a means of converting a compound GC-MS retention time, which is dependent on the type of system and specific operating parameters, into an independent and universal value based on the elution of the adjacent n-alkanes. Each n-alkane is assigned a retention index based on its carbon number, e.g., pentane (C5) has a retention index of 500 and hexane (C6) has a retention index of 600, etc. For example, a hydrocarbon with a retention index of 550 would be expected to elute at the midpoint between pentane and hexane. Using the elution of the n-alkanes as the $RI_x = 100n + 100 \times \frac{(RT_x - RT_n)}{(RT_{n+1} - RT_n)}$ retention index of organic compounds to be applicable across almost any GC-MS GC-MS instruments used by Prism, can be determined using the following formula derived from the Kovats isothermal retention index.

Where:

RIx – retention index of target compound x n – Carbon number of n-alkane eluting before the target compound x RTx – retention time of target compound x

RTn – retention time of n-alkane eluting before target compound x RTn+1 – retention time of n-alkane eluting after target compound x

Odor Description: Description of the odor (e.g., fruity)

HAPs: Hazardous Air Pollutants

NIOSH: National Institute for Occupational Safety and Health

TWA: Time Weighted Average

REL: Recommended Exposure Limit

Ca: Potential carcinogen

Sources for Additional Compound Information:

The compound information displayed in this report (e.g., odor description, exposure limits, etc.) is gathered from a variety of sources, including but not limited to, the <u>NIST Chemistry Webbook</u>, the <u>NIOSH Pocket Guide to Chemical Hazards</u>, the <u>Household Products Database</u>, the University of Akron <u>Chemical Database</u>, the <u>WISER</u> (for Emergency Responders), <u>IRIS</u>, <u>ToxNet</u>, <u>ATSDR</u>. Prism does not guarantee the accuracy of this information or endorse any of the views or opinions expressed.

This analysis was performed by Enthalpy Analytical, LLC (MTP). The results contained in this report are dependent upon a number of factors over which Enthalpy Analytical, LLC (MTP) has no control, which may include, but are not limited to, the sampling technique utilized, the size or source of sample, the ability of the sampler to collect a proper or suitable sample, the compounds which make up the TVOC, and/or the type of mold(s) present. Therefore, the opinions contained in this report may be invalid and cannot be considered or construed as definitive and neither Prism, nor its agents, officers, directors, employees, or successors shall be liable for any claims, actions, causes of action, costs, loss of service, medical or other expenses or any compensation whatsoever which may now or hereafter occur or accrue based upon the information or opinions contained herein.

Analytical Report

Client:	JS Held, LLC 50 Jericho Quadrangle Ste 117 Jericho, NY 11753 US	COC: Laboratory ID:	99670 99670-8
Project:	James Harvey Marshall H.S.21111804 805 S. Miami Ave. Marshall, MO 65340	Received Date: Approved Date: Scanned Date:	03/31/2022
Client Sample ID: Volume: Date Sampled: Sample Type:	24 L 03/30/2022	Report Date:	

Comp-Air Survey Analysis

Applicable methods for this analytical technique include (with relevant modifications) US EPA TO-17 and ISO 16000-6. A scan was made for all compounds contained in the Air Survey Analysis List (TB503 Quantitative and Semiquantitative List). All compounds detected are listed below.

Comp-Air Survey Analysis Report Description

The Comp-Air (Comprehensive-Air) Survey Analysis is designed to provide additional information beyond the high quality chemical data from the air sample. This additional information may aid in interpretation of results.

Your Report is divided into several sections describing different aspects of the chemical composition of your sample.

1. Sample Summary: listing of some of the aggregate values from this air sample (e.g., Total VOCs).

2. Top 5: listing of the five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds (see below for a description of TO17 and Semiquantitative Compounds).

3. TO17 Compounds: listing of the chemical compounds characterized by EPA method TO17. Some of these are Hazardous Air Pollutants (HAPs) and others are typical of industrial/manufacturing sources. Accuracy for TO17 compounds is within ±15%.

4. Semiquantitative Compounds: listing of chemical compounds that have not been calibrated but have some reference information indicating the validity of the compound identification, an acceptable reference library match, or some other supporting evidence of identification. Also listed in this section are compounds that are not specificially identified but for which some information is available (e.g., C10-C12 Hydrocarbons; probably an alcohol). Instrument and media response have not been confirmed for most chemical compounds reported semiquantitatively, conferring an accuracy on the order of ±50% based on an instrument and media response of unity. Semiquantitative results should be interpreted relative to other chemical compounds.

5. Supplemental Information: Odorants: listing of the odor characteristics of chemical compounds present in this air sample. Almost all chemical compounds have an odor and a mixture of various chemical compounds could alter the odor characteristics. Some chemical compounds have a strong odor at relatively low concentrations so the individual chemical compound concentrations may be of secondary importance relative to the odor characteristics for odor concerns.

6. Supplemental Information: EPA Hazardous Air Pollutants (HAPs): listing of the chemical compounds detected in this air sample that are known or suspected to have serious health or environmental effects (also known as air toxics). HAPs include VOCs, metals, some pesticides/insecticides that are primarily semi-volatile, inorganic compounds, and very volatile organic compounds. Of the 187 compounds or groups defined as HAPs, approximately 65 are VOCs that can be detected with this analysis.

7. Additional Information: definitions, calculations, and other useful information.

Sample Summary

General information regarding the sample and aggregate concentrations, e.g., Total VOCs, are listed below. The top five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds are also listed. The full list of compounds and their concentrations in this air sample are listed later in the report and may be displayed more than once depending on the categorization of specific compounds.

	Sample Concentration	Reporting Limit	
Compound	ng/L	ng/L	Additional Information
Total VOCs	4300	200	Total volatile organic compounds calculated based on internal standard ratio; does not include C1, C2, or methanol.
	Sample Concentration	Reporting Limit	
Compound	ng/L	ng/L	Additional Information
Total Mold VOCs (TMVOC)	5	3	TMVOC is an assessment of the quantity of actively growing mold in the sample location.

Top 5

The top five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds are listed below.

Semiquantitative Compounds		Sample Concentration		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Dipropylene glycol methyl ether	13588-28-8; 34590-94-8	330	53	4	912	DPGME
Texanol-B	74367-34-3	270	30	4	1127	
Texanol-A	74367-33-2	220	24	4	1122	
Acetaldehyde	75-07-0	52	29	4	399	
EPA Method TO-17	_	Sam Concen		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information

350

2.1

670

Ethanol

64-17-5

J*

480

TO17 Compounds

EPA Method TO17 focuses on chemical compounds that are typical of industrial/manufacturing sources, many of these compounds are also found in commercial and residential environments. Accuracy for these chemical compounds is within ±15%.

This section lists all the TO17 compounds in alphabetical order (compounds not present or with concentrations below the reporting limit are listed with '<'; compounds above the reporting limit have bold text for the Sample Concentration). The concentrations are reported in two different units for easy comparison to exposure limits or other information. The Retention Index (RI) indicates volatility relative to adjacent n-alkanes. A more detailed description of reporting units and RI can be found at the end of the report.

		Sam Concen		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Acetone	67-64-1	45	19	1.0	509	
Acetonitrile	75-05-8	< 0.4	< 0.2	0.4	522	
Acrylonitrile	107-13-1	< 0.2	< 0.09	0.2	543	
Benzene	71-43-2	0.3	0.1	0.2	631	
Bromobenzene	108-86-1	< 0.2	< 0.03	0.2	866	
Bromochloromethane	74-97-5	< 0.2	< 0.04	0.2	603	
Bromodichloromethane	75-27-4	< 0.2	< 0.03	0.2	682	
Bromoform	75-25-2	< 0.2	< 0.02	0.2	837	
1,3-Butadiene	106-99-0	< 0.2	< 0.09	0.2	389	
tert-Butylbenzene	98-06-6	< 0.2	< 0.04	0.2	900	
sec-Butylbenzene	135-98-8	< 0.2	< 0.04	0.2	914	
n-Butylbenzene	104-51-8	< 0.2	< 0.04	0.2	949	
Carbon Disulfide	75-15-0	< 0.2	< 0.07	0.2	520	
Carbon Tetrachloride	56-23-5	0.8	0.1	0.2	623	
Chlorobenzene	108-90-7	< 0.2	< 0.04	0.2	791	
Chlorodibromomethane	124-48-1	< 0.2	< 0.02	0.2	759	
2-Chloroethanol	107-07-3	< 0.2	< 0.06	0.2	675	
Chloroform	67-66-3	< 0.2	< 0.04	0.2	608	
Chloroprene	126-99-8	< 0.2	< 0.06	0.2	571	
3-Chloropropene	107-05-1	< 0.2	< 0.07	0.2	527	
4-Chlorotoluene	106-43-4	< 0.2	< 0.04	0.2	883	
2-Chlorotoluene	95-49-8	< 0.2	< 0.04	0.2	877	
Cyclohexane	110-82-7	0.2	0.07	0.2	620	
1,2-Dibromo-3-chloropropane	96-12-8	< 0.4	< 0.04	0.4	991	
						· · · · · · · · · · · · · · · · · · ·

Analytical Report

		Sarr Concer	nple atration	Reporting Limit		RI Additional Information
Compound	CAS	ng/L	ppb	ng/L	RI	
1,2-Dibromoethane	106-93-4	< 0.2	< 0.03	0.2	766	
Dibromomethane	74-95-3	< 0.2	< 0.03	0.2	674	
trans 1,4-Dichloro-2-butene	110-57-6	< 0.2	< 0.04	0.2	865	
cis 1,4-Dichloro-2-butene	1476-11-5	< 0.2	< 0.04	0.2	848	
1,2-Dichlorobenzene	95-50-1	< 0.2	< 0.03	0.2	951	
1,3-Dichlorobenzene	541-73-1	< 0.2	< 0.03	0.2	923	
1,4-Dichlorobenzene	106-46-7	4.3	0.7	0.2	930	
1,1-Dichloroethane	75-34-3	< 0.2	< 0.05	0.2	567	
1,2-Dichloroethane	107-06-2	< 0.2	< 0.05	0.2	633	
cis 1,2-Dichloroethene	156-59-2	< 0.2	< 0.05	0.2	593	
trans 1,2-Dichloroethene	156-60-5	< 0.2	< 0.05	0.2	548	
1,1-Dichloroethene	75-35-4	< 0.2	< 0.05	0.2	508	
2,2-Dichloropropane	594-20-7	< 0.2	< 0.04	0.2	593	
1,2-Dichloropropane	78-87-5	< 0.2	< 0.04	0.2	670	
1,3-Dichloropropane	142-28-9	< 0.2	< 0.04	0.2	748	-
trans 1,3-Dichloropropene	10061-02-6	< 0.2	< 0.05	0.2	729	
1,1-Dichloropropene	563-58-6	< 0.2	< 0.05	0.2	623	
cis 1,3-Dichloropropene	10061-01-5	< 0.2	< 0.05	0.2	701	
Diethyl ether	60-29-7	< 0.2	< 0.07	0.2	493	
1,4-Dioxane	123-91-1	< 0.4	< 0.1	0.4	673	
Ethanol	64-17-5	670	350	2.1	480]*
Ethylacetate	141-78-6	1.9	0.5	0.2	594	
Ethylbenzene	100-41-4	0.3	0.08	0.2	795	
Ethylmethacrylate	97-63-2	< 0.2	< 0.04	0.2	731	
4-Ethyltoluene	622-96-8	< 0.2	< 0.04	0.2	878	
Hexachlorobutadiene	87-68-3	< 0.2	< 0.02	0.2	1036	
Hexane (C 6)	110-54-3	1.1	0.3	0.2	562	
Isooctane	540-84-1	< 0.2	< 0.04	0.2	638	2,2,4-Trimethylpentane
Isopropanol	67-63-0	49	20	1.0	517	-
Isopropylbenzene	98-82-8	< 0.2	< 0.04	0.2	846	

Analytical Report

		Sam Concer	Reporting Limit			
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
p-Isopropyltoluene	99-87-6	0.4	0.08	0.2	924	
Methacrylonitrile	126-98-7	< 0.2	< 0.07	0.2	600	
Methyl methacrylate	80-62-6	< 0.2	< 0.06	0.2	672	
Methyl Tertiary Butyl Ether	1634-04-4	< 0.2	< 0.06	0.2	547	MTBE
2-Methyl-1-propanol	78-83-1	1.0	0.3	0.2	625	Isobutyl alcohol
4-Methyl-2-pentanone	108-10-1	1.3	0.3	0.2	707	Methyl isobutyl ketone (MIBK)
Methylacrylate	96-33-3	< 0.2	< 0.06	0.2	595	
Methylene Chloride	75-09-2	0.6	0.2	0.2	533	
2-Methylnaphthalene	91-57-6	< 0.4	< 0.07	0.4	1095	
Naphthalene	91-20-3	0.5	0.09	0.4	1042	
Nitrobenzene	98-95-3	< 0.8	< 0.2	0.8	999	
Pentachloroethane	76-01-7	< 0.2	< 0.03	0.2	902	
Propionitrile	107-12-0	< 0.2	< 0.09	0.2	593	
n-Propylbenzene	103-65-1	< 0.2	< 0.04	0.2	871	
Styrene	100-42-5	0.4	0.1	0.2	825	
1,1,2,2-Tetrachloroethane	79-34-5	< 0.2	< 0.03	0.2	863	
1,1,1,2-Tetrachloroethane	630-20-6	< 0.2	< 0.03	0.2	794	
Tetrachloroethene	127-18-4	< 0.2	< 0.03	0.2	746	
Tetrahydrofuran	109-99-9	< 0.2	< 0.07	0.2	604	
Toluene	108-88-3	3.3	0.9	0.2	719	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	0.5	0.07	0.2	510	
1,2,4-Trichlorobenzene	120-82-1	< 0.2	< 0.03	0.2	1030	
1,2,3-Trichlorobenzene	87-61-6	< 0.2	< 0.03	0.2	1052	
1,1,2-Trichloroethane	79-00-5	< 0.2	< 0.04	0.2	739	-
1,1,1-Trichloroethane	71-55-6	< 0.2	< 0.04	0.2	616	-
Trichloroethene	79-01-6	< 0.2	< 0.04	0.2	660	
1,2,3-Trichloropropane	96-18-4	< 0.2	< 0.03	0.2	867	
1,3,5-Trimethylbenzene	108-67-8	< 0.2	< 0.04	0.2	881	
1,2,4-Trimethylbenzene	95-63-6	< 0.2	< 0.04	0.2	903	
m,p-Xylene	108-38-3; 106-42-3	1.0	0.2	0.4	802	-

Analytical Report

		Sample Concentration		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
o-Xylene	95-47-6	0.3	0.07	0.2	825	

Compound Notes

J*

The accuracy of this determination may be degraded because the reported value exceeded the calibrated range by more than a factor of 10.

Semiquantitative Compounds

Semiquantitative data includes compounds that have not been calibrated but have some reference information indicating the validity of the compound identification, an acceptable reference library match, or some other supporting evidence as part of the extensive Prism compound database.

This section lists the Semiquantitative compounds detected in this air sample above the reporting limit in alphabetical order. The concentrations are reported in two different units for easy comparison to exposure limits or other information. Note that the conversion to ppb requires the molecular weight of the chemical compound so those compounds that are non-specific (e.g., C10-C12 Hydrocarbon) do not have a concentration in ppb listed. The Retention Index (RI) indicates volatility relative to adjacent n-alkanes. A more detailed description of these terms can be found at the end of the report.

		San Concer		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
2,6-Dimethyl-7-octen-2-ol	18479-58-8	6	0.9	4	963	
Acetaldehyde	75-07-0	52	29	4	399	
Benzaldehyde	100-52-7	7	1	4	903	
Butane (C 4)	106-97-8	7	3	4	384	
1-Butanol	71-36-3	15	5	4	653	
2-Butoxyethanol	111-76-2	23	5	4	843	
Butoxyethoxyethanol	112-34-5	40	6	4	1029	
C12-C14 Hydrocarbon	N/A	6	N/A	4	1051	Contains silicon and oxygen; appears to be a siloxane
C7-C9 Hydrocarbon	N/A	8	N/A	4	755	Sum of two overlapping hydrocarbons; one is n-butyl acetate (CAS); one is hexanal (CAS)
Decanal	112-31-2	14	2	4	1033	
Diethylene glycol ethyl ether	111-90-0	23	4	4	922	DEGMEE; Carbitol
Dipropylene glycol methyl ether	13588-28-8; 34590-94-8	330	53	4	912	DPGME
Dodecane (C 12)	112-40-3	8	1	4	1008	
2-Ethyl-1-hexanol	104-76-7	18	3	4	936	
Ethylene Glycol	107-21-1	41	16	4	714	
Isobutane	75-28-5	5	2	4	358	
Limonene	138-86-3 or 5989-27-5	21	4	4	922	Limonene (CAS 138-86-3) or d- Limonene (CAS 5989-27-5)
Methoxy-2-propanol	107-98-2	5	1	4	654	PGME
Nonanal	124-19-6	13	2	4	983	
Pentane (C 5)	109-66-0	22	7	4	475	
Propylene glycol	57-55-6	12	4	4	747	
					-	·

		Sam Concen		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Tetradecane (C 14)	629-59-4	5	0.7	4	1097	
2,4,7,9-Tetramethyl-5-decyne-4,7-diol	126-86-3	8	0.8	4	1135	
Texanol-A	74367-33-2	220	24	4	1122	
Texanol-B	74367-34-3	270	30	4	1127	
Tridecane (C 13)	629-50-5	6	0.8	4	1054	
Urea	57-13-6	8	3	4	989	L*

These results pertain only to this sample as it was collected and to the items reported. These results have been reviewed and approved by the Laboratory Director or authorized representative.

lia Sela

Alice E. Delia, Ph.D., Laboratory Director

Enthalpy Analytical, LLC (MTP) 2625 Denison Dr. Mt. Pleasant, MI 48858 989-772-5088

Supplemental Information: Odorants

Many chemical compounds have odors associated with them, some pleasant and some unpleasant. These odors can combine to create different odors, making odor identification more difficult. The odor descriptions for the compounds reported in this air sample are listed below as well as some of the more common sources.

Compound	CAS	Conc. (ng/L)	Conc. (ppb)	Odor Range (ppb)	Odor Description	
Acetaldehyde	75-07-0	52	29	2 - 1,000,000	pungent, fruity, suffocating, fresh, green	
Acetone	67-64-1	45	19	400 - 11,745,000	sweet, fruity, etherous	
Benzaldehyde	100-52-7	7	1	2 - 783,000	bitter almond, fruit, vanilla	
Benzene	71-43-2	0.3	0.1	470 - 313,000	aromatic, sweet, solvent, empyreumatic	
Butane (C 4)	106-97-8	7	3	421 - 5,048,000	natural gas	
1-Butanol	71-36-3	15	5	3 - 990,000	sweet, malty, alcohol, medicinal	
2-Butoxyethanol	111-76-2	23	5	43 - 390	sweet, ester, musty	
Carbon Tetrachloride	56-23-5	0.8	0.1	1,680 - 720,000	sweet, ethereal, dry cleaner, aromatic	
Cyclohexane	110-82-7	0.2	0.07	520 - 784,000	aromatic, chloroform, pungent, sweet	
1,4-Dichlorobenzene	106-46-7	4.3	0.7	121 - 15,000	camphor, mothballs	
Diethylene glycol ethyl ether	111-90-0	23	4	200 - 1,090	ethereal, mild, pleasant	
Ethanol	64-17-5	670	350	90 - 40,334,000	vinous, alcohol	
2-Ethyl-1-hexanol	104-76-7	18	3	75 - 150	citrus, fatty, floral, fresh, fruity, green, musty, oily, sweet	
Ethylacetate	141-78-6	1.9	0.5	90 - 190,000	fruity, sweet, fingernail polish, etherous	
Ethylbenzene	100-41-4	0.3	0.08	2 - 18,000	oily, solvent	
Ethylene Glycol	107-21-1	41	16	5,120 -	-	
Hexane (C 6)	110-54-3	1.1	0.3	1,500 - 248,000	gasoline	
Isopropanol	67-63-0	49	20	1,000 - 2,197,000	sharp, rubbing alcohol	
Limonene	138-86-3 or 5989- 27-5	21	4	2 - 310	lemon, plastic, citrus, rubber, terpeny	
Methoxy-2-propanol	107-98-2	5	1	8,390 - 33,000	etherish, ammonia	
2-Methyl-1-propanol	78-83-1	1.0	0.3	10 - 165,000	sweet, fusel, musty, alcohol, rubber, latex	
4-Methyl-2-pentanone	108-10-1	1.3	0.3	30 - 16,000	camphor, dairy, fruity, green, herbal, pleasant, sharp, solvent, spicy, sweet	
Methylene Chloride	75-09-2	0.6	0.2	1,200 - 440,000	sweet	
Naphthalene	91-20-3	0.5	0.09	2 - 1,012	tar, creosote, mothballs, empyreumatic	

Analytical Report

Client Sample ID: Rm 31 Laboratory ID: 99670-8

Compound	CAS	Conc. (ng/L)	Conc. (ppb)	Odor Range (ppb)	Odor Description
Pentane (C 5)	109-66-0	22	7	1,290 - 1,147,000	sweet
Propylene glycol	57-55-6	12	4	5,140 -	-
Styrene	100-42-5	0.4	0.1	3 - 61,000	sharp, sweet
Toluene	108-88-3	3.3	0.9	21 - 157,000	sour, burnt
	108-38-3; 106-42-3	1.0	0.2	12 - 316,000	sweet, empyreumatic
o-Xylene	95-47-6	0.3	0.07	12 - 316,000	sweet, empyreumatic

Supplemental Information: EPA Hazardous Air Pollutants (HAPs)

Hazardous air pollutants, also known as toxic air pollutants or air toxics, are those pollutants that are known or suspected to cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse environmental effects. Of the 187 compounds or groups defined as HAPs, approximately 65 can be detected with this analysis. Listed below are those HAPs that were detected in this air sample. For more information about HAPs visit the EPA <u>Air Toxics website</u>. The exposure limits listed below can also be found in the <u>NIOSH Guide to Chemical Hazards</u>.

Compound	CAS	Conc. (ng/L)	NIOSH TWA REL	Potential Health Effects
Benzene	71-43-2	0.3	320 ng/L (100 ppb)	Gasoline. Less common sources include some discontinued solvents; printing and lithography; paints and coatings; rubber; dry cleaning; adhesives; detergents
Carbon Tetrachloride	56-23-5	0.8	Carcinogen	Solvent; metal degreasing; refrigerant; agricultural fumigant; fire retardant (former use)
1,4-Dichlorobenzene	106-46-7	4.3	Carcinogen	Moth balls/crystals; room deodorant
Ethylbenzene	100-41-4	0.3	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; solvent; pesticide
Methylene Chloride	75-09-2	0.6	Carcinogen	Automotive products; degreasing solvent; paint stripper; adhesive remover; aerosol propellant; insecticide
Naphthalene	91-20-3	0.5	50,000 ng/L (10,000 ppb)	Gasoline; diesel; Moth balls/crystals; insecticide
Styrene	100-42-5	0.4	215,000 ng/L (50,000 ppb)	Polystyrene foam; synthetic rubber; flavoring agent
Toluene	108-88-3	3.3	375,000 ng/L (100,000 ppb)	Gasoline; adhesives (building and arts/crafts); contact cement; solvent; heavy duty cleaner
m,p-Xylene	108-38-3; 106-42-3	1.0	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; adhesives and cements; solvent; print cartridges
o-Xylene	95-47-6	0.3	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; adhesives and cements; solvent; print cartridges

Additional Information

Glossary of Terms

Total VOCs (TVOC): TVOC is one of the samples with each other or with target I_{TVOC} $\binom{ng}{L} = \frac{\left[\frac{(A_s - A_b) \times W_s}{A_i}\right]}{L_s}$ uality indicators. It allows comparison of multiple to the calculation between 2 and 45 contains between 2 and 45 contains at the calculation of the calculati contain between 3 and 15 carbon atoms (along with the associated hydrogen, as well as oxygen, nitrogen, sulfur, silicon, etc.), although certain compounds outside this range of carbon atoms may be included depending on the type of compound.

Where:

As - C3-C15 TIC (Total Ion Chromatogram from GC-MS) area of the sample Ab - C3-C15 TIC area of the media blank Ws - Weight of the internal standard added in ng Ai – average TIC area of the internal standard peak(s) Ls – Volume of the sample in L

CAS: The Chemical Abstract Service (CAS) assigns a unique number to chemical compounds, commonly referred to as the CAS number. This number is usually the best way to search for additional information about the compound since some compounds may have many names but only one CAS number.

Reporting Units - ng/L: Most concentrations for air samples will be reported in units of ng/L, which translates to ng of

that specific chemical compound present per liter of air sampled. Concentration in ng/L is equivalent to $\mu g/m^3$. Reporting Units - ppb: Some sections o^{Conc} (*ppb*) = $\frac{Conc}{\frac{ng}{L} \times 24.04(\frac{L}{mol})}{\frac{MW(\frac{g}{mol})}{\frac{mol}{mol}}}$ h compound concentrations displayed in or reference limits. The concentration in units of ppb (parts per billion), which are or reference limits. The concentration in ng/L (or µg/m³ can be converted easily to ppb using the following formula derived from the Ideal Gas Law.

Where:

Vm = Molar Volume as 24.04 L/mol at 1 atm pressure and 20 °C (68 °F) MW = Molecular Weight in g/mol

Reporting Limit: The Reporting Limit column displays the lowest possible concentration that could be reported for that compound for that sample and analysis. Typically the reporting limit is displayed in units of ng/L but other units may be used as appropriate.

Retention Index (RI): The retention index is a means of converting a compound GC-MS retention time, which is dependent on the type of system and specific operating parameters, into an independent and universal value based on the elution of the adjacent n-alkanes. Each n-alkane is assigned a retention index based on its carbon number, e.g., pentane (C5) has a retention index of 500 and hexane (C6) has a retention index of 600, etc. For example, a hydrocarbon with a retention index of 550 would be expected to elute at the midpoint between pentane and hexane. Using the elution of the n-alkanes as the $RI_x = 100n + 100 \times \frac{(RT_x - RT_n)}{(RT_{n+1} - RT_n)}$ retention index of organic compounds to be applicable across almost any GC-MS GC-MS instruments used by Prism, can be determined using the following formula derived from the Kovats isothermal retention index.

Where:

RIx – retention index of target compound x n – Carbon number of n-alkane eluting before the target compound x RTx – retention time of target compound x

RTn – retention time of n-alkane eluting before target compound x RTn+1 – retention time of n-alkane eluting after target compound x

Odor Description: Description of the odor (e.g., fruity)

HAPs: Hazardous Air Pollutants

NIOSH: National Institute for Occupational Safety and Health

TWA: Time Weighted Average

REL: Recommended Exposure Limit

Ca: Potential carcinogen

Sources for Additional Compound Information:

The compound information displayed in this report (e.g., odor description, exposure limits, etc.) is gathered from a variety of sources, including but not limited to, the <u>NIST Chemistry Webbook</u>, the <u>NIOSH Pocket Guide to Chemical Hazards</u>, the <u>Household Products Database</u>, the University of Akron <u>Chemical Database</u>, the <u>WISER</u> (for Emergency Responders), <u>IRIS</u>, <u>ToxNet</u>, <u>ATSDR</u>. Prism does not guarantee the accuracy of this information or endorse any of the views or opinions expressed.

This analysis was performed by Enthalpy Analytical, LLC (MTP). The results contained in this report are dependent upon a number of factors over which Enthalpy Analytical, LLC (MTP) has no control, which may include, but are not limited to, the sampling technique utilized, the size or source of sample, the ability of the sampler to collect a proper or suitable sample, the compounds which make up the TVOC, and/or the type of mold(s) present. Therefore, the opinions contained in this report may be invalid and cannot be considered or construed as definitive and neither Prism, nor its agents, officers, directors, employees, or successors shall be liable for any claims, actions, causes of action, costs, loss of service, medical or other expenses or any compensation whatsoever which may now or hereafter occur or accrue based upon the information or opinions contained herein.

Analytical Report

Client:	JS Held, LLC 50 Jericho Quadrangle Ste 117 Jericho, NY 11753 US	COC: Laboratory ID:	99670 99670-9
Project:	James Harvey Marshall H.S.21111804 805 S. Miami Ave. Marshall, MO 65340	Received Date: Approved Date: Scanned Date:	03/31/2022
Client Sample ID: Volume: Date Sampled: Sample Type:	24 L 03/30/2022	Report Date:	

Comp-Air Survey Analysis

Applicable methods for this analytical technique include (with relevant modifications) US EPA TO-17 and ISO 16000-6. A scan was made for all compounds contained in the Air Survey Analysis List (TB503 Quantitative and Semiquantitative List). All compounds detected are listed below.

Comp-Air Survey Analysis Report Description

The Comp-Air (Comprehensive-Air) Survey Analysis is designed to provide additional information beyond the high quality chemical data from the air sample. This additional information may aid in interpretation of results.

Your Report is divided into several sections describing different aspects of the chemical composition of your sample.

1. Sample Summary: listing of some of the aggregate values from this air sample (e.g., Total VOCs).

2. Top 5: listing of the five highest concentration compounds in the air sample from both the quantitative TO17 and Semiguantitative Compounds (see below for a description of TO17 and Semiguantitative Compounds).

3. TO17 Compounds: listing of the chemical compounds characterized by EPA method TO17. Some of these are Hazardous Air Pollutants (HAPs) and others are typical of industrial/manufacturing sources. Accuracy for TO17 compounds is within ±15%.

4. Semiquantitative Compounds: listing of chemical compounds that have not been calibrated but have some reference information indicating the validity of the compound identification, an acceptable reference library match, or some other supporting evidence of identification. Also listed in this section are compounds that are not specificially identified but for which some information is available (e.g., C10-C12 Hydrocarbons; probably an alcohol). Instrument and media response have not been confirmed for most chemical compounds reported semiquantitatively, conferring an accuracy on the order of ±50% based on an instrument and media response of unity. Semiquantitative results should be interpreted relative to other chemical compounds.

5. Supplemental Information: Odorants: listing of the odor characteristics of chemical compounds present in this air sample. Almost all chemical compounds have an odor and a mixture of various chemical compounds could alter the odor characteristics. Some chemical compounds have a strong odor at relatively low concentrations so the individual chemical compound concentrations may be of secondary importance relative to the odor characteristics for odor concerns.

6. Supplemental Information: EPA Hazardous Air Pollutants (HAPs): listing of the chemical compounds detected in this air sample that are known or suspected to have serious health or environmental effects (also known as air toxics). HAPs include VOCs, metals, some pesticides/insecticides that are primarily semi-volatile, inorganic compounds, and very volatile organic compounds. Of the 187 compounds or groups defined as HAPs, approximately 65 are VOCs that can be detected with this analysis.

7. Additional Information: definitions, calculations, and other useful information.

Sample Summary

General information regarding the sample and aggregate concentrations, e.g., Total VOCs, are listed below. The top five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds are also listed. The full list of compounds and their concentrations in this air sample are listed later in the report and may be displayed more than once depending on the categorization of specific compounds.

	Sample Concentration	Reporting Limit	_
Compound	ng/L	ng/L	Additional Information
Total VOCs	5200	200	Total volatile organic compounds calculated based on internal standard ratio; does not include C1, C2, or methanol.
	Sample Concentration	Reporting Limit	
Compound	ng/L	ng/L	Additional Information
Total Mold VOCs (TMVOC)	6	3	TMVOC is an assessment of the quantity of actively growing mold in the sample location.

Top 5

The top five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds are listed below.

Semiquantitative Compounds			Sample F Concentration			
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Texanol-B	74367-34-3	390	44	4	1127	
Dipropylene glycol methyl ether	13588-28-8; 34590-94-8	300	49	4	912	DPGME
Texanol-A	74367-33-2	300	33	4	1122	

EPA Method TO-17			Sample Concentration		Reporting Limit		
	Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
	Ethanol	64-17-5	970	500	2.1	480	J*
	Isopropanol	67-63-0	100	41	1.0	517	

TO17 Compounds

EPA Method TO17 focuses on chemical compounds that are typical of industrial/manufacturing sources, many of these compounds are also found in commercial and residential environments. Accuracy for these chemical compounds is within ±15%.

This section lists all the TO17 compounds in alphabetical order (compounds not present or with concentrations below the reporting limit are listed with '<'; compounds above the reporting limit have bold text for the Sample Concentration). The concentrations are reported in two different units for easy comparison to exposure limits or other information. The Retention Index (RI) indicates volatility relative to adjacent n-alkanes. A more detailed description of reporting units and RI can be found at the end of the report.

		Sam Concen		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Acetone	67-64-1	60	25	1.0	509	
Acetonitrile	75-05-8	< 0.4	< 0.2	0.4	522	
Acrylonitrile	107-13-1	< 0.2	< 0.09	0.2	543	
Benzene	71-43-2	0.4	0.1	0.2	631	
Bromobenzene	108-86-1	< 0.2	< 0.03	0.2	866	
Bromochloromethane	74-97-5	< 0.2	< 0.04	0.2	603	
Bromodichloromethane	75-27-4	< 0.2	< 0.03	0.2	682	
Bromoform	75-25-2	< 0.2	< 0.02	0.2	837	
1,3-Butadiene	106-99-0	< 0.2	< 0.09	0.2	389	
tert-Butylbenzene	98-06-6	< 0.2	< 0.04	0.2	900	
sec-Butylbenzene	135-98-8	< 0.2	< 0.04	0.2	914	
n-Butylbenzene	104-51-8	< 0.2	< 0.04	0.2	949	
Carbon Disulfide	75-15-0	< 0.2	< 0.07	0.2	520	
Carbon Tetrachloride	56-23-5	0.8	0.1	0.2	623	
Chlorobenzene	108-90-7	< 0.2	< 0.04	0.2	791	
Chlorodibromomethane	124-48-1	< 0.2	< 0.02	0.2	759	
2-Chloroethanol	107-07-3	< 0.2	< 0.06	0.2	675	
Chloroform	67-66-3	0.3	0.07	0.2	608	
Chloroprene	126-99-8	< 0.2	< 0.06	0.2	571	
3-Chloropropene	107-05-1	< 0.2	< 0.07	0.2	527	
4-Chlorotoluene	106-43-4	< 0.2	< 0.04	0.2	883	
2-Chlorotoluene	95-49-8	< 0.2	< 0.04	0.2	877	
Cyclohexane	110-82-7	0.3	0.07	0.2	620	
1,2-Dibromo-3-chloropropane	96-12-8	< 0.4	< 0.04	0.4	991	

Analytical Report

		Sample Concentration				
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
1,2-Dibromoethane	106-93-4	< 0.2	< 0.03	0.2	766	
Dibromomethane	74-95-3	< 0.2	< 0.03	0.2	674	
trans 1,4-Dichloro-2-butene	110-57-6	< 0.2	< 0.04	0.2	865	
cis 1,4-Dichloro-2-butene	1476-11-5	< 0.2	< 0.04	0.2	848	
1,2-Dichlorobenzene	95-50-1	< 0.2	< 0.03	0.2	951	
1,3-Dichlorobenzene	541-73-1	< 0.2	< 0.03	0.2	923	
1,4-Dichlorobenzene	106-46-7	3.1	0.5	0.2	930	
1,1-Dichloroethane	75-34-3	< 0.2	< 0.05	0.2	567	
1,2-Dichloroethane	107-06-2	< 0.2	< 0.05	0.2	633	
cis 1,2-Dichloroethene	156-59-2	< 0.2	< 0.05	0.2	593	
trans 1,2-Dichloroethene	156-60-5	< 0.2	< 0.05	0.2	548	
1,1-Dichloroethene	75-35-4	< 0.2	< 0.05	0.2	508	
2,2-Dichloropropane	594-20-7	< 0.2	< 0.04	0.2	593	-
1,2-Dichloropropane	78-87-5	< 0.2	< 0.04	0.2	670	-
1,3-Dichloropropane	142-28-9	< 0.2	< 0.04	0.2	748	-
trans 1,3-Dichloropropene	10061-02-6	< 0.2	< 0.05	0.2	729	-
1,1-Dichloropropene	563-58-6	< 0.2	< 0.05	0.2	623	
cis 1,3-Dichloropropene	10061-01-5	< 0.2	< 0.05	0.2	701	
Diethyl ether	60-29-7	< 0.2	< 0.07	0.2	493	
1,4-Dioxane	123-91-1	< 0.4	< 0.1	0.4	673	
Ethanol	64-17-5	970	500	2.1	480	J*
Ethylacetate	141-78-6	2.3	0.6	0.2	594	
Ethylbenzene	100-41-4	0.4	0.08	0.2	795	
Ethylmethacrylate	97-63-2	< 0.2	< 0.04	0.2	731	
4-Ethyltoluene	622-96-8	< 0.2	< 0.04	0.2	878	
Hexachlorobutadiene	87-68-3	< 0.2	< 0.02	0.2	1036	
Hexane (C 6)	110-54-3	0.8	0.2	0.2	562	
Isooctane	540-84-1	< 0.2	< 0.04	0.2	638	2,2,4-Trimethylpentane
Isopropanol	67-63-0	100	41	1.0	517	-
Isopropylbenzene	98-82-8	< 0.2	< 0.04	0.2	846	

Analytical Report

		Sample F Concentration		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
p-Isopropyltoluene	99-87-6	0.5	0.09	0.2	924	
Methacrylonitrile	126-98-7	< 0.2	< 0.07	0.2	600	
Methyl methacrylate	80-62-6	< 0.2	< 0.06	0.2	672	
Methyl Tertiary Butyl Ether	1634-04-4	< 0.2	< 0.06	0.2	547	MTBE
2-Methyl-1-propanol	78-83-1	0.8	0.3	0.2	625	Isobutyl alcohol
4-Methyl-2-pentanone	108-10-1	1.9	0.5	0.2	707	Methyl isobutyl ketone (MIBK)
Methylacrylate	96-33-3	< 0.2	< 0.06	0.2	595	
Methylene Chloride	75-09-2	0.5	0.1	0.2	533	
2-Methylnaphthalene	91-57-6	< 0.4	< 0.07	0.4	1095	
Naphthalene	91-20-3	< 0.4	< 0.08	0.4	1042	
Nitrobenzene	98-95-3	< 0.8	< 0.2	0.8	999	
Pentachloroethane	76-01-7	< 0.2	< 0.03	0.2	902	
Propionitrile	107-12-0	< 0.2	< 0.09	0.2	593	
n-Propylbenzene	103-65-1	< 0.2	< 0.04	0.2	871	
Styrene	100-42-5	0.5	0.1	0.2	825	
1,1,2,2-Tetrachloroethane	79-34-5	< 0.2	< 0.03	0.2	863	
1,1,1,2-Tetrachloroethane	630-20-6	< 0.2	< 0.03	0.2	794	
Tetrachloroethene	127-18-4	< 0.2	< 0.03	0.2	746	
Tetrahydrofuran	109-99-9	< 0.2	< 0.07	0.2	604	
Toluene	108-88-3	3.3	0.9	0.2	719	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	0.6	0.07	0.2	510	
1,2,4-Trichlorobenzene	120-82-1	< 0.2	< 0.03	0.2	1030	
1,2,3-Trichlorobenzene	87-61-6	< 0.2	< 0.03	0.2	1052	
1,1,2-Trichloroethane	79-00-5	< 0.2	< 0.04	0.2	739	
1,1,1-Trichloroethane	71-55-6	< 0.2	< 0.04	0.2	616	
Trichloroethene	79-01-6	< 0.2	< 0.04	0.2	660	-
1,2,3-Trichloropropane	96-18-4	< 0.2	< 0.03	0.2	867	-
1,3,5-Trimethylbenzene	108-67-8	< 0.2	< 0.04	0.2	881	-
1,2,4-Trimethylbenzene	95-63-6	< 0.2	< 0.04	0.2	903	
m,p-Xylene	108-38-3; 106-42-3	1	0.2	0.4	802	

Analytical Report

		Sample Concentration		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
o-Xylene	95-47-6	0.3	0.08	0.2	825	

Compound Notes

J*

The accuracy of this determination may be degraded because the reported value exceeded the calibrated range by more than a factor of 10.

Semiquantitative Compounds

Semiquantitative data includes compounds that have not been calibrated but have some reference information indicating the validity of the compound identification, an acceptable reference library match, or some other supporting evidence as part of the extensive Prism compound database.

This section lists the Semiquantitative compounds detected in this air sample above the reporting limit in alphabetical order. The concentrations are reported in two different units for easy comparison to exposure limits or other information. Note that the conversion to ppb requires the molecular weight of the chemical compound so those compounds that are non-specific (e.g., C10-C12 Hydrocarbon) do not have a concentration in ppb listed. The Retention Index (RI) indicates volatility relative to adjacent n-alkanes. A more detailed description of these terms can be found at the end of the report.

		San Concer	nple ntration	Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
2,6-Dimethyl-7-octen-2-ol	18479-58-8	7	1	4	963	
Acetaldehyde	75-07-0	22	12	4	399	
Benzaldehyde	100-52-7	6	1	4	903	
Butane (C 4)	106-97-8	7	3	4	384	
1-Butanol	71-36-3	26	8	4	653	
2-Butoxyethanol	111-76-2	24	5	4	843	
Butoxyethoxyethanol	112-34-5	34	5	4	1029	
4-tert-Butylcyclohexyl acetate	32210-23-4	5	0.6	4	1078	
C12-C14 Hydrocarbon	N/A	9	N/A	4	1050	Contains silicon and oxygen; appears to be a siloxane
C7-C9 Hydrocarbon	N/A	8	N/A	4	755	Sum of two overlapping hydrocarbons; one is n-butyl acetate (CAS); one is hexanal (CAS)
Decanal	112-31-2	7	1	4	1032	
Diethylene glycol ethyl ether	111-90-0	21	4	4	922	DEGMEE; Carbitol
Dipropylene glycol methyl ether	13588-28-8; 34590-94-8	300	49	4	912	DPGME
Dodecane (C 12)	112-40-3	7	1	4	1008	
2-Ethyl-1-hexanol	104-76-7	18	3	4	936	
Ethylene Glycol	107-21-1	56	22	4	714	
Isobutane	75-28-5	6	3	4	359	
Isohexadecane	4390-04-9	7	0.7	4	1077	
Isoprene	78-79-5	9	3	4	497	
Limonene	138-86-3 or 5989-27-5	42	7	4	922	Limonene (CAS 138-86-3) or d- Limonene (CAS 5989-27-5)
Methoxy-2-propanol	107-98-2	10	3	4	654	PGME

	_	Sample Concentration		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
2-Methylbutane	78-78-4	5	2	4	447	
Octamethylcyclotetrasiloxane (D4)	556-67-2	5	0.4	4	858	
Pentane (C 5)	109-66-0	29	10	4	475	
n-Propylacetate	109-60-4	15	3	4	674	
Propylene glycol	57-55-6	14	4	4	746	
Tetradecane (C 14)	629-59-4	5	0.7	4	1097	
2,4,7,9-Tetramethyl-5-decyne-4,7-diol	126-86-3	20	2	4	1135	
Texanol-A	74367-33-2	300	33	4	1122	
Texanol-B	74367-34-3	390	44	4	1127	
Tridecane (C 13)	629-50-5	5	0.7	4	1053	

These results pertain only to this sample as it was collected and to the items reported. These results have been reviewed and approved by the Laboratory Director or authorized representative.

Alia Sela

Alice E. Delia, Ph.D., Laboratory Director

Enthalpy Analytical, LLC (MTP) 2625 Denison Dr. Mt. Pleasant, MI 48858 989-772-5088

Supplemental Information: Odorants

Many chemical compounds have odors associated with them, some pleasant and some unpleasant. These odors can combine to create different odors, making odor identification more difficult. The odor descriptions for the compounds reported in this air sample are listed below as well as some of the more common sources.

Compound	CAS	Conc. (ng/L)	Conc. (ppb)	Odor Range (ppb)	Odor Description
Acetaldehyde	75-07-0	22	12	2 - 1,000,000	pungent, fruity, suffocating, fresh, green
Acetone	67-64-1	60	25	400 - 11,745,000	sweet, fruity, etherous
Benzaldehyde	100-52-7	6	1	2 - 783,000	bitter almond, fruit, vanilla
Benzene	71-43-2	0.4	0.1	470 - 313,000	aromatic, sweet, solvent, empyreumatic
Butane (C 4)	106-97-8	7	3	421 - 5,048,000	natural gas
1-Butanol	71-36-3	26	8	3 - 990,000	sweet, malty, alcohol, medicinal
2-Butoxyethanol	111-76-2	24	5	43 - 390	sweet, ester, musty
Carbon Tetrachloride	56-23-5	0.8	0.1	1,680 - 720,000	sweet, ethereal, dry cleaner, aromatic
Chloroform	67-66-3	0.3	0.07	102 - 1,413,000	sweet, etherous, suffocating
Cyclohexane	110-82-7	0.3	0.07	520 - 784,000	aromatic, chloroform, pungent, sweet
1,4-Dichlorobenzene	106-46-7	3.1	0.5	121 - 15,000	camphor, mothballs
Diethylene glycol ethyl ether	111-90-0	21	4	200 - 1,090	ethereal, mild, pleasant
Ethanol	64-17-5	970	500	90 - 40,334,000	vinous, alcohol
2-Ethyl-1-hexanol	104-76-7	18	3	75 - 150	citrus, fatty, floral, fresh, fruity, green, musty, oily, sweet
Ethylacetate	141-78-6	2.3	0.6	90 - 190,000	fruity, sweet, fingernail polish, etherous
Ethylbenzene	100-41-4	0.4	0.08	2 - 18,000	oily, solvent
Ethylene Glycol	107-21-1	56	22	5,120 -	-
Hexane (C 6)	110-54-3	0.8	0.2	1,500 - 248,000	gasoline
Isoprene	78-79-5	9	3	47 - 3,590	aromatic
Isopropanol	67-63-0	100	41	1,000 - 2,197,000	sharp, rubbing alcohol
Limonene	138-86-3 or 5989- 27-5	42	7	2 - 310	lemon, plastic, citrus, rubber, terpeny
Methoxy-2-propanol	107-98-2	10	3	8,390 - 33,000	etherish, ammonia
2-Methyl-1-propanol	78-83-1	0.8	0.3	10 - 165,000	sweet, fusel, musty, alcohol, rubber, latex
4-Methyl-2-pentanone	108-10-1	1.9	0.5	30 - 16,000	camphor, dairy, fruity, green, herbal, pleasant, sharp, solvent, spicy, sweet

Analytical Report

Client Sample ID: Rm 14 Laboratory ID: 99670-9

Compound	CAS	Conc. (ng/L)	Conc. (ppb)	Odor Range (ppb)	Odor Description
Methylene Chloride	75-09-2	0.5	0.1	1,200 - 440,000	sweet
Pentane (C 5)	109-66-0	29	10	1,290 - 1,147,000	sweet
n-Propylacetate	109-60-4	15	3	48 - 87,000	sweet, ester
Propylene glycol	57-55-6	14	4	5,140 -	-
Styrene	100-42-5	0.5	0.1	3 - 61,000	sharp, sweet
Toluene	108-88-3	3.3	0.9	21 - 157,000	sour, burnt
m,p-Xylene	108-38-3; 106-42-3	1	0.2	12 - 316,000	sweet, empyreumatic
o-Xylene	95-47-6	0.3	0.08	12 - 316,000	sweet, empyreumatic

Supplemental Information: EPA Hazardous Air Pollutants (HAPs)

Hazardous air pollutants, also known as toxic air pollutants or air toxics, are those pollutants that are known or suspected to cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse environmental effects. Of the 187 compounds or groups defined as HAPs, approximately 65 can be detected with this analysis. Listed below are those HAPs that were detected in this air sample. For more information about HAPs visit the EPA <u>Air Toxics website</u>. The exposure limits listed below can also be found in the <u>NIOSH Guide to Chemical Hazards</u>.

Compound	CAS	Conc. (ng/L)	NIOSH TWA REL	Potential Health Effects
Benzene	71-43-2	0.4	320 ng/L (100 ppb)	Gasoline. Less common sources include some discontinued solvents; printing and lithography; paints and coatings; rubber; dry cleaning; adhesives; detergents
Carbon Tetrachloride	56-23-5	0.8	Carcinogen	Solvent; metal degreasing; refrigerant; agricultural fumigant; fire retardant (former use)
Chloroform	67-66-3	0.3	Carcinogen	Formed during the chlorination of drinking water, wastewater and swimming pools. Also pulp and paper mills, hazardous waste sites, and sanitary landfills
1,4-Dichlorobenzene	106-46-7	3.1	Carcinogen	Moth balls/crystals; room deodorant
Ethylbenzene	100-41-4	0.4	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; solvent; pesticide
Methylene Chloride	75-09-2	0.5	Carcinogen	Automotive products; degreasing solvent; paint stripper; adhesive remover; aerosol propellant; insecticide
Styrene	100-42-5	0.5	215,000 ng/L (50,000 ppb)	Polystyrene foam; synthetic rubber; flavoring agent
Toluene	108-88-3	3.3	375,000 ng/L (100,000 ppb)	Gasoline; adhesives (building and arts/crafts); contact cement; solvent; heavy duty cleaner
m,p-Xylene	108-38-3; 106-42-3	1	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; adhesives and cements; solvent; print cartridges
o-Xylene	95-47-6	0.3	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; adhesives and cements; solvent; print cartridges

Additional Information

Glossary of Terms

Total VOCs (TVOC): TVOC is one of the samples with each other or with target I_{TVOC} $\binom{ng}{L} = \frac{\left[\frac{(A_s - A_b) \times W_s}{A_i}\right]}{L_s}$ uality indicators. It allows comparison of multiple to the calculation between 2 and 45 contains between 2 and 45 contains at the calculation of the calculati contain between 3 and 15 carbon atoms (along with the associated hydrogen, as well as oxygen, nitrogen, sulfur, silicon, etc.), although certain compounds outside this range of carbon atoms may be included depending on the type of compound.

Where:

As - C3-C15 TIC (Total Ion Chromatogram from GC-MS) area of the sample Ab - C3-C15 TIC area of the media blank Ws - Weight of the internal standard added in ng Ai – average TIC area of the internal standard peak(s) Ls – Volume of the sample in L

CAS: The Chemical Abstract Service (CAS) assigns a unique number to chemical compounds, commonly referred to as the CAS number. This number is usually the best way to search for additional information about the compound since some compounds may have many names but only one CAS number.

Reporting Units - ng/L: Most concentrations for air samples will be reported in units of ng/L, which translates to ng of

that specific chemical compound present per liter of air sampled. Concentration in ng/L is equivalent to $\mu g/m^3$. Reporting Units - ppb: Some sections o^{Conc} (*ppb*) = $\frac{Conc}{\frac{ng}{L} \times 24.04(\frac{L}{mol})}{\frac{MW(\frac{g}{mol})}{\frac{mol}{mol}}}$ h compound concentrations displayed in or reference limits. The concentration in units of ppb (parts per billion), which are or reference limits. The concentration in ng/L (or µg/m³ can be converted easily to ppb using the following formula derived from the Ideal Gas Law.

Where:

Vm = Molar Volume as 24.04 L/mol at 1 atm pressure and 20 °C (68 °F) MW = Molecular Weight in g/mol

Reporting Limit: The Reporting Limit column displays the lowest possible concentration that could be reported for that compound for that sample and analysis. Typically the reporting limit is displayed in units of ng/L but other units may be used as appropriate.

Retention Index (RI): The retention index is a means of converting a compound GC-MS retention time, which is dependent on the type of system and specific operating parameters, into an independent and universal value based on the elution of the adjacent n-alkanes. Each n-alkane is assigned a retention index based on its carbon number, e.g., pentane (C5) has a retention index of 500 and hexane (C6) has a retention index of 600, etc. For example, a hydrocarbon with a retention index of 550 would be expected to elute at the midpoint between pentane and hexane. Using the elution of the n-alkanes as the $RI_x = 100n + 100 \times \frac{(RT_x - RT_n)}{(RT_{n+1} - RT_n)}$ retention index of organic compounds to be applicable across almost any GC-MS GC-MS instruments used by Prism, can be determined using the following formula derived from the Kovats isothermal retention index.

Where:

RIx – retention index of target compound x n – Carbon number of n-alkane eluting before the target compound x RTx – retention time of target compound x

RTn – retention time of n-alkane eluting before target compound x RTn+1 – retention time of n-alkane eluting after target compound x

Odor Description: Description of the odor (e.g., fruity)

HAPs: Hazardous Air Pollutants

NIOSH: National Institute for Occupational Safety and Health

TWA: Time Weighted Average

REL: Recommended Exposure Limit

Ca: Potential carcinogen

Sources for Additional Compound Information:

The compound information displayed in this report (e.g., odor description, exposure limits, etc.) is gathered from a variety of sources, including but not limited to, the <u>NIST Chemistry Webbook</u>, the <u>NIOSH Pocket Guide to Chemical Hazards</u>, the <u>Household Products Database</u>, the University of Akron <u>Chemical Database</u>, the <u>WISER</u> (for Emergency Responders), <u>IRIS</u>, <u>ToxNet</u>, <u>ATSDR</u>. Prism does not guarantee the accuracy of this information or endorse any of the views or opinions expressed.

This analysis was performed by Enthalpy Analytical, LLC (MTP). The results contained in this report are dependent upon a number of factors over which Enthalpy Analytical, LLC (MTP) has no control, which may include, but are not limited to, the sampling technique utilized, the size or source of sample, the ability of the sampler to collect a proper or suitable sample, the compounds which make up the TVOC, and/or the type of mold(s) present. Therefore, the opinions contained in this report may be invalid and cannot be considered or construed as definitive and neither Prism, nor its agents, officers, directors, employees, or successors shall be liable for any claims, actions, causes of action, costs, loss of service, medical or other expenses or any compensation whatsoever which may now or hereafter occur or accrue based upon the information or opinions contained herein.

Analytical Report

Client:	JS Held, LLC 50 Jericho Quadrangle Ste 117 Jericho, NY 11753 US	COC: Laboratory ID:	99670 99670-10
	James Harvey Marshall H.S.21111804 805 S. Miami Ave. Marshall, MO 65340	Received Date: Approved Date: Scanned Date:	
Client Sample ID: Volume: Date Sampled: Sample Type:	03/30/2022	Report Date:	

Comp-Air Survey Analysis

Applicable methods for this analytical technique include (with relevant modifications) US EPA TO-17 and ISO 16000-6. A scan was made for all compounds contained in the Air Survey Analysis List (TB503 Quantitative and Semiquantitative List). All compounds detected are listed below.

Comp-Air Survey Analysis Report Description

The Comp-Air (Comprehensive-Air) Survey Analysis is designed to provide additional information beyond the high quality chemical data from the air sample. This additional information may aid in interpretation of results.

Your Report is divided into several sections describing different aspects of the chemical composition of your sample.

1. Sample Summary: listing of some of the aggregate values from this air sample (e.g., Total VOCs).

2. Top 5: listing of the five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds (see below for a description of TO17 and Semiquantitative Compounds).

3. TO17 Compounds: listing of the chemical compounds characterized by EPA method TO17. Some of these are Hazardous Air Pollutants (HAPs) and others are typical of industrial/manufacturing sources. Accuracy for TO17 compounds is within ±15%.

4. Semiquantitative Compounds: listing of chemical compounds that have not been calibrated but have some reference information indicating the validity of the compound identification, an acceptable reference library match, or some other supporting evidence of identification. Also listed in this section are compounds that are not specificially identified but for which some information is available (e.g., C10-C12 Hydrocarbons; probably an alcohol). Instrument and media response have not been confirmed for most chemical compounds reported semiquantitatively, conferring an accuracy on the order of ±50% based on an instrument and media response of unity. Semiquantitative results should be interpreted relative to other chemical compounds.

5. Supplemental Information: Odorants: listing of the odor characteristics of chemical compounds present in this air sample. Almost all chemical compounds have an odor and a mixture of various chemical compounds could alter the odor characteristics. Some chemical compounds have a strong odor at relatively low concentrations so the individual chemical compound concentrations may be of secondary importance relative to the odor characteristics for odor concerns.

6. Supplemental Information: EPA Hazardous Air Pollutants (HAPs): listing of the chemical compounds detected in this air sample that are known or suspected to have serious health or environmental effects (also known as air toxics). HAPs include VOCs, metals, some pesticides/insecticides that are primarily semi-volatile, inorganic compounds, and very volatile organic compounds. Of the 187 compounds or groups defined as HAPs, approximately 65 are VOCs that can be detected with this analysis.

7. Additional Information: definitions, calculations, and other useful information.

Sample Summary

General information regarding the sample and aggregate concentrations, e.g., Total VOCs, are listed below. The top five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds are also listed. The full list of compounds and their concentrations in this air sample are listed later in the report and may be displayed more than once depending on the categorization of specific compounds.

	Sample Concentration	Reporting Limit	
Compound	ng/L	ng/L	Additional Information
Total VOCs	1100	200	Total volatile organic compounds calculated based on internal standard ratio; does not include C1, C2, or methanol.
	Sample Concentration	Reporting Limit	_
Compound	ng/L	ng/L	Additional Information
Total Mold VOCs (TMVOC)	5	3	TMVOC is an assessment of the quantity of actively growing mold in the sample location.

Top 5

The top five highest concentration compounds in the air sample from both the quantitative TO17 and Semiquantitative Compounds are listed below.

Semiquantitative Compounds		Sam Concen	•	Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Butane (C 4)	106-97-8	29	12	4	383	
Texanol-B	74367-34-3	19	2	4	1127	
Dipropylene glycol methyl ether	13588-28-8; 34590-94-8	15	2	4	912	DPGME

EPA Method TO-17			Sam Concent		Reporting Limit		
	Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
	Ethanol	64-17-5	260	140	2.1	480]*
	Acetone	67-64-1	19	8.0	1.0	509	

TO17 Compounds

EPA Method TO17 focuses on chemical compounds that are typical of industrial/manufacturing sources, many of these compounds are also found in commercial and residential environments. Accuracy for these chemical compounds is within ±15%.

This section lists all the TO17 compounds in alphabetical order (compounds not present or with concentrations below the reporting limit are listed with '<'; compounds above the reporting limit have bold text for the Sample Concentration). The concentrations are reported in two different units for easy comparison to exposure limits or other information. The Retention Index (RI) indicates volatility relative to adjacent n-alkanes. A more detailed description of reporting units and RI can be found at the end of the report.

		Sam Concen		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Acetone	67-64-1	19	8.0	1.0	509	
Acetonitrile	75-05-8	< 0.4	< 0.2	0.4	522	
Acrylonitrile	107-13-1	< 0.2	< 0.09	0.2	543	
Benzene	71-43-2	0.4	0.1	0.2	631	
Bromobenzene	108-86-1	< 0.2	< 0.03	0.2	866	
Bromochloromethane	74-97-5	< 0.2	< 0.04	0.2	603	
Bromodichloromethane	75-27-4	< 0.2	< 0.03	0.2	682	
Bromoform	75-25-2	< 0.2	< 0.02	0.2	837	
1,3-Butadiene	106-99-0	< 0.2	< 0.09	0.2	389	
tert-Butylbenzene	98-06-6	< 0.2	< 0.04	0.2	900	
sec-Butylbenzene	135-98-8	< 0.2	< 0.04	0.2	914	
n-Butylbenzene	104-51-8	< 0.2	< 0.04	0.2	949	
Carbon Disulfide	75-15-0	< 0.2	< 0.07	0.2	520	
Carbon Tetrachloride	56-23-5	0.5	0.08	0.2	623	
Chlorobenzene	108-90-7	< 0.2	< 0.04	0.2	791	
Chlorodibromomethane	124-48-1	< 0.2	< 0.02	0.2	759	
2-Chloroethanol	107-07-3	< 0.2	< 0.06	0.2	675	
Chloroform	67-66-3	< 0.2	< 0.04	0.2	608	
Chloroprene	126-99-8	< 0.2	< 0.06	0.2	571	
3-Chloropropene	107-05-1	< 0.2	< 0.07	0.2	527	
4-Chlorotoluene	106-43-4	< 0.2	< 0.04	0.2	883	
2-Chlorotoluene	95-49-8	< 0.2	< 0.04	0.2	877	
Cyclohexane	110-82-7	0.2	0.07	0.2	620	
1,2-Dibromo-3-chloropropane	96-12-8	< 0.4	< 0.04	0.4	991	

Client Sample ID: Hall O/S Little Theater Laboratory ID: 99670-10

eny Prisin Analytical Technologies		Laboratory	D: 99670-10			
		Sample F Concentration		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
1,2-Dibromoethane	106-93-4	< 0.2	< 0.03	0.2	766	
Dibromomethane	74-95-3	< 0.2	< 0.03	0.2	674	
trans 1,4-Dichloro-2-butene	110-57-6	< 0.2	< 0.04	0.2	865	-
cis 1,4-Dichloro-2-butene	1476-11-5	< 0.2	< 0.04	0.2	848	-
1,2-Dichlorobenzene	95-50-1	< 0.2	< 0.03	0.2	951	-
1,3-Dichlorobenzene	541-73-1	< 0.2	< 0.03	0.2	923	
1,4-Dichlorobenzene	106-46-7	0.5	0.08	0.2	930	-
1,1-Dichloroethane	75-34-3	< 0.2	< 0.05	0.2	567	
1,2-Dichloroethane	107-06-2	< 0.2	< 0.05	0.2	633	
cis 1,2-Dichloroethene	156-59-2	< 0.2	< 0.05	0.2	593	
trans 1,2-Dichloroethene	156-60-5	< 0.2	< 0.05	0.2	548	
1,1-Dichloroethene	75-35-4	< 0.2	< 0.05	0.2	508	
2,2-Dichloropropane	594-20-7	< 0.2	< 0.04	0.2	593	
1,2-Dichloropropane	78-87-5	< 0.2	< 0.04	0.2	670	
1,3-Dichloropropane	142-28-9	< 0.2	< 0.04	0.2	748	
trans 1,3-Dichloropropene	10061-02-6	< 0.2	< 0.05	0.2	729	
1,1-Dichloropropene	563-58-6	< 0.2	< 0.05	0.2	623	
cis 1,3-Dichloropropene	10061-01-5	< 0.2	< 0.05	0.2	701	
Diethyl ether	60-29-7	< 0.2	< 0.07	0.2	493	
1,4-Dioxane	123-91-1	< 0.4	< 0.1	0.4	673	
Ethanol	64-17-5	260	140	2.1	480]*
Ethylacetate	141-78-6	0.8	0.2	0.2	594	-
Ethylbenzene	100-41-4	0.3	0.06	0.2	795	-
Ethylmethacrylate	97-63-2	< 0.2	< 0.04	0.2	731	-
4-Ethyltoluene	622-96-8	< 0.2	< 0.04	0.2	878	
Hexachlorobutadiene	87-68-3	< 0.2	< 0.02	0.2	1036	
Hexane (C 6)	110-54-3	0.5	0.1	0.2	562	
Isooctane	540-84-1	< 0.2	< 0.04	0.2	638	2,2,4-Trimethylpentane
Isopropanol	67-63-0	11	4.2	1.0	517	
Isopropylbenzene	98-82-8	< 0.2	< 0.04	0.2	846	

Client Sample ID: Hall O/S Little Theater Laboratory ID: 99670-10

neny Prism Analytical Technologies		-	D: 99670-10	-		
			Reporting Limit			
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
p-Isopropyltoluene	99-87-6	0.3	0.05	0.2	924	
Methacrylonitrile	126-98-7	< 0.2	< 0.07	0.2	600	
Methyl methacrylate	80-62-6	< 0.2	< 0.06	0.2	672	
Methyl Tertiary Butyl Ether	1634-04-4	< 0.2	< 0.06	0.2	547	МТВЕ
2-Methyl-1-propanol	78-83-1	0.8	0.3	0.2	625	Isobutyl alcohol
4-Methyl-2-pentanone	108-10-1	1.0	0.2	0.2	707	Methyl isobutyl ketone (MIBK)
Methylacrylate	96-33-3	< 0.2	< 0.06	0.2	595	
Methylene Chloride	75-09-2	0.3	0.09	0.2	533	
2-Methylnaphthalene	91-57-6	< 0.4	< 0.07	0.4	1095	-
Naphthalene	91-20-3	< 0.4	< 0.08	0.4	1042	-
Nitrobenzene	98-95-3	< 0.8	< 0.2	0.8	999	
Pentachloroethane	76-01-7	< 0.2	< 0.03	0.2	902	
Propionitrile	107-12-0	< 0.2	< 0.09	0.2	593	
n-Propylbenzene	103-65-1	< 0.2	< 0.04	0.2	871	
Styrene	100-42-5	< 0.2	< 0.05	0.2	825	
1,1,2,2-Tetrachloroethane	79-34-5	< 0.2	< 0.03	0.2	863	
1,1,1,2-Tetrachloroethane	630-20-6	< 0.2	< 0.03	0.2	794	
Tetrachloroethene	127-18-4	< 0.2	< 0.03	0.2	746	-
Tetrahydrofuran	109-99-9	< 0.2	< 0.07	0.2	604	-
Toluene	108-88-3	1.3	0.3	0.2	719	-
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	0.6	0.08	0.2	510	
1,2,4-Trichlorobenzene	120-82-1	< 0.2	< 0.03	0.2	1030	
1,2,3-Trichlorobenzene	87-61-6	< 0.2	< 0.03	0.2	1052	
1,1,2-Trichloroethane	79-00-5	< 0.2	< 0.04	0.2	739	
1,1,1-Trichloroethane	71-55-6	< 0.2	< 0.04	0.2	616	
Trichloroethene	79-01-6	< 0.2	< 0.04	0.2	660	
1,2,3-Trichloropropane	96-18-4	< 0.2	< 0.03	0.2	867	
1,3,5-Trimethylbenzene	108-67-8	< 0.2	< 0.04	0.2	881	
1,2,4-Trimethylbenzene	95-63-6	0.2	0.05	0.2	903	
m,p-Xylene	108-38-3; 106-42-3	0.8	0.2	0.4	802	

Analytical Report

Client Sample ID: Hall O/S Little Theater Laboratory ID: 99670-10

		Sam Concer		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
o-Xylene	95-47-6	0.3	0.06	0.2	825	

Compound Notes

J*

The accuracy of this determination may be degraded because the reported value exceeded the calibrated range by more than a factor of 10.

Semiquantitative Compounds

Semiquantitative data includes compounds that have not been calibrated but have some reference information indicating the validity of the compound identification, an acceptable reference library match, or some other supporting evidence as part of the extensive Prism compound database.

This section lists the Semiquantitative compounds detected in this air sample above the reporting limit in alphabetical order. The concentrations are reported in two different units for easy comparison to exposure limits or other information. Note that the conversion to ppb requires the molecular weight of the chemical compound so those compounds that are non-specific (e.g., C10-C12 Hydrocarbon) do not have a concentration in ppb listed. The Retention Index (RI) indicates volatility relative to adjacent n-alkanes. A more detailed description of these terms can be found at the end of the report.

		Sarr Concer		Reporting Limit		
Compound	CAS	ng/L	ppb	ng/L	RI	Additional Information
Butane (C 4)	106-97-8	29	12	4	383	
Dipropylene glycol methyl ether	13588-28-8; 34590-94-8	15	2	4	912	DPGME
Isobutane	75-28-5	9	4	4	358	
Limonene	138-86-3 or 5989-27-5	8	2	4	923	Limonene (CAS 138-86-3) or d- Limonene (CAS 5989-27-5)
2-Methylbutane	78-78-4	4	1	4	447	
Pentane (C 5)	109-66-0	8	3	4	474	
Texanol-A	74367-33-2	9	1	4	1122	
Texanol-B	74367-34-3	19	2	4	1127	

These results pertain only to this sample as it was collected and to the items reported.

These results have been reviewed and approved by the Laboratory Director or authorized representative.

Alice E. Delia, Ph.D., Laboratory Director

Enthalpy Analytical, LLC (MTP) 2625 Denison Dr. Mt. Pleasant, MI 48858 989-772-5088

Supplemental Information: Odorants

Many chemical compounds have odors associated with them, some pleasant and some unpleasant. These odors can combine to create different odors, making odor identification more difficult. The odor descriptions for the compounds reported in this air sample are listed below as well as some of the more common sources.

Compound	CAS	Conc. (ng/L)	Conc. (ppb)	Odor Range (ppb)	Odor Description
Acetone	67-64-1	19	8.0	400 - 11,745,000	sweet, fruity, etherous
Benzene	71-43-2	0.4	0.1	470 - 313,000	aromatic, sweet, solvent, empyreumatic
Butane (C 4)	106-97-8	29	12	421 - 5,048,000	natural gas
Carbon Tetrachloride	56-23-5	0.5	0.08	1,680 - 720,000	sweet, ethereal, dry cleaner, aromatic
Cyclohexane	110-82-7	0.2	0.07	520 - 784,000	aromatic, chloroform, pungent, sweet
1,4-Dichlorobenzene	106-46-7	0.5	0.08	121 - 15,000	camphor, mothballs
Ethanol	64-17-5	260	140	90 - 40,334,000	vinous, alcohol
Ethylacetate	141-78-6	0.8	0.2	90 - 190,000	fruity, sweet, fingernail polish, etherous
Ethylbenzene	100-41-4	0.3	0.06	2 - 18,000	oily, solvent
Hexane (C 6)	110-54-3	0.5	0.1	1,500 - 248,000	gasoline
Isopropanol	67-63-0	11	4.2	1,000 - 2,197,000	sharp, rubbing alcohol
Limonene	138-86-3 or 5989- 27-5	8	2	2 - 310	lemon, plastic, citrus, rubber, terpeny
2-Methyl-1-propanol	78-83-1	0.8	0.3	10 - 165,000	sweet, fusel, musty, alcohol, rubber, latex
4-Methyl-2-pentanone	108-10-1	1.0	0.2	30 - 16,000	camphor, dairy, fruity, green, herbal, pleasant, sharp, solvent, spicy, sweet
Methylene Chloride	75-09-2	0.3	0.09	1,200 - 440,000	sweet
Pentane (C 5)	109-66-0	8	3	1,290 - 1,147,000	sweet
Toluene	108-88-3	1.3	0.3	21 - 157,000	sour, burnt
1,2,4-Trimethylbenzene	95-63-6	0.2	0.05	6 - 2,400	aromatic
m,p-Xylene	108-38-3; 106-42-3	0.8	0.2	12 - 316,000	sweet, empyreumatic
o-Xylene	95-47-6	0.3	0.06	12 - 316,000	sweet, empyreumatic

Supplemental Information: EPA Hazardous Air Pollutants (HAPs)

Hazardous air pollutants, also known as toxic air pollutants or air toxics, are those pollutants that are known or suspected to cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse environmental effects. Of the 187 compounds or groups defined as HAPs, approximately 65 can be detected with this analysis. Listed below are those HAPs that were detected in this air sample. For more information about HAPs visit the EPA <u>Air Toxics website</u>. The exposure limits listed below can also be found in the <u>NIOSH Guide to Chemical Hazards</u>.

Compound	CAS	Conc. (ng/L)	NIOSH TWA REL	Potential Health Effects
Benzene	71-43-2	0.4	320 ng/L (100 ppb)	Gasoline. Less common sources include some discontinued solvents; printing and lithography; paints and coatings; rubber; dry cleaning; adhesives; detergents
Carbon Tetrachloride	56-23-5	0.5	Carcinogen	Solvent; metal degreasing; refrigerant; agricultural fumigant; fire retardant (former use)
1,4-Dichlorobenzene	106-46-7	0.5	Carcinogen	Moth balls/crystals; room deodorant
Ethylbenzene	100-41-4	0.3	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; solvent; pesticide
Methylene Chloride	75-09-2	0.3	Carcinogen	Automotive products; degreasing solvent; paint stripper; adhesive remover; aerosol propellant; insecticide
Toluene	108-88-3	1.3	375,000 ng/L (100,000 ppb)	Gasoline; adhesives (building and arts/crafts); contact cement; solvent; heavy duty cleaner
m,p-Xylene	108-38-3; 106-42-3	0.8	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; adhesives and cements; solvent; print cartridges
o-Xylene	95-47-6	0.3	435,000 ng/L (100,000 ppb)	Gasoline; paints and coatings; adhesives and cements; solvent; print cartridges

Additional Information

Glossary of Terms

Total VOCs (TVOC): TVOC is one of the samples with each other or with target I_{TVOC} $\binom{ng}{L} = \frac{\left[\frac{(A_s - A_b) \times W_s}{A_i}\right]}{L_s}$ uality indicators. It allows comparison of multiple to the calculation between 2 and 45 contains between 2 and 45 contains at the calculation of the calculati contain between 3 and 15 carbon atoms (along with the associated hydrogen, as well as oxygen, nitrogen, sulfur, silicon, etc.), although certain compounds outside this range of carbon atoms may be included depending on the type of compound.

Where:

As - C3-C15 TIC (Total Ion Chromatogram from GC-MS) area of the sample Ab - C3-C15 TIC area of the media blank Ws - Weight of the internal standard added in ng Ai – average TIC area of the internal standard peak(s) Ls – Volume of the sample in L

CAS: The Chemical Abstract Service (CAS) assigns a unique number to chemical compounds, commonly referred to as the CAS number. This number is usually the best way to search for additional information about the compound since some compounds may have many names but only one CAS number.

Reporting Units - ng/L: Most concentrations for air samples will be reported in units of ng/L, which translates to ng of

that specific chemical compound present per liter of air sampled. Concentration in ng/L is equivalent to $\mu g/m^3$. Reporting Units - ppb: Some sections o^{Conc} (*ppb*) = $\frac{Conc}{\frac{ng}{L} \times 24.04(\frac{L}{mol})}{\frac{MW(\frac{g}{mol})}{\frac{mol}{mol}}}$ h compound concentrations displayed in or reference limits. The concentration in units of ppb (parts per billion), which are or reference limits. The concentration in ng/L (or µg/m³ can be converted easily to ppb using the following formula derived from the Ideal Gas Law.

Where:

Vm = Molar Volume as 24.04 L/mol at 1 atm pressure and 20 °C (68 °F) MW = Molecular Weight in g/mol

Reporting Limit: The Reporting Limit column displays the lowest possible concentration that could be reported for that compound for that sample and analysis. Typically the reporting limit is displayed in units of ng/L but other units may be used as appropriate.

Retention Index (RI): The retention index is a means of converting a compound GC-MS retention time, which is dependent on the type of system and specific operating parameters, into an independent and universal value based on the elution of the adjacent n-alkanes. Each n-alkane is assigned a retention index based on its carbon number, e.g., pentane (C5) has a retention index of 500 and hexane (C6) has a retention index of 600, etc. For example, a hydrocarbon with a retention index of 550 would be expected to elute at the midpoint between pentane and hexane. Using the elution of the n-alkanes as the $RI_x = 100n + 100 \times \frac{(RT_x - RT_n)}{(RT_{n+1} - RT_n)}$ retention index of organic compounds to be applicable across almost any GC-MS GC-MS instruments used by Prism, can be determined using the following formula derived from the Kovats isothermal retention index.

Where:

RIx – retention index of target compound x n – Carbon number of n-alkane eluting before the target compound x RTx – retention time of target compound x

RTn – retention time of n-alkane eluting before target compound x RTn+1 – retention time of n-alkane eluting after target compound x

Odor Description: Description of the odor (e.g., fruity)

HAPs: Hazardous Air Pollutants

NIOSH: National Institute for Occupational Safety and Health

TWA: Time Weighted Average

REL: Recommended Exposure Limit

Ca: Potential carcinogen

Sources for Additional Compound Information:

The compound information displayed in this report (e.g., odor description, exposure limits, etc.) is gathered from a variety of sources, including but not limited to, the <u>NIST Chemistry Webbook</u>, the <u>NIOSH Pocket Guide to Chemical Hazards</u>, the <u>Household Products Database</u>, the University of Akron <u>Chemical Database</u>, the <u>WISER</u> (for Emergency Responders), <u>IRIS</u>, <u>ToxNet</u>, <u>ATSDR</u>. Prism does not guarantee the accuracy of this information or endorse any of the views or opinions expressed.

This analysis was performed by Enthalpy Analytical, LLC (MTP). The results contained in this report are dependent upon a number of factors over which Enthalpy Analytical, LLC (MTP) has no control, which may include, but are not limited to, the sampling technique utilized, the size or source of sample, the ability of the sampler to collect a proper or suitable sample, the compounds which make up the TVOC, and/or the type of mold(s) present. Therefore, the opinions contained in this report may be invalid and cannot be considered or construed as definitive and neither Prism, nor its agents, officers, directors, employees, or successors shall be liable for any claims, actions, causes of action, costs, loss of service, medical or other expenses or any compensation whatsoever which may now or hereafter occur or accrue based upon the information or opinions contained herein.

APPENDIX G

COMBUSTION BYPRODUCT AIR SAMPLES LABORATORY REPORT AND CHAINS OF CUSTODY

	Construction of the source of the			Project Infor	mation	
	Contact Informatio	n		a second s	Contraction of the local designed in the local designed	
Company Name :	J.S. HELD,	ue		oject#: 2111180		1 0
Address :	7100 Northland	Circle N. S	TE 307 Project Desc	ription : MARSHALL	- Public	A.S.
City/State/Zip :	Brocklyn PARK	MN 554	28			
Phone # :	917-841-8	3875	EAA-In	voice to: X Same	Different -	Provide below
Email :	yeurahkie	inarvey@is	held.ech Email In	voice to:		
Date Collected :	3.30.22	0 10		Special E-MAIL R	esults	
Date Submitted :	3.30.22	-		uctions: harve	1 1	1.com
Contact Name :	J. HARVEY	No.		WZoel	lerejsh	eld.co
	Mold	Combustion	By-Products	Asbestos		
requested	Airborne mold (Quantitative) X Airborne fire re	esidue (Quantitative)	Bulk asbestos	s - PLM - EPA/600/	R-93/116
Check appropriate	Surface mold (Qualitative)	Surface fire res	sidue (area % & cts/mm ²)	Bacteria		
boxes or describe	Surface mold (Quantitative)	(Destantional)	fire - Structure Fire - Protein	Fire) Total coliform	w/E. coli (presenc	e, absence)
f the analysis is	Bulk mold (Qualitative)	pH analysis		Lange and Lange	ectron Micro	
different	Dust Characterization		with analysis	Automated D	ust Analysis - Scree	enina
1	Contraction of the second s	(account)		(percented)		
Photo Report	Airborne dust	and the second se	ity & Cation / Anion	Contemport	ust Analysis - Quar	nutative
L noto Report	Surface dust	Same and Sa	M/EDAX Analysis - Elemen		лк	
Contraction of the second second second	Forensic bulk dust	Composition		Other:		
	Standard (2-5 Days) 3	* Must notify	EAA in advance - Limit o	on number of rush sample	es that may be co	mpleted in
Analysis Turnaround	Next Day (24hrs)	given day. Tu	Irnaround Time (TAT) is	measured in full business	days; for examp	le, samples
Times (TAT)	Same Day (8hrs)	arriving today	for 24hr TAT are due at	the next business day, e	excludes weeken	ds and
Carlos I.	Weekend/Afterhours*	holidays.	and the second second			
Sample #	Description / Location			Analysis (if diffe	rent from above)	Vol. (lite
A - 1	Rm7					75
A-Z	Rm 10		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1
A-3	Rm 3				J.	
A-4	Rm 4				- S. C.	
A . 5	LIBRARY	1		100 100	£.	
A-6	Rn 26					
A-7	SE HALL B/1	1 Rms 36	+27			
4-8	Rn ZI	20000	121		1.10	
A-9	Rn 14	1			2	
A-10	HALL O/S 1	ittle The	ator			14
	ENVIRONMENTAL A	NALYSIS ASSOC	IATES, INC. Shippin	ng Location Informat	tion	
	the planter and the design of	and the second	lichigan unless othe			
Michigan Lab	and a second sec		Californi	Manage 1		
	306 5th Street, Suite	ZA		Please ca	Il before send	ing
(989) 895-4447	Bay City, MI 48708		(858) 27	2-7747 Forensic	& Research O	nlv
Relinquished / Receiv	ed (Signature)	Printed Name				
L H	(originature)	12	Harris	Company TC 11 11	Date	Time
6 1	NO-	JAMES	HARVEY	J.S. Held	3.30.22	1700
Det	~	Damant	na Richard	IS EAA	3/31/22	1000
		CONTRAC	T TERMO			
By providin	a signature authorization the -t	CONTRAC				
Diago C-1	g signature authorization, the cli	ent authowiedges this	contract is entered into, a	nd the lab work will be perf	ormed in either Sa	n
Diego, Cali	formia or Bay City, Michigan. Th	his signature binds the	submitting company to pr	ovide payment for services	according to EAA	e
for a second	e within 30 days above from rec	ceipt of the project invol	ice A 1% finance chame	nor month will be charged	an avardua invaia	
lee schedul				in the starged	on oronauc introlog	
Sample archi	ive policy: EAA retains and hold period of time, you must make	is samples for a time n	eriod of 3 weeks only If s	amplos nood to be rotained	hutho laboratore	for

Page /	of
aye	or

			06 5th Street, Suite 2A - E		EAA Mathead - Eine (Duat AOA
			LE AND DUST ANAL		EAA Method : Fire/Dust-A01
	ent Name : J.S. Held, LLC Project # : 21111804	Project description	· Maraball Dublia H S	Page 24	of 25
	uested by : J. Harvey	Date collected	: Marshall Public H.S.	Comple condition	Acceptable as reasined
	v Project# : 22-0744	Sample received		Sample condition	Acceptable as received
Client Sample#	Sample Descrip	•	Fire / Combustion Par	rticle Comments	
A-1	 Rm 7		Fire/combustion particles	not detected	
A-2	Rm 10		Fire/combustion particles	not detected	
A-3	Rm 3		Fire/combustion particles	not detected	
A-4	Rm 4		Fire/combustion particles	not detected	
A-5	Library		Fire/combustion particles	not detected	
AIRBORNE FIRE	E / COMBUSTION PARTIC	LE CONCENTRATIONS	(Cts./m ³) - Slit Impacti	on Sample Analysis	Magnification : 5002
Particle Category San	mple # ► A-1	A-2	A-3	A-4	A-5
Total Fire/Combustion Par	rticles not detect	ed not detected	not detected	not detected	not detected
Soot Char - vegetative					
-					
Char - non-vegetative					
Ash					
(Fire indicator particles)					
Inorganic Particles (Cts/m ³	3)				
Cellulosic / synthetic fibers		731	823	869	320
Fiberglass fibers	69	27		_	
				27	
Mineral / clay soil dust	2/900		18900	27 16200	16400
Mineral / clay soil dust	24900	20000	18900	16200	16400
Unidentified opaque	24900 6490		18900 5120		16400 3110
Unidentified opaque Bioaerosols (Cts/m³)	6490	20000 5300	5120	16200 4020	3110
Unidentified opaque Bioaerosols (Cts/m³)	6490	20000		16200	
Unidentified opaque Bioaerosols (Cts/m³) Mold spores - unspecified	6490	20000 5300	5120	16200 4020	3110
Unidentified opaque Bioaerosols (Cts/m³) Mold spores - unspecified Mixed Pollen	6490	20000 5300	5120	16200 4020	3110
Unidentified opaque Bioaerosols (Cts/m ³) Mold spores - unspecified Mixed Pollen Plant fragments	6490	20000 5300	5120	16200 4020	3110 91
Unidentified opaque <u>Bioaerosols (Cts/m³)</u> Mold spores - unspecified Mixed Pollen Plant fragments Skin cell fragments	6490 1 229	20000 5300 274	5120 229	16200 4020 274	3110 91 46
Unidentified opaque Bioaerosols (Cts/m ³) Mold spores - unspecified Mixed Pollen Plant fragments Skin cell fragments Micellaneous / other Statistical Pa	6490 1 229 7680 arameters	20000 5300 274	5120 229	16200 4020 274	3110 91 46
Unidentified opaque Bioaerosols (Cts/m ³) Mold spores - unspecified Mixed Pollen Plant fragments Skin cell fragments Micellaneous / other	6490 1 229 7680 arameters	20000 5300 274	5120 229	16200 4020 274	3110 91 46
Unidentified opaque Bioaerosols (Cts/m ³) Mold spores - unspecified Mixed Pollen Plant fragments Skin cell fragments Micellaneous / other Statistical Pa Vol. analyzed (n Detect lim	6490 229 7680 arameters m3) - 500x : 0.022 nit(Cts/m ³) : 45.7	20000 5300 274 7950	5120 229 10500	16200 4020 274 4940	3110 91 46 3660
Unidentified opaque Bioaerosols (Cts/m ³) Mold spores - unspecified Mixed Pollen Plant fragments Skin cell fragments Micellaneous / other Statistical Pa Vol. analyzed (n Detect lim	6490 229 7680 arameters m3) - 500x : 0.022	20000 5300 274 7950	5120 229 10500 0.022	16200 4020 274 4940	3110 91 46 3660 0.022
Unidentified opaque Bioaerosols (Cts/m ³) Mold spores - unspecified Mixed Pollen Plant fragments Skin cell fragments Micellaneous / other Statistical Pa Vol. analyzed (n Detect lim	6490 229 7680 arameters m3) - 500x : 0.022 mit(Cts/m ³) : 45.7 e analyzed : 29%	20000 5300 274 7950 0.022 45.7	5120 229 10500 0.022 45.7	16200 4020 274 4940	3110 91 46 3660 0.022 45.7
Unidentified opaque Bioaerosols (Cts/m ³) Mold spores - unspecified Mixed Pollen Plant fragments Skin cell fragments Micellaneous / other Statistical Pa Vol. analyzed (n Detect lim % sample	6490 I 229 7680 arameters m3) - 500x : 0.022 nit(Cts/m³) : 45.7 e analyzed : 29% v rate (lpm): 15.0 ength (mm): 14.40	20000 5300 274 7950 0.022 45.7 29%	5120 229 10500 0.022 45.7 29%	16200 4020 274 4940 0.022 45.7 29%	3110 91 46 3660 0.022 45.7 29%

The color-coded comparison ranges for Typical-Low, Typical, Atypical, and Elevated fire / combustion particles concentrations are based on the estimated 50th percentile frequency of occurrence, a 3-fold (3X), and a 10-fold (10X) increase above the 50th percentile measured in non-suspect fire impacted buildings. These ranges are only intended to be used as a preliminary comparison with levels measured on your project. Laboratory test results are support information to be used in conjunction with observations gathered during the visual site assessment. The local background, additional control samples, site specific building conditions, and other potential fire-related combustion sources should be considered when rendering an independent opinion and conclusion as to whether or not the concentrations measured by the EAA laboratory on your project represent a typical background or elevated condition.

Statistical	Percentile Frequency	Fire/combustion particle			
Classification Range	of Occurrence	Range (cts/m ³)			
Elevated >10x background	> 95%	> 1000			
Atypical >3x background	> 75%	> 300			
Typical - upper background	> 50%	> 100			
Typical-low - background	< 50%	< 100			

Authorized / data reviewed by: Jackie L. Sova Analyst : err

Report date: 4/4/22 Date analyzed: 4/1/22

		OMBUSTION PARTIC		Vele	EAA Mathead - Eine (Durat AOd
	-		LL AND DUST ANAL		EAA Method : Fire/Dust-A01
	Client Name : J.S. Held, LLC	Ducie et des suisties	Marshall Dublic LLC	Page 25 (end of data	
	ent Project # : 21111804	, ,	Marshall Public H.S.		
	equested by : J. Harvey	Date collected		Sample condition :	Acceptable as received
	AA Project# : 22-0744	Sample received	Fire / Combustion Par	rtiala Commonto	
Client Sample# A-6	Sample Descrip Rm 26	tion / Location	Fire/combustion particles		
A-0 A-7	SE Hall B/w Rms	26 1 27			
		5 30 + 37	Fire/combustion particles		
A-8	Rm 31		Fire/combustion particles		
A-9	Rm 14		Fire/combustion particles		
A-10	Hall o/s Little The		Fire/combustion particles		14 15 15 500
					Magnification : 500.
Particle Category S Total Fire/Combustion F	Sample # ► A-6 Particles ► not detecte	A-7 ed not detected	A-8 not detected	A-9 not detected	A-10 not detected
Soot					
Char - vegetative					
Char - non-vegetative					
Ash					
Aon					
(Fire indicator particles)					
(Fire indicator particles)	/ <mark>m³)</mark>				
(Fire indicator particles) Inorganic Particles (Cts/		594	183	777	229
(Fire indicator particles) Inorganic Particles (Cts/ Cellulosic / synthetic fib			183	777	229
(Fire indicator particles) Inorganic Particles (Cts/ Cellulosic / synthetic fib Fiberglass fibers	bers 640 14	27			-
(Fire indicator particles) Inorganic Particles (Cts/ Cellulosic / synthetic fib Fiberglass fibers Mineral / clay soil dust	bers 640 14 38000	27 29700	18800	25300	12400
(Fire indicator particles) Inorganic Particles (Cts) Cellulosic / synthetic fib Fiberglass fibers Mineral / clay soil dust Unidentified opaque	bers 640 14	27			-
(Fire indicator particles) Inorganic Particles (Cts/ Cellulosic / synthetic fib Fiberglass fibers Mineral / clay soil dust Unidentified opaque Bioaerosols (Cts/m ³)	oers 640 14 38000 5300	27 29700 2470	18800 1280	25300 3930	12400 1830
(Fire indicator particles) Inorganic Particles (Cts) Cellulosic / synthetic fib Fiberglass fibers Mineral / clay soil dust Unidentified opaque Bioaerosols (Cts/m ³) Mold spores - unspecifie	oers 640 14 38000 5300	27 29700	18800	25300	12400 1830 137
(Fire indicator particles) Inorganic Particles (Cts/ Cellulosic / synthetic fib Fiberglass fibers Mineral / clay soil dust	eed	27 29700 2470	18800 1280	25300 3930	12400 1830
(Fire indicator particles) Inorganic Particles (Cts/ Cellulosic / synthetic fib Fiberglass fibers Mineral / clay soil dust Unidentified opaque Bioaerosols (Cts/m ³) Mold spores - unspecifie Mixed Pollen	ed 46	27 29700 2470 46	18800 1280	25300 3930	12400 1830 137
(Fire indicator particles) Inorganic Particles (Cts) Cellulosic / synthetic fib Fiberglass fibers Mineral / clay soil dust Unidentified opaque Bioaerosols (Cts/m ³) Mold spores - unspecifie Mixed Pollen Plant fragments Skin cell fragments	ed 46 91	27 29700 2470 46 46	18800 1280 46	25300 3930 274	12400 1830 137 46
(Fire indicator particles) Inorganic Particles (Cts) Cellulosic / synthetic fib Fiberglass fibers Mineral / clay soil dust Unidentified opaque Bioaerosols (Cts/m ³) Mold spores - unspecifie Mixed Pollen Plant fragments Skin cell fragments Micellaneous / other	ed 46 91	27 29700 2470 46 46	18800 1280 46	25300 3930 274	12400 1830 137 46
(Fire indicator particles) Inorganic Particles (Cts) Cellulosic / synthetic fib Fiberglass fibers Mineral / clay soil dust Unidentified opaque Bioaerosols (Cts/m ³) Mold spores - unspecifie Mixed Pollen Plant fragments Skin cell fragments Micellaneous / other	ed 46 91 14 38000 5300 46 91 14800	27 29700 2470 46 46	18800 1280 46	25300 3930 274	12400 1830 137 46
(Fire indicator particles) Inorganic Particles (Cts) Cellulosic / synthetic fib Fiberglass fibers Mineral / clay soil dust Unidentified opaque Bioaerosols (Cts/m ³) Mold spores - unspecifie Mixed Pollen Plant fragments Skin cell fragments Micellaneous / other <u>Statistical</u> Vol. analyzee Detect	ed HParameters d (m3) - 500x : 0.022 t limit(Cts/m ³) : 45.7	27 29700 2470 46 46 6580	18800 1280 46 2930	25300 3930 274 8780	12400 1830 137 46 4300
(Fire indicator particles) Inorganic Particles (Cts) Cellulosic / synthetic fib Fiberglass fibers Mineral / clay soil dust Unidentified opaque Bioaerosols (Cts/m ³) Mold spores - unspecifie Mixed Pollen Plant fragments Skin cell fragments Micellaneous / other <u>Statistical</u> Vol. analyzee Detect	eers 640 14 38000 5300 ed 46 91 14800 I Parameters d (m3) - 500x : 0.022 t limit(Cts/m ³) : 45.7 mple analyzed : 29%	27 29700 2470 46 46 6580	18800 1280 46 2930 0.022 45.7 29%	25300 3930 274 8780 0.022 45.7 29%	12400 1830 137 46 4300
(Fire indicator particles) Inorganic Particles (Cts) Cellulosic / synthetic fib Fiberglass fibers Mineral / clay soil dust Unidentified opaque Bioaerosols (Cts/m ³) Mold spores - unspecifie Mixed Pollen Plant fragments Skin cell fragments Micellaneous / other Statistical Vol. analyzer Detect % sam	bers 640 14 38000 5300 5300 ed 46 91 14800 IParameters 0.022 t limit(Cts/m³) : 45.7 nple analyzed : 29% flow rate (lpm): 15.0	27 29700 2470 46 46 6580 0.022 45.7 29% 15.0	18800 1280 46 2930 0.022 45.7 29% 15.0	25300 3930 274 8780 0.022 45.7 29% 15.0	12400 1830 137 46 4300 0.022 45.7 29% 15.0
(Fire indicator particles) Inorganic Particles (Cts) Cellulosic / synthetic fib Fiberglass fibers Mineral / clay soil dust Unidentified opaque Bioaerosols (Cts/m ³) Mold spores - unspecifie Mixed Pollen Plant fragments Skin cell fragments Micellaneous / other Statistical Vol. analyzer Detect % sam	bers 640 14 38000 5300 5300 ed 46 91 14800 I Parameters 0.022 t limit(Cts/m³) : 45.7 nple analyzed : 29% flow rate (lpm): 15.0 e length (mm): 14.40	27 29700 2470 46 46 6580 0.022 45.7 29%	18800 1280 46 2930 0.022 45.7 29%	25300 3930 274 8780 0.022 45.7 29%	12400 1830 137 46 4300 0.022 45.7 29%

The color-coded comparison ranges for Typical-Low, Typical, Atypical, and Elevated fire / combustion particles concentrations are based on the estimated 50th percentile frequency of occurrence, a 3-fold (3X), and a 10-fold (10X) increase above the 50th percentile measured in non-suspect fire impacted buildings. These ranges are only intended to be used as a preliminary comparison with levels measured on your project. Laboratory test results are support information to be used in conjunction with observations gathered during the visual site assessment. The local background, additional control samples, site specific building conditions, and other potential fire-related combustion sources should be considered when rendering an independent opinion and conclusion as to whether or not the concentrations measured by the EAA laboratory on your project represent a typical background or elevated condition.

Statistical	Percentile Frequency	Fire/combustion particle			
Classification Range	of Occurrence	Range (cts/m ³)			
Elevated >10x background	> 95%	> 1000			
Atypical >3x background	> 75%	> 300			
Typical - upper background	> 50%	> 100			
Typical-low - background	< 50%	< 100			

Authorized / data reviewed by: Jackie L. Sova Analyst : err

Report date: 4/4/22 Date analyzed: 4/1/22

APPENDIX H

COMBUSTION BYPRODUCT SURFACE SAMPLES LABORATORY REPORT AND CHAINS OF CUSTODY

	EAA Project # : (Lab use only)	22-074	ENVIRONMENTAL	ANALYSIS ASSOCI	ATES, INC CHAIN	N OF CUSTO	DY FORM
		Contact Informatio			Project Inform		
	Company Name :	J.S. HELD,	ис	Client Project #	: ZIII1804	Statistics I down and the	
	Address :	7100 Northland	Circle N. STE 307		: Marshall	0	11 5
	City/State/Zip :	Brooklyn Park, M	N 55428	1 reject bescription	. Julai Mari	aprici	(1 .).
	Phone # :	917-841-8	875	EAA-Invoice to	x X Same	Different	
	Email :	Marvey @	isheld com		KU -	Dillerent -	Provide below
	Date Collected :	3.30.ZZ	preucicom	Email Invoice to			
	Date Submitted :	3.30.22			E-MAIL Resi		3
	Contact Name :	J. Harrey		Instructions	harvey	0	
	Analysis M	lold	Combustion By-Pro	ducto	WZOELLE	Rejst	reld.con
	requested	Airborne mold (Quantitative)	Airbome fire residue (Qua		Asbestos Bulk asbestos - P		P-02/116
	Check appropriate boxes or describe	Surface mold (Qualitative) Surface mold (Quantitative)	Surface fire residue (area	% & cts/mm ²)	Bacteria		
	if the analysis is	Bulk mold (Qualitative)	(Fire Type: Wildfire Structure)	re Fire) Protein Fire)	Total coliform w/E	E. coli (presence	e, absence)
	different D	ust Characterization	pH analysis pH & Conductivity analysis	s	Scanning Elec	tron Micro	scopy
	Photo Report	Airborne dust	pH, Conductivity & Cation		Automated Dust		
		Surface dust Forensic bulk dust	Automated SEM/EDAX An		Qualitative Bulk	energois - Guan	utauve
		Standard (2-5 Days)	Composition		Other:		
- 1	Analysis Turnaround	Next Day (24hrs)	* Must notify EAA in adv given day. Turnaround T	Time (TAT) is measured	per of rush samples th red in full business do	nat may be con	mpleted in a
EAA#	Times (TAT)	Same Day (8hrs)	arriving today for 24hr T	AT are due at the nex	xt business day, exclu	udes weekend	ie, samples is and
lab use	Sample #	Weekend/Afterhours*	holidays.		and the second se		
only	Sample #	Description / Location			Analysis (if different	from above)	Vol. (liters)
11	<u>B-1</u>	KM 7 - Carpe	+	-			-202-10
15	6-2	Rm 10 - Cerpe	et				
10	B-3	Rm 26 - Corp.	et				
14	B-4	RM 31 - Carpe	et				
15	B-5	Library large	+		1		
110	B-6	ASST. Principal	Office - Corpet	140	10/1 4/5		
17	B-7	Ron 38 - Carf	et.	for J. Kon	nest 11		
18	B-8	Rm7 - Conter	its in ServPro	Bar			
19	B-9	Rm7 - Content		Bar			
20	B-10	Rm 10 - Conten	220 10 0	Bar			
		ENVIRONMENTAL ANA	LYSIS ASSOCIATES, IN	C. Shipping Loc.	ation Information		
		(All samples shou	ld be sent to Michigan L	Inless otherwise	discussed)		
ſ	Michigan Lab	Attn: Joseph Heintskil	I	California Lab	Attn: Daniel E	Baxter	
		306 5th Street, Suite 2/	4		Please call be		10
ŀ	(989) 895-4447	Bay City, MI 48708		(858) 272-7747	Forensic & R		
L L	Relinquished / Received	(Şignature)	Printed Name		Company		Time
k	for the		James Harver	4	J.S. HELD, LIC	3.30.ZZ	1700
A	Sitt	12:	Samantini	Pichavas	EAA	2/21/22	INN
Ĺ			Summer	fama	EAA	opiles	ia
			CONTRACT TERM	S	•	1	
	By providing sig	gnature authorization, the client	acknowledges this contract is e	ntered into and the lat	work will be performe	d in either San	
	anogo, oumoni	a or bay ony, whomgan. This	signature binds the submitting c	ompany to provide new	montforneries		
	oumple archive p	folicy. EAA retains and holds s	t of the project invoice. A 1% fin amples for a time period of 3 we	eks only If samples n	and to be retained but	ha labard F	
L	a longer per	iod of time, you must make arra	angements for retention at the tin	ne of sample submission	on. Additional charges	may apply.	
			Page of 7	1	Contraction of the property of the stream of the property of	Contraction of the local division of the loc	A CONTRACTOR OF A CONTRACTOR O

Page /	of	Z

	EAA Project # : (Lab use only)	22 - 0 7 4 4	ENVIRONMENTAL ANALYSIS ASSOC	IATES, INC CHAI	N OF CUSTO	DY FORM
EAA# lab use	Sample archive p a longer per	oolicy: EAA retains and holds s riod of time, you must make arra	amples for a time period of 3 weeks only. If sampl ngements for retention at the time of sample subm	es need to be retained b ission. Additional charge	y the laborator	y for
only	Sample #	Description / Location		Analysis (if different f		Vol. (liters)
ZI	B-11	Rm 4 - Contert	s in Servere Box			
22	B-12	Rm 4 - Content	ts in Service Box		······································	
23	B-13	RM4 - Content	5 in Servpro Box			
24	B-14	Rm17 - Contre	nts in Serupro Box.			
25	B-15		to m Servero Box			
210	B-16	Rm 31 - Top 0	& Cabinct			
27	B-17	HALLWAY Cont	ents in Servicio Box			
28	B-18	Mrs. Simms RM	- Contents. in Servero Box			
29	B-19	RM 12 - Conter	its in Serv pro Box			
30	B-20	10 0 1	of File Cabinet			
		0				
	·					
	· · · · · · · · · · · · · · · · · · ·					
	· · · · · · · · · · · · · · · · · · ·					
		l				
			1 ·····			
	Relinquished / received	(Signature)	Printed Name	Company	Date	Time
	the for		James Havey	J.S. Held UC		1700
)~TJ		Samantha Kichards	EAA	3/31/22	IDD
	-				/	

Page 2 of 2

ENVIRONMENTAL ANALYSIS ASSOCIATES, INC.

306 5th Street, Suite 2A - Bay City, MI 48708

LABORATORY REPORT

Fire/Combustion Particle Analysis - Surface & Airborne Dust

Report prepared for : J.S. Held, LLC

Client Project # : 21111804 Project Description : Marshall Public H.S. EAA Project # : 22-0744

Samples Collected : 03/30/22 Samples Received : 03/31/22 Date of Analysis : 04/01/22

Authorized / data reviewed by : Jackie L. Sova

Jackie L. Sova Senior Laboratory Analyst

The Environmental Analysis Associates, Inc. (EAA) sample results are only applicable to the items tested and locations as received. Sample descriptions and volumetric data are provided by the client. All particle concentrations are rounded to 3 significant figures. In order for chart clarity, cells where the particle category was not detected are intentionally left blank. This test report shall not be reproduced except in full without the written approval of the laboratory.

EAA shall not be liable to the client or the client's customer with respect to interpretation, recommendations made or actions implemented by either the client or the client's customer as a result of or based upon the test results. Samples are retained for 30 days.

Fire/Combustion Particle Data Summary Table

Page 2 of 25

Client : J.S. Held, LLC Client Project # : 21111804 Client Project Description : Marshall Public H.S. EAA Project # : 22-0744

			Fire / Combustion Particle Concentration					Qualitative Observations		
		Estimated Area Ratio %					* Total	Are large	Are wildfire or	Are there any
					F		Surface	fire combustion	structure fire	potential
-						Indicator	Density	particles	indicator particles	interferences
Sample #	Sample Description	Total Area %	Soot	Char	Ash	Particles	(Cts/mm ²)	detected ?	present?	present?
B-1	Rm 7 - Carpet	not detected	not detected	not detected	not detected		not detected			
B-2	Rm 10 - Carpet	not detected	not detected	not detected	not detected		not detected			
B-3	Rm 26 - Carpet	not detected	not detected	not detected	not detected		not detected			
B-4	Rm 31 - Carpet	not detected	not detected	not detected	not detected		not detected			
B-5	Library Carpet	0.1	0.1	not detected	not detected		0.7			
B-6	Asst. Principal Office - Carpet	0.2	0.2	not detected	not detected		1.4			
B-7	Rm 38 - Carpet	0.2	0.2	not detected	not detected		1.4			
B-8	Rm 7 - Contents in Servpro Box	0.6	0.2	0.4	not detected		8.6			
B-9	Rm 7 - Contents in Servpro Box	not detected	not detected	not detected	not detected		not detected			
B-10	Rm 10 - Contents in Servpro Box	not detected	not detected	not detected	not detected		not detected			
B-11	Rm 4 - Contents in Servpro Box	not detected	not detected	not detected	not detected		not detected			
B-12	Rm 4 - Contents in Servpro Box	not detected	not detected	not detected	not detected		not detected			

The Estimated Area Ratio % is the estimated area (μ m2) of the fire / combustion particles divided by all other particle categories analyzed in the sample.

The Surface density (Cts/mm2) of fire / combustion particles is the numerical surface particle concentration independent of the amount or ratio of background dust present.

* Note: If the surface particle density of fire residue particles (cts/mm2) is not displayed in the report, it was not reported due to significant sample overloading, or could not be performed on the collection media submitted for analysis. The surface density of fire combustion particles can only be calculated on tape lift samples that are not overloaded with dust.

The color-coded ranges provided in this summary table are to be used as a preliminary comparison with levels measured from your project. The detailed one-page reports should be used as the primary basis for interpreting the EAA data. The color-coded guideline ranges of Typical-Low, Typical, Atypical, or Elevated are based on historical background data collected on tape-lift samples from other buildings not suspected of a fire / combustion particle impact. Laboratory test results are secondary support information to be used in conjunction with information gathered during the visual site assessment. The local background, site specific building conditions, and other potential fire / combustion sources must be considered in order to render an independent opinion and conclusion as to whether or not the concentrations measured on your samples by the EAA laboratory represent a typical background, atypical, or elevated condition for your specific project.

Total Area Ratio % & Numerical Surface Concentrations							
Classification Fire particles Fire particles							
Range	Area Ratio %	Density cts/mm ²					
Elevated > 10x background	>10%	>50					
Atypical 3 -10x background	3-10%	5-50					
Typical - upper background	1-3%	1-5					
Typical - low	<1%	<1					

This Summary Table and the attached laboratory reports shall not be reproduced except in full without the written approval of the laboratory.

Fire/Combustion Particle Data Summary Table

Page 3 of 25

Client : J.S. Held, LLC Client Project # : 21111804 Client Project Description : Marshall Public H.S. EAA Project # : 22-0744

		Fire / Combustion Particle Concentration						Qualitative Observations		
				Estimated A	Area Ratio %		* Total	Are large	Are wildfire or	Are there any
					ī	Indicator	Surface Density	fire combustion particles	structure fire indicator particles	potential interferences
Sample #	Sample Description	Total Area %	Soot	Char	Ash	Particles	(Cts/mm ²)	detected ?	present?	present?
B-13	Rm 4 - Contents in Servpro Box	not detected	not detected	not detected	not detected		not detected			
B-14	Rm 17 - Contents in Servpro Box	1.4	not detected	1.4	not detected		0.7			
B-15	Rm 26 - Contents in Servpro Box	0.8	not detected	0.8	not detected		0.7			
B-16	Rm 31 - Top of Cabinet	not detected	not detected	not detected	not detected		not detected			
B-17	Hallway contents in Servpro Box	not detected	not detected	not detected	not detected		not detected			
B-18	Mrs. Simms Rm - Contents in Servpro Box	not detected	not detected	not detected	not detected		not detected			
B-19	Rm 12 - Contents in Servpro Box	not detected	not detected	not detected	not detected		not detected			
B-20	Rm 8 - Top of File Cabinet	not detected	not detected	not detected	not detected		not detected			

The Estimated Area Ratio % is the estimated area (µm2) of the fire / combustion particles divided by all other particle categories analyzed in the sample.

The Surface density (Cts/mm2) of fire / combustion particles is the numerical surface particle concentration independent of the amount or ratio of background dust present.

* Note: If the surface particle density of fire residue particles (cts/mm2) is not displayed in the report, it was not reported due to significant sample overloading, or could not be performed on the collection media submitted for analysis. The surface density of fire combustion particles can only be calculated on tape lift samples that are not overloaded with dust.

The color-coded ranges provided in this summary table are to be used as a preliminary comparison with levels measured from your project. The detailed one-page reports should be used as the primary basis for interpreting the EAA data. The color-coded guideline ranges of Typical-Low, Typical, Atypical, or Elevated are based on historical background data collected on tape-lift samples from other buildings not suspected of a fire / combustion particle impact. Laboratory test results are secondary support information to be used in conjunction with information gathered during the visual site assessment. The local background, site specific building conditions, and other potential fire / combustion sources must be considered in order to render an independent opinion and conclusion as to whether or not the concentrations measured on your samples by the EAA laboratory represent a typical background, atypical, or elevated condition for your specific project.

Total Area Ratio % & Numerical Surface Concentrations				
Classification Fire particles Fire particles				
Range	Area Ratio %	Density cts/mm ²		
Elevated > 10x background	>10%	>50		
Atypical 3 -10x background	3-10%	5-50		
Typical - upper background	1-3%	1-5		
Typical - low	<1%	<1		

This Summary Table and the attached laboratory reports shall not be reproduced except in full without the written approval of the laboratory.

FIR	E/COMBUSTION RESIDUE & DUST ANALYSIS	- Optical Microscopy M	ethod: FIRE-D02
		Page	4 of 25
Client Name :	J.S. Held, LLC		
Client Project # :	21111804	EAA Project # :	22-0744
Requested by :	J. Harvey	EAA Sample # :	0744-11
Project Description :	Marshall Public H.S.		
Client Sample # :	B-1		
Client sample description :	Rm 7 - Carpet		
Sample collected	3/30/22	Analysis magnification	: 500x
Sample received	: 3/31/22	Fields counted	: 10
Sample media	Таре	Field area (mm ²)	: 0.139
		Area counted (mm ²)	: 1.39
SUMMARY CONCLUSIONS	Fire/combustion residue not detected		

QUALITATIVE / ASS	EMBLAGE OBSERVATIONS -Re	flected & Polari	zed Light	Microscopy (10-50	0x)
Sample description - color / texture	:	Gray powder	ry dust		
Smoke or fire odor present :		No			
_arge char (>500µm) / aciniform so	pot clusters (>50µm) present :	No			
_arge ash particles present :		No			
Nildfire or structure fire indicator/s	ignature particles present :	No			
			Par	ticle Concentration	Estimated
				Cts/area (mm2)	Area Ratio %
FI	RE / COMBUSTION RESIDUE C	ONSTITUENTS	Totals ►	not detected	not detected
	Aciniform soot			not detected	not detected
	Char (mixed pyrolyzed vegetatio	n / non-vegetatio	on)	not detected	not detected
	Ash			not detected	not detected
	INORGANIC CONSTITUENTS				
Fibrous Constituents :	Cellulosic / synthetic fabric fibers	5		0.7	12.9
	Fiberglass fibers			0.7	2.1
Non-fibrous Constituents :	Mixed inorganic mineral dust / sc	bil		51.9	34.8
	Opaque / mixed paint and/or met	tal corrosion		24.5	36.5
	BIOAEROSOLS				
Mold Spores / Structures :	Unspecified			not detected	not detected
Pollen :	Unspecified			not detected	not detected
Plant fragments :	Vegetation fragments, trichomes	, etc.		0.7	2.1
Animal fragments :	Dander / skin cells			4.3	11.6
Miscellaneous :	Unspecified			not detected	not detected
	OTHER CONSTITUENTS				
Biogenic / organic debris :	Unspecified			not detected	not detected
Particles counted :			Bacl	ground dust loading :	Typical - low
Detection Limit - (Area ratio %) :	1.0%				
Detection Limit - (Cts/area) mm2 :	0.7				
				Analysis date :	4/1/22
Authorized / data reviewed by :	Jackie L. Sova	04/05/22		Analyst initials :	err

FIR	E/COMBUSTION RESIDUE & DUST ANAL	YSIS - Optical Microscopy Me	thod: FIRE-D02
		Page 5	5 of 25
Client Name :	J.S. Held, LLC		
Client Project # :	21111804	EAA Project # :	22-0744
Requested by :	J. Harvey	EAA Sample # :	0744-12
Project Description :	Marshall Public H.S.		
Client Sample # :	B-2		
Client sample description :	Rm 10 - Carpet		
Sample collected	: 3/30/22	Analysis magnification :	500x
Sample received	: 3/31/22	Fields counted :	10
Sample media	: Tape	Field area (mm ²)	0.139
		Area counted (mm ²)	1.39

QUALITATIVE / ASS	EMBLAGE OBSERVATIONS -Re	flected & Polari	zed Light	Microscopy (10-50	00x)
Sample description - color / texture	:	Gray powder	y dust		
Smoke or fire odor present :		No			
Large char (>500µm) / aciniform so	pot clusters (>50µm) present :	No			
Large ash particles present :		No			
Wildfire or structure fire indicator/s	ignature particles present :	No			
			Pa	rticle Concentration	Estimated
				Cts/area (mm2)	Area Ratio %
FI	RE / COMBUSTION RESIDUE C	ONSTITUENTS	Totals ►	not detected	not detected
	Aciniform soot			not detected	not detected
	Char (mixed pyrolyzed vegetation	on / non-vegetatio	on)	not detected	not detected
	Ash			not detected	not detected
	INORGANIC CONSTITUENTS				
Fibrous Constituents :	Cellulosic / synthetic fabric fibers			0.7	12.5
	Fiberglass fibers	5		not detected	not detected
Non-fibrous Constituents :	Mixed inorganic mineral dust / so	oil		73.5	31.8
Non-insidus constituents .	Opaque / mixed paint and/or me			23.1	33.3
	BIOAEROSOLS			20.1	00.0
Mold Spores / Structures :				not detected	not detected
	Unspecified			not detected	not detected
	Vegetation fragments, trichomes	etc		not detected	not detected
-	Dander / skin cells	, etc.		8.6	22.5
Miscellaneous :				not detected	not detected
	OTHER CONSTITUENTS				
Biogenic / organic debris :				not detected	not detected
Particles counted :	•		Bac	kground dust loading :	
Detection Limit - (Area ratio %) :			_ 30	ç	
Detection Limit - (Cts/area) mm2 :					
	-			Analysis date :	4/1/22
Authorized / data reviewed by :	Jackie L. Sova	04/05/22		Analyst initials :	

-	FIRE	COMBUSTION RESIDUE & DUST AN	IALYSIS - Optical Microscopy Me	thod: FIRE-D02
			Page 6	of 25
<u> </u>	Client Name :	J.S. Held, LLC		
7	Client Project # :	21111804	EAA Project # :	22-0744
	Requested by :	J. Harvey	EAA Sample # :	0744-13
l	Project Description :	Marshall Public H.S.		
	Client Sample # :	B-3		
Client	sample description :	Rm 26 - Carpet		
	Sample collected :	3/30/22	Analysis magnification :	500x
	Sample received :	3/31/22	Fields counted :	10
	Sample media :	Таре	Field area (mm ²) :	0.139
			Area counted (mm ²) :	1.39

QUALITATIVE / ASS	EMBLAGE OBSERVATIONS -Rei	flected & Polari	zed Light	Microscopy (10-50	0x)
Sample description - color / texture	:	Gray powder	ry & fibrou	is dust	
Smoke or fire odor present :		No			
Large char (>500µm) / aciniform so	pot clusters (>50µm) present :	No			
Large ash particles present :		No			
Wildfire or structure fire indicator/s	ignature particles present :	No			
			Pa	rticle Concentration	Estimated
				Cts/area (mm2)	Area Ratio %
FI	RE / COMBUSTION RESIDUE CO	ONSTITUENTS	Totals ►	 not detected 	not detected
	Aciniform soot			not detected	not detected
	Char (mixed pyrolyzed vegetatio	n / non-vegetatio	on)	not detected	not detected
	Ash			not detected	not detected
	INORGANIC CONSTITUENTS				
Fibrous Constituents :	Cellulosic / synthetic fabric fibers			4.3	46.2
	Fiberglass fibers			not detected	not detected
Non-fibrous Constituents :	Mixed inorganic mineral dust / so	il		53.3	21.4
	Opaque / mixed paint and/or met	al corrosion		18.7	16.7
	BIOAEROSOLS				
Mold Spores / Structures :	Unspecified			not detected	not detected
Pollen :	Unspecified			0.7	0.8
Plant fragments :	Vegetation fragments, trichomes,	, etc.		not detected	not detected
Animal fragments :	Dander / skin cells			9.4	15.0
Miscellaneous :	Unspecified			not detected	not detected
	OTHER CONSTITUENTS				
Biogenic / organic debris :	Unspecified			not detected	not detected
Particles counted :	120		Bac	kground dust loading :	Typical
Detection Limit - (Area ratio %) :	1.0%				
Detection Limit - (Cts/area) mm2 :	0.7				
				Analysis date :	4/1/22
Authorized / data reviewed by :	Jackie L. Sova	04/05/22		Analyst initials :	err

FIRI	E/COMBUSTION RESIDUE & DUST ANALYSIS	- Optical Microscopy Met	hod: FIRE-D02
		Page 7	of 25
Client Name :	J.S. Held, LLC		
Client Project # :	21111804	EAA Project # :	22-0744
Requested by :	J. Harvey	EAA Sample # :	0744-14
Project Description :	Marshall Public H.S.		
Client Sample # :	B-4		
Client sample description :	Rm 31 - Carpet		
Sample collected :	3/30/22	Analysis magnification :	500x
Sample received :	3/31/22	Fields counted :	10
Sample media :	Таре	Field area (mm ²) :	0.139
		Area counted (mm ²) :	1.39

QUALITATIVE / ASS	EMBLAGE OBSERVATIONS -Re	eflected & Polari	zed Light	Microscopy (10-50	0x)
Sample description - color / texture	:	Gray powder	ry dust		
Smoke or fire odor present :		No			
Large char (>500µm) / aciniform so	pot clusters (>50µm) present :	No			
Large ash particles present :		No			
Wildfire or structure fire indicator/s	ignature particles present :	No			
			Pa	rticle Concentration	Estimated
				Cts/area (mm2)	Area Ratio %
FI	RE / COMBUSTION RESIDUE C	ONSTITUENTS	Totals ►	 not detected 	not detected
	Aciniform soot			not detected	not detected
	Char (mixed pyrolyzed vegetation	on / non-vegetatio	on)	not detected	not detected
	Ash			not detected	not detected
	INORGANIC CONSTITUENTS				
Fibrous Constituents :	Cellulosic / synthetic fabric fibers	5		4.3	42.6
	Fiberglass fibers			0.7	1.2
Non-fibrous Constituents :	Mixed inorganic mineral dust and	d starch grains		86.5	32.0
	Opaque / mixed paint and/or me	tal corrosion		23.1	18.9
	BIOAEROSOLS				
Mold Spores / Structures :	Unspecified			not detected	not detected
Pollen :	Unspecified			not detected	not detected
Plant fragments :	Vegetation fragments, trichomes	s, etc.		not detected	not detected
Animal fragments :	Dander / skin cells			3.6	5.3
Miscellaneous :	Unspecified			not detected	not detected
	OTHER CONSTITUENTS				
Biogenic / organic debris :	Unspecified			not detected	not detected
Particles counted :	164		Bac	kground dust loading :	Typical
Detection Limit - (Area ratio %) :	1.0%				
Detection Limit - (Cts/area) mm2 :	0.7				
				Analysis date :	4/1/22
Authorized / data reviewed by :	Jackie L. Sova	04/05/22		Analyst initials :	err

FIR	E/COMBUSTION RESIDUE & DUST ANALYSIS	- Optical Microscopy Me	thod: FIRE-D02
		Page 8	8 of 25
Client Name :	J.S. Held, LLC		
Client Project # :	21111804	EAA Project # :	22-0744
Requested by :	J. Harvey	EAA Sample # :	0744-15
Project Description :	Marshall Public H.S.		
Client Sample # :	B-5		
Client sample description :	Library Carpet		
Sample collected :	3/30/22	Analysis magnification :	500x
Sample received :	3/31/22	Fields counted :	10
Sample media :	Таре	Field area (mm ²)	0.139
		Area counted (mm ²)	1.39
SUMMARY CONCLUSIONS :	Low fire/combustion residue present (isolated p	articles detected)	

QUALITATIVE / ASSI	EMBLAGE OBSERVATIONS -Re	eflected & Polariz	ed Light	Microscopy (10-50	0x)
Sample description - color / texture	:	Gray powdery	/ dust		
Smoke or fire odor present :		No			
Large char (>500µm) / aciniform so	oot clusters (>50µm) present :	No			
Large ash particles present :		No			
Wildfire or structure fire indicator/si	ignature particles present :	No			
			Pa	rticle Concentration	Estimated
				Cts/area (mm2)	Area Ratio %
FI	RE / COMBUSTION RESIDUE C	ONSTITUENTS	Totals >	0.7	0.1 %
	Aciniform soot			0.7	0.1
	Char (mixed pyrolyzed vegetation	on / non-vegetatio	n)	not detected	not detected
	Ash			not detected	not detected
	INORGANIC CONSTITUENTS				
Fibrous Constituents :	Cellulosic / synthetic fabric fiber	S		1.4	16.6
	Fiberglass fibers			0.7	1.4
Non-fibrous Constituents :	Mixed inorganic mineral dust / s	oil		37.5	10.8
	Opaque / mixed paint and/or me	etal corrosion		66.3	63.5
	BIOAEROSOLS				
Mold Spores / Structures :	Unspecified			1.4	0.3
Pollen :	Unspecified			not detected	not detected
Plant fragments :	Vegetation fragments, trichomes	s, etc.		not detected	not detected
Animal fragments :	Dander / skin cells			4.3	7.5
Miscellaneous :	Unspecified			not detected	not detected
	OTHER CONSTITUENTS				
Biogenic / organic debris :	Unspecified			not detected	not detected
Particles counted :	156		Bac	kground dust loading :	Typical
Detection Limit - (Area ratio %) :	1.0%				
Detection Limit - (Cts/area) mm2 :	0.7				
				Analysis date :	4/1/22
Authorized / data reviewed by :	Jackie L. Sova	04/05/22		Analyst initials :	err

F	IRE/COMBUSTION RESIDUE & DUST ANALYSIS	6 - Optical Microscopy M	ethod: FIRE-D02
		Page	9 of 25
Client Name	e : J.S. Held, LLC		
Client Project #	<i>t</i> : 21111804	EAA Project # :	22-0744
Requested by	/: J. Harvey	EAA Sample # :	0744-16
Project Descriptior	n : Marshall Public H.S.		
Client Sample #	≠: B-6		
Client sample descriptior	a : Asst. Principal Office - Carpet		
Sample collecte	d: 3/30/22	Analysis magnification	: 500x
Sample receive	d: 3/31/22	Fields counted	: 10
Sample medi	a : Tape	Field area (mm ²)	: 0.139
		Area counted (mm ²)	: 1.39
SUMMARY CONCLUSION	S: Low fire/combustion residue present (isolated)	particles detected)	

QUALITATIVE / ASS	EMBLAGE OBSERVATIONS -Re	eflected & Polari	zed Ligh	t Microscopy (10-50)0x)
Sample description - color / texture	:	Gray powder	y dust		
Smoke or fire odor present :		No			
_arge char (>500µm) / aciniform so	oot clusters (>50µm) present :	No			
arge ash particles present :		No			
Nildfire or structure fire indicator/s	ignature particles present :	No			
			Pa	article Concentration	Estimated
				Cts/area (mm2)	Area Ratio %
FI	RE / COMBUSTION RESIDUE C	ONSTITUENTS	Totals	▶ 1.4	0.2 %
	Aciniform soot			1.4	0.2
	Char (mixed pyrolyzed vegetation	on / non-vegetatio	on)	not detected	not detected
	Ash			not detected	not detected
	INORGANIC CONSTITUENTS				
Fibrous Constituents :	Cellulosic / synthetic fabric fibers	S		1.4	25.3
	Fiberglass fibers			0.7	2.1
Non-fibrous Constituents :	Mixed inorganic mineral dust / se	oil		93.0	40.9
	Opaque / mixed paint and/or me	etal corrosion		13.7	20.1
	BIOAEROSOLS				
Mold Spores / Structures :	Unspecified			not detected	not detected
Pollen :	Unspecified			not detected	not detected
Plant fragments :	Vegetation fragments, trichomes	s, etc.		not detected	not detected
Animal fragments :	Dander / skin cells			4.3	11.4
Miscellaneous :	Unspecified			not detected	not detected
	OTHER CONSTITUENTS				
Biogenic / organic debris :	Unspecified			not detected	not detected
Particles counted :			Ba	ckground dust loading :	Typical - low
Detection Limit - (Area ratio %) :	1.0%				
Detection Limit - (Cts/area) mm2 :	0.7				
				Analysis date :	4/1/22
Authorized / data reviewed by :	Jackie L. Sova	04/05/22		Analyst initials :	err

	FIRE/COMB	USTION RESIDUE & DU	IST ANALYSIS	- Optical Microscopy	Method: FIRE-D02
				Pag	ie 10 of 25
Client Na	me: J.S. He	eld, LLC			
Client Project	ct # : 211118	304		EAA Project	#: 22-0744
Requested	lby∶J.Harv	/ey		EAA Sample	#: 0744-17
Project Descript	tion : Marsha	all Public H.S.			
Client Sampl	e#: B-7				
Client sample descript	tion: Rm 38	- Carpet			
Sample colle	cted : 3/30/22	2		Analysis magnification	on: 500x
Sample recei	ived : 3/31/22	2		Fields counter	ed : 10
Sample me	edia : Tape			Field area (mr	n²):0.139
				Area counted (mr	n²) : 1.39
SUMMARY CONCLUSIO	ONS: Low fir	e/combustion residue pre	esent (isolated p	articles detected)	

QUALITATIVE / ASS	EMBLAGE OBSERVATIONS -Re	flected & Polaria	zed Lig	ht Microscopy (10-5	00x)
Sample description - color / texture	:	Gray powder	y dust		
Smoke or fire odor present :		No			
Large char (>500µm) / aciniform so	oot clusters (>50µm) present :	No			
Large ash particles present :		No			
Wildfire or structure fire indicator/s	ignature particles present :	No			
			F	Particle Concentration	Estimated
				Cts/area (mm2)	Area Ratio %
FI	RE / COMBUSTION RESIDUE C	ONSTITUENTS	Totals	▶ 1.4	0.2 %
	Aciniform soot			1.4	0.2
	Char (mixed pyrolyzed vegetation	on / non-vegetatio	n)	not detected	not detected
	Ash			not detected	not detected
	INORGANIC CONSTITUENTS				
Fibrous Constituents :	Cellulosic / synthetic fabric fibers	6		2.9	40.0
	Fiberglass fibers			not detected	not detected
Non-fibrous Constituents :	Mixed inorganic mineral dust / so	bil		53.3	18.5
	Opaque / mixed paint and/or me	tal corrosion		26.7	30.8
	BIOAEROSOLS				
Mold Spores / Structures :	Unspecified			not detected	not detected
Pollen :	Unspecified			not detected	not detected
Plant fragments :	Vegetation fragments, trichomes	, etc.		not detected	not detected
Animal fragments :	Dander / skin cells			5.0	10.5
Miscellaneous :	Unspecified			not detected	not detected
	OTHER CONSTITUENTS				
Biogenic / organic debris :	Unspecified			not detected	not detected
Particles counted :	124		В	ackground dust loading :	Typical - low
Detection Limit - (Area ratio %) :	1.0%				
Detection Limit - (Cts/area) mm2 :	0.7				
				Analysis date :	4/1/22
Authorized / data reviewed by :	Jackie L. Sova	04/05/22		Analyst initials :	err

	FIRE	COMBUSTION RESIDUE & DUST ANALYSIS	- Optical Microscopy M	ethod: FIRE-D02
			Page 1	1 of 25
	Client Name :	J.S. Held, LLC		
	Client Project # :	21111804	EAA Project # :	22-0744
	Requested by :	J. Harvey	EAA Sample # :	0744-18
Pre	oject Description :	Marshall Public H.S.		
	Client Sample # :	B-8		
Client sa	mple description :	Rm 7 - Contents in Servpro Box		
	Sample collected :	3/30/22	Analysis magnification	: 500x
	Sample received :	3/31/22	Fields counted	: 5
	Sample media :	Таре	Field area (mm ²)	: 0.139
			Area counted (mm ²)	: 0.69
SUMMARY	CONCLUSIONS :	Low fire/combustion residue present (isolated pa	articles detected)	

QUALITATIVE / ASS	EMBLAGE OBSERVATIONS -Re	flected & Polari	zed Ligh	t Microscopy (10-50	0x)
Sample description - color / texture):	Brown / gray	powdery	dust	
Smoke or fire odor present :		No			
_arge char (>500µm) / aciniform s	oot clusters (>50µm) present :	No			
_arge ash particles present :		No			
Nildfire or structure fire indicator/s	ignature particles present :	No			
			Pa	rticle Concentration	Estimated
				Cts/area (mm2)	Area Ratio %
F	IRE / COMBUSTION RESIDUE C	ONSTITUENTS	Totals >	8.6	0.6 %
	Aciniform soot			7.2	0.2
	Char (mixed pyrolyzed vegetation	on / non-vegetatio	on)	1.4	0.4
	Ash			not detected	not detected
	INORGANIC CONSTITUENTS				
Fibrous Constituents :	Cellulosic / synthetic fabric fibers	5		2.9	5.7
	Fiberglass fibers			8.6	2.8
Non-fibrous Constituents :	Mixed inorganic mineral dust / so	oil		373.4	27.5
	Opaque / mixed paint and/or me			279.7	45.8
	BIOAEROSOLS				
Mold Spores / Structures :	Unspecified			not detected	not detected
Pollen :	Unspecified			not detected	not detected
	Vegetation fragments, trichomes	, etc.		not detected	not detected
•	Dander / skin cells			59.1	17.4
Miscellaneous :				not detected	not detected
	OTHER CONSTITUENTS				
Biogenic / organic debris :	Unspecified			not detected	not detected
Particles counted :			Bad	ckground dust loading :	
Detection Limit - (Area ratio %) :	0.6%				
Detection Limit - (Cts/area) mm2 :	1.4				
				Analysis date :	4/1/22
Authorized / data reviewed by	Jackie L. Sova	04/05/22		Analyst initials :	err

	FIRE	COMBUSTION RESIDUE & DUST ANALYSIS	- Optical Microscopy	Method: FIRE-D02
			Page	12 of 25
	Client Name :	J.S. Held, LLC		
	Client Project # :	21111804	EAA Project #	: 22-0744
	Requested by :	J. Harvey	EAA Sample #	: 0744-19
	Project Description :	Marshall Public H.S.		
	Client Sample # :	B-9		
Clien	t sample description :	Rm 7 - Contents in Servpro Box		
	Sample collected :	3/30/22	Analysis magnification	1: 500x
	Sample received :	3/31/22	Fields counted	l: 15
	Sample media :	Таре	Field area (mm ²	²): 0.139
			Area counted (mm ²	2): 2.08

QUALITATIVE / ASS	EMBLAGE OBSERVATIONS -Ref	lected & Polari	zed Light	Microscopy (10-50)0x)
Sample description - color / texture :		Low visible c	lust detect	ed	
Smoke or fire odor present :		No			
Large char (>500µm) / aciniform so	pot clusters (>50µm) present :	No			
_arge ash particles present :		No			
Nildfire or structure fire indicator/s	ignature particles present :	No			
			Par	ticle Concentration	Estimated
				Cts/area (mm2)	Area Ratio %
FI	RE / COMBUSTION RESIDUE CO	NSTITUENTS	Totals ►	not detected	not detected
	Aciniform soot			not detected	not detected
	Char (mixed pyrolyzed vegetation	n / non-vegetatio	on)	not detected	not detected
	Ash			not detected	not detected
	INORGANIC CONSTITUENTS				
Fibrous Constituents :	Cellulosic / synthetic fabric fibers			not detected	not detected
	Fiberglass fibers			1.0	6.5
Non-fibrous Constituents :	Mixed inorganic mineral dust / soi	I		18.7	18.9
	Opaque / mixed paint and/or meta			5.8	19.4
	BIOAEROSOLS				
Mold Spores / Structures :	Unspecified			not detected	not detected
Pollen :	Unspecified			not detected	not detected
Plant fragments :	Vegetation fragments, trichomes,	etc.		not detected	not detected
Animal fragments :	Dander / skin cells			9.1	55.3
Miscellaneous :	Unspecified			not detected	not detected
	OTHER CONSTITUENTS				
Biogenic / organic debris :	Unspecified			not detected	not detected
Particles counted :	72		Bacl	kground dust loading :	Typical - low
Detection Limit - (Area ratio %) :	1.0%				
Detection Limit - (Cts/area) mm2 :	0.5				
				Analysis date :	4/1/22
Authorized / data reviewed by :	Jackie L. Sova	04/05/22		Analyst initials :	err

(FIRE	COMBUSTION RESIDUE & DUST ANALYSIS	- Optical Microscopy Me	ethod: FIRE-D02
			Page 1	3 of 25
	Client Name :	J.S. Held, LLC		
	Client Project # :	21111804	EAA Project # :	22-0744
	Requested by :	J. Harvey	EAA Sample # :	0744-20
	Project Description :	Marshall Public H.S.		
	Client Sample # :	B-10		
Client	sample description :	Rm 10 - Contents in Servpro Box		
	Sample collected :	3/30/22	Analysis magnification :	500x
	Sample received :	3/31/22	Fields counted :	15
	Sample media :	Таре	Field area (mm ²)	: 0.139
			Area counted (mm ²)	: 2.08

QUALITATIVE / ASS	EMBLAGE OBSERVATIONS -Re	eflected & Polari	zed Light	Microscopy (10-50	0x)
Sample description - color / texture :		Low visible d	lust detect	ed	
Smoke or fire odor present :		No			
Large char (>500µm) / aciniform so	oot clusters (>50µm) present :	No			
Large ash particles present :		No			
Wildfire or structure fire indicator/s	ignature particles present :	No			
			Par	ticle Concentration	Estimated
				Cts/area (mm2)	Area Ratio %
FI	RE / COMBUSTION RESIDUE C	ONSTITUENTS	Totals ►	not detected	not detected
	Aciniform soot			not detected	not detected
	Char (mixed pyrolyzed vegetati	on / non-vegetatio	on)	not detected	not detected
	Ash			not detected	not detected
	INORGANIC CONSTITUENTS				
Fibrous Constituents :	Cellulosic / synthetic fabric fiber	s		0.5	29.3
	Fiberglass fibers			not detected	not detected
Non-fibrous Constituents :	Mixed inorganic mineral dust / s	oil		12.5	19.0
	Opaque / mixed paint and/or me	etal corrosion		1.9	12.2
	BIOAEROSOLS				
Mold Spores / Structures :	Unspecified			not detected	not detected
Pollen :	Unspecified			not detected	not detected
Plant fragments :	Vegetation fragments, trichome	s, etc.		not detected	not detected
Animal fragments :	Dander / skin cells			4.3	39.5
Miscellaneous :				not detected	not detected
	OTHER CONSTITUENTS				
Biogenic / organic debris :				not detected	not detected
Particles counted :	•		Bac	kground dust loading :	Typical - low
Detection Limit - (Area ratio %) :	1.0%			-	
Detection Limit - (Cts/area) mm2 :	0.5				
				Analysis date :	4/1/22
Authorized / data reviewed by :	Jackie L. Sova	04/05/22		Analyst initials :	

\sim	FIRE	COMBUSTION RESIDUE & DUST ANALYSIS	- Optical Microscopy	Method: FIRE-D02
			Page	14 of 25
156	Client Name :	J.S. Held, LLC		
	Client Project # :	21111804	EAA Project #	t: 22-0744
	Requested by :	J. Harvey	EAA Sample #	t: 0744-21
	Project Description :	Marshall Public H.S.		
	Client Sample # :	B-11		
Client	sample description :	Rm 4 - Contents in Servpro Box		
	Sample collected :	3/30/22	Analysis magnificatio	n: 500x
	Sample received :	3/31/22	Fields counte	d: 10
	Sample media :	Таре	Field area (mm	²) : 0.139
			Area counted (mm	²) : 1.39

QUALITATIVE / ASS	EMBLAGE OBSERVATIONS -Re	eflected & Polari	zed Light	Microscopy (10-50	0x)
Sample description - color / texture	:	Gray powder	y dust		-
Smoke or fire odor present :		No			
Large char (>500µm) / aciniform so	oot clusters (>50µm) present :	No			
Large ash particles present :		No			
Wildfire or structure fire indicator/s	ignature particles present :	No			
			Pa	ticle Concentration	Estimated
				Cts/area (mm2)	Area Ratio %
FI	RE / COMBUSTION RESIDUE C	ONSTITUENTS	Totals ►	not detected	not detected
	Aciniform soot			not detected	not detected
	Char (mixed pyrolyzed vegetation	on / non-vegetatio	on)	not detected	not detected
	Ash			not detected	not detected
	INORGANIC CONSTITUENTS				
Fibrous Constituents :	Cellulosic / synthetic fabric fiber	s		2.2	32.6
	Fiberglass fibers			not detected	not detected
Non-fibrous Constituents :	Mixed inorganic mineral dust / se	oil		36.8	13.8
	Opaque / mixed paint and/or me	etal corrosion		18.7	23.5
	BIOAEROSOLS				
Mold Spores / Structures :	Unspecified			2.9	0.7
Pollen :	Unspecified			not detected	not detected
Plant fragments :	Vegetation fragments, trichomes	s, etc.		not detected	not detected
Animal fragments :	Dander / skin cells			13.0	29.3
Miscellaneous :	Unspecified			not detected	not detected
	OTHER CONSTITUENTS				
Biogenic / organic debris :	Unspecified			not detected	not detected
Particles counted :	102		Bac	kground dust loading :	Typical - low
Detection Limit - (Area ratio %) :	1.0%				
Detection Limit - (Cts/area) mm2 :	0.7				
				Analysis date :	4/1/22
Authorized / data reviewed by :	Jackie L. Sova	04/05/22		Analyst initials :	err

	FIRE	COMBUSTION RESIDUE & DUST AN	ALYSIS - Optical Microscopy	Method: FIRE-D02
			Page	15 of 25
	Client Name :	J.S. Held, LLC		
Cli	ent Project # :	21111804	EAA Project #	: 22-0744
F	Requested by :	J. Harvey	EAA Sample #	: 0744-22
Projec	t Description :	Marshall Public H.S.		
Clie	ent Sample # :	B-12		
Client sample	e description :	Rm 4 - Contents in Servpro Box		
San	nple collected :	3/30/22	Analysis magnification	: 500x
Sar	mple received :	3/31/22	Fields counted	1: 15
S	ample media :	Таре	Field area (mm ²	-
			Area counted (mm ²): 2.00

QUALITATIVE / ASS	EMBLAGE OBSERVATIONS -Re	eflected & Polari	zed Light	Microscopy (10-50	00x)
Sample description - color / texture	:	Low visible c	lust detec	ted	
Smoke or fire odor present :		No			
Large char (>500µm) / aciniform so	pot clusters (>50µm) present :	No			
Large ash particles present :		No			
Wildfire or structure fire indicator/s	ignature particles present :	No			
			Pa	rticle Concentration	Estimated
				Cts/area (mm2)	Area Ratio %
FI	RE / COMBUSTION RESIDUE C	ONSTITUENTS	Totals ►	not detected	not detected
	Aciniform soot			not detected	not detected
	Char (mixed pyrolyzed vegetation	on / non-vegetatio	on)	not detected	not detected
	Ash			not detected	not detected
	INORGANIC CONSTITUENTS				
Fibrous Constituents :	Cellulosic / synthetic fabric fiber	S		1.4	55.9
	Fiberglass fibers			not detected	not detected
Non-fibrous Constituents :	Mixed inorganic mineral dust / s	oil		8.6	8.4
	Opaque / mixed paint and/or me	etal corrosion		2.4	7.8
	BIOAEROSOLS				
Mold Spores / Structures :	Unspecified			not detected	not detected
·	Unspecified			not detected	not detected
	Vegetation fragments, trichomes	s. etc.		not detected	not detected
Animal fragments :		-,		4.8	28.0
Miscellaneous :				not detected	not detected
	OTHER CONSTITUENTS				
Biogenic / organic debris :				not detected	not detected
Particles counted :	•		Bac	kground dust loading :	Typical - low
Detection Limit - (Area ratio %) :	1.0%				
Detection Limit - (Cts/area) mm2 :	0.5				
				Analysis date :	4/1/22
Authorized / data reviewed by :	Jackie L. Sova	04/05/22		Analyst initials :	err

	FIRE	COMBUSTION RESIDUE & DUST ANALYSIS	- Optical Microscopy M	ethod: FIRE-D02
			Page 16	6 of 25
	Client Name :	J.S. Held, LLC		
	Client Project # :	21111804	EAA Project # :	22-0744
	Requested by :	J. Harvey	EAA Sample # :	0744-23
	Project Description :	Marshall Public H.S.		
	Client Sample # :	B-13		
Client	sample description :	Rm 4 - Contents in Servpro Box		
	Sample collected :	3/30/22	Analysis magnification :	500x
	Sample received :	3/31/22	Fields counted :	10
	Sample media :	Таре	Field area (mm ²)	: 0.139
			Area counted (mm ²)	: 1.39
CLINANA A F	V CONCLUCIONE .	Fire/equation regidue wat data at a		

ample description - color / texture	EMBLAGE OBSERVATIONS -Refle	Gray powder	-	• • •	
moke or fire odor present :		No	•		
arge char (>500µm) / aciniform sc	oot clusters (>50µm) present :	No			
arge ash particles present :		No			
Vildfire or structure fire indicator/si	gnature particles present :	No			
	5 1 1		Partio	cle Concentration	Estimated
				Cts/area (mm2)	Area Ratio %
F	IRE / COMBUSTION RESIDUE CO	NSTITUENTS	Totals ►	not detected	not detected
	Aciniform soot			not detected	not detected
	Char (mixed pyrolyzed vegetation	/ non-vegetatio	n)	not detected	not detected
	Ash		,	not detected	not detected
	INORGANIC CONSTITUENTS				
Fibrous Constituents :	Cellulosic / synthetic fabric fibers			1.4	35.3
	Fiberglass fibers			not detected	not detected
Non-fibrous Constituents :	Mixed inorganic mineral dust / soil			43.2	39.7
-	Opaque / mixed paint and/or metal	corrosion		5.8	11.8
	BIOAEROSOLS				
Mold Spores / Structures :				not detected	not detected
•	Unspecified			not detected	not detected
	Vegetation fragments, trichomes, e	etc.		not detected	not detected
	Dander / skin cells			3.6	13.2
Miscellaneous :				not detected	not detected
	OTHER CONSTITUENTS				
Biogenic / organic debris :				not detected	not detected
Particles counted :			Backgro	ound dust loading :	
Detection Limit - (Area ratio %) :	1.0%		-	-	
Detection Limit - (Cts/area) mm2 :					
				Analysis date :	4/1/22
Authorized / data reviewed by	Jackie L. Sova	04/04/22		Analyst initials :	

	FIRE	E/COMBUSTION RESIDUE & DUST ANALYSIS	- Optical Microscopy	Method: FIRE-D02
			Page	17 of 25
	Client Name :	J.S. Held, LLC		
	Client Project # :	21111804	EAA Project #	: 22-0744
	Requested by :	J. Harvey	EAA Sample #	: 0744-24
Р	roject Description :	Marshall Public H.S.		
	Client Sample # :	B-14		
Client s	ample description :	Rm 17 - Contents in Servpro Box		
	Sample collected :	3/30/22	Analysis magnification	: 500x
	Sample received :	3/31/22	Fields counted	: 10
	Sample media :	Таре	Field area (mm ²):0.139
			Area counted (mm ²): 1.39
SUMMAR	Y CONCLUSIONS :	Fire/combustion residue measured in the typical	/ upper background range	

QUALITATIVE / ASS	EMBLAGE OBSERVATIONS -R	eflected & Polariz	ed Light	Microscopy (10-5	00x)
Sample description - color / texture	:	Gray powder	/ dust		
Smoke or fire odor present :		No			
.arge char (>500µm) / aciniform so	ot clusters (>50µm) present :	No			
arge ash particles present :		No			
Nildfire or structure fire indicator/si	gnature particles present :	No			
			Parti	cle Concentration	Estimated
				Cts/area (mm2)	Area Ratio %
F	IRE / COMBUSTION RESIDUE (CONSTITUENTS	Totals <	0.7	1.4 %
	Aciniform soot			not detected	not detected
	Char (mixed pyrolyzed vegetation	on / non-vegetatio	ר)	0.7	1.4
	Ash			not detected	not detected
	INORGANIC CONSTITUENTS				
Fibrous Constituents :	Cellulosic / synthetic fabric fibers	s		1.4	18.6
	Fiberglass fibers	0		not detected	not detected
Non-fibrous Constituents :	Mixed inorganic mineral dust / se	oil		49.0	23.7
	Opaque / mixed paint and/or me			22.3	24.0
	BIOAEROSOLS				
Mold Spores / Structures :				not detected	not detected
•	Unspecified			not detected	not detected
	Vegetation fragments, trichomes	s etc		0.7	1.6
-	Dander / skin cells	, 0.0.		15.9	30.7
Miscellaneous :				not detected	not detected
	OTHER CONSTITUENTS				
Biogenic / organic debris :				not detected	not detected
Particles counted :	•		Backgr	ound dust loading :	
Detection Limit - (Area ratio %) :	1.0%		5	5	
Detection Limit - (Cts/area) mm2 :					
	-			Analysis date :	4/1/22
Authorized / data reviewed by :	Jackie L. Sova	04/04/22		Analyst initials :	

F	RE/COMBUSTION RESIDUE & DUST ANALYSIS	- Optical Microscopy Me	ethod: FIRE-D02
		Page 18	of 25
Client Name	: J.S. Held, LLC		
Client Project #	: 21111804	EAA Project # :	22-0744
Requested by	r : J. Harvey	EAA Sample # :	0744-25
Project Description	: Marshall Public H.S.		
Client Sample #	: B-15		
Client sample descriptior	: Rm 26 - Contents in Servpro Box		
Sample collecte	d: 3/30/22	Analysis magnification :	500x
Sample receive	d: 3/31/22	Fields counted :	10
Sample medi	a: Tape	Field area (mm ²) :	: 0.139
		Area counted (mm ²) :	: 1.39
SUMMARY CONCLUSIONS	5 : Low fire/combustion residue present (isolated page)	articles detected)	

OLIAL ITATIVE / ASS	EMBLAGE OBSERVATIONS -R	offected & Polariz	ad Liaht	Microscopy (10-50)0v)
Sample description - color / texture		Gray powdery		Microscopy (10-50	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Smoke or fire odor present :		No			
Large char (>500µm) / aciniform sc	ot clusters (>50um) present :	No			
Large ash particles present :		No			
Wildfire or structure fire indicator/si	onature particles present :	No			
			Parti	cle Concentration	Estimated
				Cts/area (mm2)	Area Ratio %
F	IRE / COMBUSTION RESIDUE O		Totals ►	0.7	0.8 %
	Aciniform soot			not detected	not detected
	Char (mixed pyrolyzed vegetation	on / non-vegetation)	0.7	0.8
	Ash	en, nen regenaen	/	not detected	not detected
	INORGANIC CONSTITUENTS				
Fibrous Constituents :	Cellulosic / synthetic fabric fibers	S		5.8	43.9
	Fiberglass fibers			0.7	1.8
Non-fibrous Constituents :	Mixed inorganic mineral dust / se	oil		59.1	11.3
	Opaque / mixed paint and/or me			15.9	10.1
	BIOAEROSOLS				
Mold Spores / Structures :	Unspecified			0.7	0.1
Pollen :	Unspecified			not detected	not detected
Plant fragments :	Vegetation fragments, trichomes	s, etc.		not detected	not detected
Animal fragments :	Dander / skin cells			27.4	31.3
•	Insect leg and body parts			0.7	0.7
	OTHER CONSTITUENTS				
Biogenic / organic debris :	Unspecified			not detected	not detected
Particles counted :			Backgr	ound dust loading : 1	Typical
Detection Limit - (Area ratio %) :	1.0%				
Detection Limit - (Cts/area) mm2 :	0.7				
				Analysis date : 4	4/1/22
Authorized / data reviewed by	Jackie L. Sova	04/04/22		Analyst initials : e	err

FI	RE/COMBUSTION RESIDUE & DUST ANALYSIS	- Optical Microscopy	lethod: FIRE-D02
		Page 1	9 of 25
Client Name	J.S. Held, LLC		
Client Project #	21111804	EAA Project # :	22-0744
Requested by	J. Harvey	EAA Sample # :	0744-26
Project Description	: Marshall Public H.S.		
Client Sample #	: B-16		
Client sample description	Rm 31 - Top of Cabinet		
Sample collected	: 3/30/22	Analysis magnification	: 500x
Sample received	: 3/31/22	Fields counted	: 10
Sample media	: Tape	Field area (mm ²)	: 0.139
		Area counted (mm ²)	: 1.39
	· Final - and - attack and - taken and - taken at		

	EMBLAGE OBSERVATIONS -Re		-	• • •	JUX)
Sample description - color / texture	:	Low visible d	ust detecte	d	
Smoke or fire odor present :		No			
.arge char (>500µm) / aciniform sc	ot clusters (>50µm) present :	No			
arge ash particles present :		No			
Vildfire or structure fire indicator/si	gnature particles present :	No			
			Partic	le Concentration	Estimated
				Cts/area (mm2)	Area Ratio %
F	IRE / COMBUSTION RESIDUE C	ONSTITUENTS	Totals ►	not detected	not detected
	Aciniform soot			not detected	not detected
	Char (mixed pyrolyzed vegetation	on / non-vegetatio	n)	not detected	not detected
	Ash			not detected	not detected
	INORGANIC CONSTITUENTS				
Fibrous Constituents :	Cellulosic / synthetic fabric fibers			0.7	16.9
	Fiberglass fibers			not detected	not detected
Non-fibrous Constituents :	Mixed inorganic mineral dust / sc	sil		33.2	19.5
Non-librous constituents .	Opaque / mixed paint and/or met			10.1	19.8
	BIOAEROSOLS			10.1	10.0
Mold Spores / Structures :				1.4	0.6
•	Unspecified			not detected	not detected
	Vegetation fragments, trichomes	etc		not detected	not detected
•	Dander / skin cells	,		12.3	43.2
Miscellaneous :				not detected	not detected
	OTHER CONSTITUENTS				
Biogenic / organic debris :	Unspecified			not detected	not detected
Particles counted :	80		Backgro	ound dust loading : 1	Typical - low
Detection Limit - (Area ratio %) :	1.0%				
Detection Limit - (Cts/area) mm2 :	0.7				
				Analysis date : 4	4/1/22
Authorized / data reviewed by :	Jackie L. Sova	04/04/22		Analyst initials : e	err

(FIRE	E/COMBUSTION RESIDUE & DUST ANALYSIS	- Optical Microscopy N	lethod: FIRE-D02
			Page 2	0 of 25
	Client Name :	J.S. Held, LLC		
	Client Project # :	21111804	EAA Project # :	22-0744
	Requested by :	J. Harvey	EAA Sample # :	0744-27
l	Project Description :	Marshall Public H.S.		
	Client Sample # :	B-17		
Client	sample description :	Hallway contents in Servpro Box		
	Sample collected :	3/30/22	Analysis magnification	: 500x
	Sample received :	3/31/22	Fields counted	: 5
	Sample media :	Таре	Field area (mm ²)	: 0.139
			Area counted (mm ²)	: 0.69

Sample description - color / texture	:	Brown / gray	fibrous due	st							
Smoke or fire odor present :		No									
arge char (>500µm) / aciniform sc	ot clusters (>50µm) present :	No									
arge ash particles present :		No									
Vildfire or structure fire indicator/si	gnature particles present :	No									
	• • •		Partic	le Concentration	Estimated						
				Cts/area (mm2)	Area Ratio %						
F	IRE / COMBUSTION RESIDUE CON	NSTITUENTS	Totals ►	not detected	not detected						
	Aciniform soot			not detected	not detected						
	Char (mixed pyrolyzed vegetation /	non-vegetatio	n)	not detected	not detected						
	Ash	U U	,	not detected	not detected						
	INORGANIC CONSTITUENTS										
Fibrous Constituents :	Cellulosic / synthetic fabric fibers			44.7	77.4						
	Fiberglass fibers			not detected	not detected						
Non-fibrous Constituents :	Mixed inorganic mineral dust / soil			149.9	6.5						
	Opaque / mixed paint and/or metal	corrosion		90.8	13.1						
	BIOAEROSOLS										
Mold Spores / Structures :	Unspecified			not detected	not detected						
Pollen :	Unspecified			not detected	not detected						
Plant fragments :	Vegetation fragments, trichomes, e	tc.		not detected	not detected						
Animal fragments :	Dander / skin cells			11.5	3.0						
Miscellaneous :	Unspecified			not detected	not detected						
	OTHER CONSTITUENTS										
Biogenic / organic debris :	Unspecified			not detected	not detected						
Particles counted :	206		Backgro	ound dust loading : A	Atypical						
Detection Limit - (Area ratio %) :	0.5%										
Detection Limit - (Cts/area) mm2 :	1.4										
				Analysis date : 4	4/1/22						
Authorized / data reviewed by :	Jackie L. Sova	04/04/22		Analyst initials :	ərr						

	FIRE	E/COMBUSTION RESIDUE & DUST ANALYSIS	- Optical Microscopy	Method: FIRE-D02
			Page	21 of 25
īs /	Client Name :	J.S. Held, LLC		
7	Client Project # :	21111804	EAA Project #	: 22-0744
	Requested by :	J. Harvey	EAA Sample #	: 0744-28
	Project Description :	Marshall Public H.S.		
	Client Sample # :	B-18		
Clien	t sample description :	Mrs. Simms Rm - Contents in Servpro Box		
	Sample collected :	3/30/22	Analysis magnification	1: 500x
	Sample received :	3/31/22	Fields counted	I: 10
	Sample media :	Таре	Field area (mm ²	²): 0.139
			Area counted (mm ²	²) : 1.39

ample description - color / texture	:	Gray powder	y & fibrous	dust						
moke or fire odor present :		No								
arge char (>500µm) / aciniform sc	ot clusters (>50µm) present :	No								
arge ash particles present :		No								
Vildfire or structure fire indicator/si	gnature particles present :	No								
			Partic	cle Concentration	Estimated					
				Cts/area (mm2)	Area Ratio %					
F	IRE / COMBUSTION RESIDUE COM	ISTITUENTS	Totals ►	not detected	not detected					
	Aciniform soot			not detected	not detected					
	Char (mixed pyrolyzed vegetation /	non-vegetatio	n)	not detected	not detected					
	Ash			not detected	not detected					
	INORGANIC CONSTITUENTS									
Fibrous Constituents :	Cellulosic / synthetic fabric fibers			11.5	82.0					
	Fiberglass fibers			not detected	not detected					
Non-fibrous Constituents :	Mixed inorganic mineral dust / soil			24.5	4.4					
	Opaque / mixed paint and/or metal	corrosion		10.1	7.5					
	BIOAEROSOLS									
Mold Spores / Structures :	Unspecified			not detected	not detected					
Pollen :	Unspecified			not detected	not detected					
Plant fragments :	Vegetation fragments, trichomes, e	c.		not detected	not detected					
Animal fragments :	Dander / skin cells			5.8	6.2					
Miscellaneous :	Unspecified			not detected	not detected					
	OTHER CONSTITUENTS									
Biogenic / organic debris :	Unspecified			not detected	not detected					
Particles counted :	72		Backgro	ound dust loading : 「	Typical					
Detection Limit - (Area ratio %) :	1.0%									
Detection Limit - (Cts/area) mm2 :	0.7									
				Analysis date : 4	4/1/22					
Authorized / data reviewed by	Jackie L. Sova	04/04/22		Analyst initials : e	err					

	FIRE	E/COMBUSTION RESIDUE & DUST ANALYSIS	- Optical Microscopy M	ethod: FIRE-D02
			Page 22	? of 25
	Client Name :	J.S. Held, LLC		
	Client Project # :	21111804	EAA Project # :	22-0744
	Requested by :	J. Harvey	EAA Sample # :	0744-29
	Project Description :	Marshall Public H.S.		
	Client Sample # :	B-19		
Client	t sample description :	Rm 12 - Contents in Servpro Box		
	Sample collected :	3/30/22	Analysis magnification :	500x
	Sample received :	3/31/22	Fields counted :	15
	Sample media :	Таре	Field area (mm ²)	: 0.139
			Area counted (mm ²)	: 2.08

ample description - color / texture	:	Low visible d	ust detecte	d	
moke or fire odor present :		No			
arge char (>500µm) / aciniform so	ot clusters (>50µm) present :	No			
arge ash particles present :		No			
Vildfire or structure fire indicator/sig	gnature particles present :	No			
			Partic	cle Concentration	Estimated
				Cts/area (mm2)	Area Ratio %
F	IRE / COMBUSTION RESIDUE C	ONSTITUENTS	Totals ►	not detected	not detected
	Aciniform soot			not detected	not detected
	Char (mixed pyrolyzed vegetation	on / non-vegetatio	n)	not detected	not detected
	Ash			not detected	not detected
	INORGANIC CONSTITUENTS				
Fibrous Constituents :	Cellulosic / synthetic fabric fibers	5		1.4	64.7
	Fiberglass fibers			not detected	not detected
Non-fibrous Constituents :	Mixed inorganic mineral dust / so	bil		6.7	7.6
	Opaque / mixed paint and/or me	tal corrosion		0.5	1.8
	BIOAEROSOLS				
Mold Spores / Structures :	Unspecified			not detected	not detected
Pollen :	Unspecified			not detected	not detected
Plant fragments :	Vegetation fragments, trichomes	, etc.		not detected	not detected
Animal fragments :	Dander / skin cells			3.8	25.9
Miscellaneous :	Unspecified			not detected	not detected
	OTHER CONSTITUENTS				
Biogenic / organic debris :	Unspecified			not detected	not detected
Particles counted :	26		Backgro	ound dust loading : 1	Гурісаl - low
Detection Limit - (Area ratio %) :	1.0%				
Detection Limit - (Cts/area) mm2 :	0.5				
				Analysis date :	4/1/22

FIRE/COMBUSTION RESIDUE & DUST ANALYSIS - Optical Microscopy Method: FIRE-D02 Page 23 of 25 Client Name : J.S. Held, LLC Client Project #: 21111804 EAA Project #: 22-0744 Requested by : J. Harvey EAA Sample #: 0744-30 Project Description : Marshall Public H.S. Client Sample #: B-20 Client sample description : Rm 8 - Top of File Cabinet Analysis magnification: 500x Sample collected : 3/30/22 Fields counted: 10 Sample received : 3/31/22 Field area (mm²): 0.139 Sample media : Tape

Area counted (mm²) : 1.39

SUMMARY CONCLUSIONS : Fire/combustion residue not detected

QUALITATIVE / ASS	EMBLAGE OBSERVATIONS -R	eflected & Polariz	zed Light	Microscopy (10-5	00x)					
Sample description - color / texture	:	Gray powder	y dust							
Smoke or fire odor present :		No								
arge char (>500µm) / aciniform so.	ot clusters (>50µm) present :	No								
arge ash particles present :		No								
Vildfire or structure fire indicator/si	gnature particles present :	No								
			Partie	cle Concentration	Estimated					
				Cts/area (mm2)	Area Ratio %					
F	IRE / COMBUSTION RESIDUE	CONSTITUENTS	Totals ►	not detected	not detected					
	Aciniform soot			not detected	not detected					
	Char (mixed pyrolyzed vegetation / non-vegetation)									
	Ash			not detected	not detected					
	INORGANIC CONSTITUENTS									
Fibrous Constituents :	Cellulosic / synthetic fabric fiber	s		2.2	32.8					
	Fiberglass fibers			0.7	1.8					
Non-fibrous Constituents :	Mixed inorganic mineral dust / s	oil		50.5	19.1					
	Opaque / mixed paint and/or me	etal corrosion		19.5	24.6					
	BIOAEROSOLS									
Mold Spores / Structures :	Unspecified			1.4	0.4					
Pollen :	Unspecified			not detected	not detected					
Plant fragments :	Vegetation fragments, trichome	s, etc.		not detected	not detected					
Animal fragments :	Dander / skin cells			9.4	21.3					
Miscellaneous :	Unspecified			not detected	not detected					
	OTHER CONSTITUENTS									
Biogenic / organic debris :	Unspecified			not detected	not detected					
Particles counted :			Backgro	ound dust loading :	Typical - low					
Detection Limit - (Area ratio %) :	1.0%									
Detection Limit - (Cts/area) mm2 :	0.7									
				Analysis date :	4/1/22					
Authorized / data reviewed by	Jackie L. Sova	04/04/22		Analyst initials :						

APPENDIX I

SURFACE MOLD LABORATORY REPORT AND CHAINS OF CUSTODY

Report for:

James Harvey J.S. Held LLC Attn: James Harvey 7100 Northland Circle North, Suite 307 Brooklyn Park, MN 55428

Regarding: Project: JSH #21111804; Marshall Public High School EML ID: 2888811

Approved by:

 $\left(\mathbf{o} \right)$

Operations Manager Joshua Cox

Dates of Analysis: Quantitative spore count direct exam: 04-04-2022

Service SOPs: Quantitative spore count direct exam (EM-MY-S-1041) AIHA-LAP, LLC accredited service, Lab ID #102297

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received and tested.

Eurofins EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Eurofins EMLab P&K's LabServe® reporting system includes automated fail-safes to ensure that all AIHA-LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

Eurofins EMLab P&K

1501 West Knudsen Drive, Phoenix, AZ 85027 (800) 651-4802 Fax (623) 780-7695 www.emlab.com

Client: J.S. Held LLC C/O: James Harvey Re: JSH #21111804; Marshall Public High School

Date of Sampling: 03-30-2022 Date of Receipt: 03-31-2022 Date of Report: 04-04-2022

QUANTITATIVE SPORE COUNT REPORT

Location:		C- Rm 7-0				C- Rm10-				C-3 Rm 26-		C-4: Rm 31 -Carpet					
Comments (see below)		No	-			A	-			Noi	-	None					
Sample type		Tape sa				Tape s	ample			Tape sa		Tape sample					
Lab ID-Version [‡] :		13860			13860132-1					13860		13860134-1					
Analysis Date:		04/04/			04/04/2022					04/04/			04/04/2022				
Background debris (1-4+)		1+								1+				2-			
Sample size		0.155			1+ 0.155 in2					0.155				0.155			
		0.135 1 ir				<u> </u>				<u> </u>				<u> </u>			
Reporting unit																	
Dilution	0.1	1: Count/sample	-	0/	0.1	1: Count/sample		0/	0.1	1: Count/sample	l Count/unit	0/	0.1	1: Count/sample	I Count/unit	0/	
	Count		Count/unit	%	Count			%	Count	-		%	Count			%	
Hyphal fragments	2	2	13	n/a		<1	<7	n/a	2	< 1	< 7 13	n/a	1	1	7	n/a	
§ TOTAL FUNGAL SPORES	2	2	13	100		< 1	< 7	100	2	2	13	100	1	1	/	100	
Bipolaris/Drechslera group		2	12	100					1 1				1	1	7	100	
Cladosporium	2	2	13	100					1	1	7	50	1	1	/	100	
Curvularia																	
Epicoccum Fusarium																	
Myrothecium																	
Nigrospora																	
Other brown																	
Other colorless																	
Penicillium/Aspergillus types																	
Pithomyces									1	1	7	50					
Rusts									1	1	1	- 50					
Smuts, Periconia, Myxomycetes																	
Stachybotrys																	
Stemphylium																	
Torula																	
Ulocladium																	
Zygomycetes																	

Comments: A) No spores detected.

‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x". § Total Fungal Spores has been rounded to two significant figures to reflect analytical precision.

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore.

The limit of detection is 1 spore per area analyzed; Analytical Sensitivity is 1 spore per unit times the dilution factor.

Eurofins Aerotech Built Environment Testing, Inc. an affiliate of Eurofins EPK Built Environment Testing, LLC d/b/a Eurofins EMLab P&K

Eurofins EMLab P&K

1501 West Knudsen Drive, Phoenix, AZ 85027 (800) 651-4802 Fax (623) 780-7695 www.emlab.com

Client: J.S. Held LLC C/O: James Harvey Re: JSH #21111804; Marshall Public High School

Date of Sampling: 03-30-2022 Date of Receipt: 03-31-2022 Date of Report: 04-04-2022

QUANTITATIVE SPORE COUNT REPORT

Location:		C-5 Library (Δ	C-0 Sst. Principal		+	C-7: Rm 38-Carpet						
			Carpet		A	<u>.</u>	÷	l							
Comments (see below)		A				No			None						
Sample type		Tape sa				Tape sa			Tape sample						
Lab ID-Version [‡] :		138601				13860		13860137-1							
Analysis Date:		04/04/2	2022			04/04/	2022			04/04/2	2022				
Background debris (1-4+)		1+				2-	F			2+	-				
Sample size		0.155	in2			0.155	in2			0.155	in2				
Reporting unit		1 in	2			1 ir	n2			1 in	2				
Dilution		1:1				1:	1			1:1					
	Count	Count/sample	Count/unit	%	Count	Count/sample	Count/unit	%	Count	Count/sample	Count/unit	%			
Hyphal fragments		< 1	< 7	n/a	1	1	7	n/a		< 1	< 7	n/a			
§ TOTAL FUNGAL SPORES		< 1	< 7	100	3	3	19	100	1	1	7	100			
Bipolaris/Drechslera group									1	1	7	100			
Cladosporium					2	2	13	67							
Curvularia															
Epicoccum															
Fusarium															
Myrothecium															
Nigrospora															
Other brown					1	1	7	33							
Other colorless															
Penicillium/Aspergillus types															
Pithomyces															
Rusts															
Smuts, Periconia, Myxomycetes															
Stachybotrys															
Stemphylium															
Torula															
Ulocladium															
Zygomycetes															

Comments: A) No spores detected.

‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x". § Total Fungal Spores has been rounded to two significant figures to reflect analytical precision.

Spore types listed without a count or data entry were not detected during the course of the analysis for the respective sample, indicating a raw count of <1 spore.

The limit of detection is 1 spore per area analyzed; Analytical Sensitivity is 1 spore per unit times the dilution factor.

Eurofins Aerotech Built Environment Testing, Inc. an affiliate of Eurofins EPK Built Environment Testing, LLC d/b/a Eurofins EMLab P&K

This cover letter and accompanying pages are an integral part of this report. All analyses are performed in our AIHA-LAP, LLC accredited laboratory. The data generated in this report are based on the samples and accompanying information provided and represent concentrations at a point in time under the conditions sampled. Results can vary with site conditions. EMLab P&K employees did not collect samples for this project, and may provide only limited interpretation of this data as it relates to the overall investigation.

Quality Assurance

EMLab P&K is staffed with highly trained professionals, including PhD's, chemists, and registered microbiologists with over 40 years of experience. The reliability of test results depends on many factors such as the personnel performing the tests, environmental conditions, selection and validation of test methods, equipment functioning, measurement traceability, as well as the sampling, storage and handling of test items, all of which are a reflection of the laboratories overall quality system.

EMLab P&K has modeled its quality system after ISO 17025, General Requirements for the Competence of Testing and Calibration Laboratories, one of the most stringent sets of standards in the industry, to ensure that its customers receive the high standard of accuracy, reliability, and impartiality that they have come to expect from a leader in the environmental industry. EMLab P&K's adherence to the standards set forth in ISO 17025 has been validated and formally recognized through accreditations granted by an independent outside agency, American Industrial Hygiene Association Laboratory Accreditation Program, LLC (AIHA-LAP, LLC). As an additional measure to demonstrate its competency to perform the analyses it offers to its clients, EMLab P&K also participates in a variety of different proficiency testing programs, including the Environmental Microbiology Proficiency Analytical Testing Program (EMPAT) sponsored by the American Industrial Hygiene Association Proficiency Analytical Testing Programs.

As part of its continuous commitment to excellence, EMLab P&K is also inspected, licensed and/or accredited by a number of governmental agencies and independent associations in addition to those already mentioned above. The scope document, accreditation certificates, and proficiency results can all be accessed at <u>www.emlab.com. B</u>elow you will find additional information regarding the specific analyses requested for this project.

Comments

The comments identify issues or events that are relevant to your analytical results. A comment includes information about the validity, the source of the data whether calculated, entered or estimated, and the value of an observation. In each case the comments provide significant information vital to the interpretation of the laboratory data.

This communication is intended only for the individual or entity to which it is directed. It may contain information that is privileged, confidential, or otherwise exempt from disclosure under applicable law. Dissemination, distribution, or copying of this communication by anyone other than the intended recipient, or a duly designated employee or agent of such recipient, is prohibited. If you have received this communication in error, please notify us immediately by telephone, and delete this message and all attachments thereto.

For additional information, or if you have any questions regarding this report, please do not hesitate to call.

Analytical References

<u>Medically Important Fungi: A Guide to Identification,</u> 3rd ed., ASM, 1995. <u>Standard Methods for the Examination of Water and Wastewater</u>, 19th ed., APHA, 1995. <u>Sampling and Identifying Allergenic Pollens and Molds</u>, Blewstone, 1990. <u>Identifying Filamentous Fungi: A Clinical Laboratory Handbook</u>, Star, 1996. <u>Manual of Clinical Microbiology</u>, 7th ed., ASM, 1999. <u>A Laboratory Guide to Common *Aspergillus* Species and their Teleomorphs</u>, CSIRO, 1994. <u>Bioaerosols: Assessment and Control</u>, ACGIH, 1999.

NP - Non-potable Water	SAS - Surface Air Sampler	A1S - Andersen	BC - BioCassette			C-7	6.0	2	C-5 1	1 D. C	C-3	R-2 1	2-1	SAMPLE ID	PO Number:	Zip Code: 6527	Project		441		- 416	Contact: J. H.	company: U.S. H	ナノー		SSF, CA: 6000 Shoreline	Mariton, NJ: 3000 Lincoln	www.EMLabPK.com	CHAIN OF CUSTODY
P - F	pler B - Bulk SO - Soil	ST - Spore Trap SW - Swab	CP - Contact Plate T - Tape C	SAMPLE TYPE CODES		RM 38 - CARPET	t	her Principal Allino	Library CARPET	Rn 21 - CARPET	RM 26 - CARPET	RM 10 - CARPET	km7 - CARPET	DESCRIPTION	By: U. HARVE	C Date/Time:	Sampling / 2	D.b	# 21111804	PROJECT INFORMATION	54.98-148	AARVEY	HELD, LLC Add	110	CONTACT INFORMATION	SSF, CA: 6000 Shoreline Ct, Ste. 205, S. San Francisco, CA 94080 * (866) 888-6653	Martton, NJ: 3000 Lincoln Dr E, Ste. A, Martton, NJ 08053 * (866) 871-1984		ODY 💸 eurofins
tody, you ag			O - Other:			4		1	4	4	4	4	1.18	Type (Below)				7	(0)			E-MAIL	Address: D Cook 141	2007	NFORMATI	* (866) 888.	71-1984	EMLab P&K	
ree to be bo		T	R			Y		STA	STA	ST	STA	STD	F	(Above)		NH - Weeks	3D - Same E	ID - Next Bi	TD - Stand	1		Result	ions:	orth Lev	NO	6653			
be bound by the terms and conditions s Copyright © 2019 Eurofins EMLab P&K		2	1/20	RELINGOIDED	DEI INOTIISHED	(٩	1	,	1	(((as applicable)	Total	WH - Weekend/Holidav/ASAP	SD - Same Business Day	ND - Next Business Day	STD - Standard (Default)	TURN AROUND TIME CODES - (IAI)	WZOEller	E-MAIL Results . Marvey @	ALL NOT	CITCLE			Heavy	VEL Light	Ŗ
nd conditions se ns EMLab P&K		V	J		RY I D	1		1	1	1	1	,	(NOTES (Time of day, Temp, RH, etc.)		weekend analysis needs	next business day. Pleas	considered received the	Rushes received after 2pm or on weekends, will be	IE CODES - (IA	e jsner) 7	Chall nn	NORTH STE 3					Fog Rain Snow
t forth at http:// Doc. #		1.10	122.06		DATE & TIME									p, RH, etc.)		lysis needs.	day. Please	ceived the	ed after 2pm hds, will be		COM		2	40					Wind Clear
Potable Water D - Dust Copyright © 2019 Eurofins EMLab P&K Doc. # EM-CS-F-1192 , Rev 33, Revised 8/15/19, Page 1 of 1					RECEIVED BY	×		<		~		<	×	Direc Quar Dust 1-Mc Cultr Gran Legi	r biol at Mic htitati Cha dia S urable m Sta	ogica rosc racte Surfa e Air ain ar a cu	al pa opic pore arizal ice F Fun nd C Iture	rticle Exar coun ion ungi gi (Go ounts	enus (Cul	us ID ID + turab	ive) am) + As Asp. Ile Air	spp.) and		1.00	002888811		Spore Trap	Non-Culturable Culturable	REQUESTED SERVICES
	6		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		DATE									Qua OTH Asb Asb	ntiTra IER:	ay-S (plea s in A s Bul	ewa ase a Nr - I k - P	ge So specif PCM	reen y tesi	t)	Abser		t (NI	OSH	7400))	Ciner Reduced) SERVICES
1 of 1)OK-		Ż		& TIME									PC	R (ple	888	spe	cify te	ast) afiy te	:st)							ereanbay		

TABLES

TABLE 1.

COMPARISON OF RESULTS TO NEW YORK DEPARTMENT OF HEALTH SURVEY, ACGIH THRESHOLD LIMIT VALUES AND OSHA PERMISSIBLE EXPOSURE LIMITS

Acetonitrile Acetonitrile Benzene Chloroform Chloroform Chloroform Cyclohexane 1,4-Dichlorobenzene Ethanol 1,5 Ethylacctate Ethylacctate Ethylacctate Ethylacctate Hexane (C 6) 1 Joporpanol 15 p-Isopropyltoluene 2 A-Methyl-1-propanol < 4-Methyl-2-pentanone Methylene Choride Naphthalene < 5tyrene Toluene 1,2,4-Triniethylbenzene Acetaldehyde 6 Benzaldehyde 6 Butane (C 4) 1 1-Butanol 3 1-Butanol 3 1-Butanol 3 1-Butanol 3 2-Subtxyethanol 2 Butane (C 4) 1 1-Butanol 3 1-Butanol 3 1-Butanol 3 2-Subtxyethanol 2 Butane (C 4) 1 12-C14 Hydrocarbon ¹ C12-C14 Hydrocarbon ² C12-C14 Hydrocarbon 1 Dicthylene glycol ethyl ether 2 Diethylene glycol ethyl ether 2	1.0 .5 .0.4 .0.7 .0.3 .0.7 .0.3 .0.7 .0.3 .0.7 .0.	Room 10 (ng/L) 62.0 0.6 0.4 0.7 0.3 3.1 1,400 3.4 0.4 0.6 0.6 0.6 0.6 0.6 0.2 2.2 2.2 2.2 2.2 0.4 0.4 0.5 3.3 3.3 0.5 5 (0.2 1.1 1.1 0.4	Room 3 (ng/L) 49.0 < 0.4 0.7 0.2 0.3 2.5 790 2.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Room 4 (ng/L) 48.0 0.6 0.4 0.7 0.2 0.3 1,100 4.8 0.4 0.8 110.0 0.4 0.8 1.1 0.0 5 < 0.4 0.6 6 0.6 6 0.5 < 0.2 1.1	Library (ng/L) <1.00 <0.4 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <	Room 26 (ng/L) 49.0 < 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	SE Hallway between Rooms 36 & 37 (ng/t) 46.0 < 0.4 0.2 0.3 0.3 0.3 0.3 0.3 1.5 4.4 4 820 2.3 0.3 0.3 1.5 4.5 4.5 0.0 3 (0.2 1.1 1.0 9 9 0.7 0.7 0.4 3.6	Room 31 (ng/L) 45.0 3 0.8 < 0.2 0.2 4.3 670 1.9 0.3 1.1 1 49.0 0.4 4 .1.0 1.3 0.6 6 0.5	Room 14 (ng/L) 660.0 < 0.4 0.4 0.3 0.3 3.1 970 0.3 3.1 970 0.3 3.1 970 0.3 3.1 970 0.3 3.1 970 0.5 5 0.8 1.9 9 0.5 5 0.5	Hall Outside of Littie Theater (ng/L) 19.0 < 0.4 0.4 0.5 < 0.2 0.2 0.2 0.5 260 0.8 0.3 0.5 10.00 0.3 0.8 0.3 0.5 11.00 0.3 0.8 0.3 0.5 11.00 0.0 0.3 0.8 0.0 0.1 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0	NYS DOH Upper Fence Limit (ng/L) 115.0 NE 13.0 1.2 6.3 1.2 1,300 NE 6.4 NE NE NE NE NE NE NE 1.9 1.9	ACGIH Threshold Limit Value (ng/L) 590,000 34,000 1,500 031,500 048,900 485,000 060,000 NE 1,400,000 90,000 180,000 NE 150,000 NE	OSHA PEL (ng/L) 2,400,000 70,000 3,190 63,000 NE 1,050,000 1,900,000 1,400,000 0,435,000 1,400,000 980,000 NE 300,000 0,000 1,40
Acetone 6 Acetonitrile Renzene Carbon Tetrachloride Chloroform Chloroform Qrolohexane 1,4-Dichlorobenzene Ethanol Ethanol 1,5 Ethylacetate Ethylacetate Ethylacetate 2 Ethylacetate 2 Ethylacetate 2 Ethylacetate 3 Ethylacetate 3 Ethylacetate 3 Ethylacetate 3 Ethylacetate 3 Styrene 3 Toluene 1,2,2-trichloro-1,2,2-trifluoroethane 1,2,2-trichloro-1,2,2-trifluoroethane 3 1,2,2-trichloro-1,2,2-trifluoroethane 3 1,2,2-trichloro-1,2,2-trifluoroethane 4 2,2-Gimethyl-7-octen-2-ol Acetaldehyde Butane (C 4) 1 2,6-Dimethyl-7-octen-2-ol 2 <t< th=""><th>0.5 0.4 0.7 0.3 0.3 2.9 00 4.6 0.04 0.05 0.06 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.4 0.5 0.2 1.1 0.4 0.7 0.7 0.0</th><th>0.6 0.4 0.7 0.3 0.3 3.1 1,400 3.4 0.8 120.0 0.6 < 0.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 3.3 3.3</th><th><0.4 0.4 0.7 0.2 0.3 2.5 790 2.3 0.4 0.8 130.0 0.9 1.3 0.5 <0.4 0.5 3.1 0.5 3.1 0.5 <0.2 0.9</th><th>0.6 0.4 0.7 0.2 0.3 1,100 4.8 0.4 0.4 0.8 110.0 0.4 0.6 0.5 0.6 0.5 0.5 0.2 1.1</th><th><0.4 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2</th><th> <0.4 <0.4 <0.9 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.3 <0.4 <li< th=""><th>< 0.4 0.4 0.2 0.3 4.4 820 2.3 0.3 1.5 45.0 0.3 < 0.2 1.1 0.9 0.7 0.4</th><th> < 0.4 0.3 0.8 < 0.2 0.2 4.3 670 1.9 0.3 1.11 49.0 0.4 1.0 1.3 0.6 0.5 </th><th><0.4 0.8 0.3 0.3 3.1 970 2.3 0.4 0.8 100.00 0.5 0.8 1.9 0.5</th><th><0.4 0.4 0.5 <0.2 0.5 260 0.8 0.3 0.5 11.00 0.3 0.3 0.8 1.0</th><th>NE 13.0 1.3 1.2 6.3 1.2 1,300 NE 6.4 NE NE NE NE 1.9</th><th>34,000 1,500 31,500 348,900 60,000 NE 1,400,000 90,000 180,000 492,000 NE 150,000</th><th>70,000 3,190 63,000 NE 1,050,000 1,900,000 1,400,000 435,000 1,800,000 980,000 NE 300,000</th></li<></th></t<>	0.5 0.4 0.7 0.3 0.3 2.9 00 4.6 0.04 0.05 0.06 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.4 0.5 0.2 1.1 0.4 0.7 0.7 0.0	0.6 0.4 0.7 0.3 0.3 3.1 1,400 3.4 0.8 120.0 0.6 < 0.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 3.3 3.3	<0.4 0.4 0.7 0.2 0.3 2.5 790 2.3 0.4 0.8 130.0 0.9 1.3 0.5 <0.4 0.5 3.1 0.5 3.1 0.5 <0.2 0.9	0.6 0.4 0.7 0.2 0.3 1,100 4.8 0.4 0.4 0.8 110.0 0.4 0.6 0.5 0.6 0.5 0.5 0.2 1.1	<0.4 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	 <0.4 <0.4 <0.9 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.3 <0.4 <li< th=""><th>< 0.4 0.4 0.2 0.3 4.4 820 2.3 0.3 1.5 45.0 0.3 < 0.2 1.1 0.9 0.7 0.4</th><th> < 0.4 0.3 0.8 < 0.2 0.2 4.3 670 1.9 0.3 1.11 49.0 0.4 1.0 1.3 0.6 0.5 </th><th><0.4 0.8 0.3 0.3 3.1 970 2.3 0.4 0.8 100.00 0.5 0.8 1.9 0.5</th><th><0.4 0.4 0.5 <0.2 0.5 260 0.8 0.3 0.5 11.00 0.3 0.3 0.8 1.0</th><th>NE 13.0 1.3 1.2 6.3 1.2 1,300 NE 6.4 NE NE NE NE 1.9</th><th>34,000 1,500 31,500 348,900 60,000 NE 1,400,000 90,000 180,000 492,000 NE 150,000</th><th>70,000 3,190 63,000 NE 1,050,000 1,900,000 1,400,000 435,000 1,800,000 980,000 NE 300,000</th></li<>	< 0.4 0.4 0.2 0.3 4.4 820 2.3 0.3 1.5 45.0 0.3 < 0.2 1.1 0.9 0.7 0.4	 < 0.4 0.3 0.8 < 0.2 0.2 4.3 670 1.9 0.3 1.11 49.0 0.4 1.0 1.3 0.6 0.5 	<0.4 0.8 0.3 0.3 3.1 970 2.3 0.4 0.8 100.00 0.5 0.8 1.9 0.5	<0.4 0.4 0.5 <0.2 0.5 260 0.8 0.3 0.5 11.00 0.3 0.3 0.8 1.0	NE 13.0 1.3 1.2 6.3 1.2 1,300 NE 6.4 NE NE NE NE 1.9	34,000 1,500 31,500 348,900 60,000 NE 1,400,000 90,000 180,000 492,000 NE 150,000	70,000 3,190 63,000 NE 1,050,000 1,900,000 1,400,000 435,000 1,800,000 980,000 NE 300,000
Acetonitrile Acetonitrile Benzene Chloroform Chloroform Chloroform Cyclohexane 1,4-Dichlorobenzene Ethanol 1,5 Ethylacctate Ethylacctate Ethylacctate Ethylacctate Hexane (C 6) 1 Joporpanol 15 p-Isopropyltoluene 2 A-Methyl-1-propanol < 4-Methyl-2-pentanone Methylene Choride Naphthalene < 5tyrene Toluene 1,2,4-Triniethylbenzene Acetaldehyde 6 Benzaldehyde 6 Butane (C 4) 1 1-Butanol 3 1-Butanol 3 1-Butanol 3 1-Butanol 3 2-Subtxyethanol 2 Butane (C 4) 1 1-Butanol 3 1-Butanol 3 1-Butanol 3 2-Subtxyethanol 2 Butane (C 4) 1 12-C14 Hydrocarbon ¹ C12-C14 Hydrocarbon ² C12-C14 Hydrocarbon 1 Dicthylene glycol ethyl ether 2 Diethylene glycol ethyl ether 2	0.5 0.4 0.7 0.3 0.3 2.9 00 4.6 0.04 0.05 0.06 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.4 0.5 0.2 1.1 0.4 0.7 0.7 0.0	0.6 0.4 0.7 0.3 0.3 3.1 1,400 3.4 0.8 120.0 0.6 < 0.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 3.3 3.3	<0.4 0.4 0.7 0.2 0.3 2.5 790 2.3 0.4 0.8 130.0 0.9 1.3 0.5 <0.4 0.5 3.1 0.5 3.1 0.5 <0.2 0.9	0.6 0.4 0.7 0.2 0.3 1,100 4.8 0.4 0.4 0.8 110.0 0.4 0.6 0.5 0.6 0.5 0.5 0.2 1.1	<0.4 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	 <0.4 <0.4 <0.9 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.3 <0.4 <li< th=""><th>< 0.4 0.4 0.2 0.3 4.4 820 2.3 0.3 1.5 45.0 0.3 < 0.2 1.1 0.9 0.7 0.4</th><th> < 0.4 0.3 0.8 < 0.2 0.2 4.3 670 1.9 0.3 1.11 49.0 0.4 1.0 1.3 0.6 0.5 </th><th><0.4 0.8 0.3 0.3 3.1 970 2.3 0.4 0.8 100.00 0.5 0.8 1.9 0.5</th><th><0.4 0.4 0.5 <0.2 0.5 260 0.8 0.3 0.5 11.00 0.3 0.3 0.8 1.0</th><th>NE 13.0 1.3 1.2 6.3 1.2 1,300 NE 6.4 NE NE NE NE 1.9</th><th>34,000 1,500 31,500 348,900 60,000 NE 1,400,000 90,000 180,000 492,000 NE 150,000</th><th>70,000 3,190 63,000 NE 1,050,000 1,900,000 1,400,000 435,000 1,800,000 980,000 NE 300,000</th></li<>	< 0.4 0.4 0.2 0.3 4.4 820 2.3 0.3 1.5 45.0 0.3 < 0.2 1.1 0.9 0.7 0.4	 < 0.4 0.3 0.8 < 0.2 0.2 4.3 670 1.9 0.3 1.11 49.0 0.4 1.0 1.3 0.6 0.5 	<0.4 0.8 0.3 0.3 3.1 970 2.3 0.4 0.8 100.00 0.5 0.8 1.9 0.5	<0.4 0.4 0.5 <0.2 0.5 260 0.8 0.3 0.5 11.00 0.3 0.3 0.8 1.0	NE 13.0 1.3 1.2 6.3 1.2 1,300 NE 6.4 NE NE NE NE 1.9	34,000 1,500 31,500 348,900 60,000 NE 1,400,000 90,000 180,000 492,000 NE 150,000	70,000 3,190 63,000 NE 1,050,000 1,900,000 1,400,000 435,000 1,800,000 980,000 NE 300,000
Benzene Carbon Tetrachloride Carbon Tetrachloride Chloroform Cyclohorsane 1,4-Dichlorobenzene Ethanol 1,5 Ethylacetate 1,5 Ethylacetate 1,5 Ethylopzene 1,5 Hexane (C 6) 1,5 Jesporpanol 15 Pisopropyltoluene 2 Zmethyl-1-propanol <	0.4 0.7 0.3 0.3 0.3 0.0 0.0 0.0 0.4 0.5 0.5 0.2 0.5 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.4 0.7 0.3 3.1 1,400 0.6 < 0.2 2.2 2.2 0.4 < 0.4 < 0.4 < 0.4 < 0.5 3.3 0.5 < 0.5 1.1 1 0.4	0.4 0.7 0.2 0.3 2.5 790 2.3 0.4 0.8 130.0 0.9 1.3 0.5 <0.9 3.1 0.5 0.5 0.5 0.5 0.5 0.2	0.4 0.7 0.2 0.3 1,100 0.4 8 0.4 0.8 110.0 0.4 0.4 0.4 0.5 < 0.4 0.5 0.5 0.5 < 0.2 < 0.2 1.1	<pre>< 0.2 < 0.4 </pre>	0.4 0.9 0.2 3.55 720 2 2 0.3 44.0 0.5 5 < 0.2 2.9 0.6 0.4 3.1	0.4 1.4 0.2 0.3 4.4 820 2.3 1.5 45.0 0.3 < 0.2 1.1 0.9 0.7 0.4	0.3 0.8 0.2 0.2 4.3 670 1.9 0.3 1.1 49.0 0.4 1.0 1.3 0.6 0.5	0.4 0.8 0.3 0.3 3.1 970 2.3 0.4 0.8 100.00 0.5 0.8 1.9 0.5	0.4 0.5 < 0.2 0.5 260 0.8 0.3 0.5 11.00 0.3 0.8 1.0	13.0 1.3 1.2 6.3 1.2 1,300 NE 6.4 NE NE NE NE NE 1.9	1,600 31,500 48,900 345,000 60,000 NE 1,400,000 90,000 180,000 492,000 NE 150,000	3,190 63,000 NE 1,050,000 1,900,000 1,400,000 435,000 1,800,000 980,000 NE 300,000
Carbon Tetrachloride Chioroform Cyclohexane 1,4-Dichlorobenzene Ethanol 1,5 Ethylacetate Ethylbenzene Hexane (C 6) isopropanol 9-Isopropyltoluene 2-Methyl-1-propanol <	0.7 0.3 0.3 2.9 00 4.6 0.8 0.4 0.8 0.0 0.5 0.2 1.6 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.7 0.3 0.3 3.1 1,400 3.4 0.4 0.6 < 0.2 0.5 3.3 0.5 < 0.2 0.5 3.3 0.5 < 0.2 1.1 10.04	0.7 0.2 0.3 2.5 790 2.3 0.4 0.8 130.0 0.4 0.9 1.3 0.5 <0.4 0.5 3.1 0.5 3.1 0.5 <0.2 0.9	0.7 0.2 0.3 1,100 4.8 0.4 0.4 0.4 0.4 0.4 0.4 0.5 <0.4 0.6 3.6 0.5 <0.2 <0.2	<pre><0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2</pre>	0.9 0.2 3.5 720 2 0.3 0.8 44.0 0.5 < 0.2 2.9 0.6 0.4 0.4 3.1	1.4 0.2 0.3 4.4 820 2.3 0.3 1.5 45.0 0.3 < 0.2 1.1 0.9 0.7 0.4	0.8 < 0.2 0.2 4.3 670 1.9 0.3 1.1 49.0 0.4 1.0 0.4 1.3 0.6 0.5	0.8 0.3 3.1 970 2.3 0.4 0.8 100.00 0.5 0.5 0.8 1.9 0.5	0.5 < 0.2 0.5 260 0.8 0.3 0.5 11.00 0.3 0.3 0.8 1.0	1.3 1.2 6.3 1.2 1,300 NE 6.4 NE NE NE NE 1.9	31,500 48,900 60,000 NE 1,400,000 90,000 180,000 492,000 NE 150,000	63,000 NE 1,050,000 1,900,000 1,900,000 1,400,000 1,800,000 980,000 NE 300,000
Chloroform Cyclohexane Cyclohexane 1,4-Dichlorobenzene Ethanol 1,5 Ethylacetate Ethylacetate Ethylacetate 1 Hexane (C 6) 1 Isopropanol 12 p-Isopropyltoluene 2 2-Methyl-1-propanol <	0.3 0.3 2.9 00 4.6 0.4 0.8 0.0 0.8 0.0 0.8 0.0 0.5 0.2 0.4 0.5 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.7 0.4 0.5 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	0.3 0.3 3.1 1,400 3.4 0.8 120.0 0.6 < 0.2 2.2 0.4 < 0.4 < 0.5 3.3 0.5 < 0.5 < 0.2 1.1 0.5 3.3 0.5 < 0.2 1.1 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.2 0.3 2.5 790 2.3 0.4 0.8 130.0 0.4 0.9 1.3 0.5 < 0.4 0.5 3.1 0.5 < 0.5 < 0.5	0.2 0.3 1,100 4.8 1110.0 0.4 0.8 1110.0 0.4 0.8 0.5 < 0.4 0.6 0.5 < 0.2 < 0.2 1.1	 < 0.3 < 0.2 < 0.2 < 0.2 < 0.4 < 0.2 < 0.2 < 0.4 < 0.2 < 0.4 < 0.4 < 0.2 < 0.4 < 0.2 < 0.4 < 0.4 < 0.5 < 0.4 < 0.4 < 0.5 < 0.4 < 0.4 < 0.5 < 0.4 < 0.4 	0.2 0.2 3.5 720 2 0.3 0.8 44.0 0.5 <0.2 2.9 0.6 0.4 0.4 3.1	0.2 0.3 4.4 820 2.3 0.3 1.5 45.0 0.3 <0.2 1.1 0.9 0.7 0.4	<0.2 0.2 4.3 670 1.9 0.3 1.1 49.0 0.4 1.0 1.3 0.6 0.5	0.3 0.3 3.1 970 2.3 0.4 0.8 100.00 0.5 0.8 1.9 0.5	<0.2 0.2 0.5 260 0.8 0.3 0.5 11.00 0.3 0.8 0.8 1.0	1.2 6.3 1.2 1,300 NE 6.4 NE NE NE NE 1.9	48,900 345,000 60,000 1,400,000 90,000 180,000 492,000 NE 150,000	NE 1,050,000 1,900,000 1,400,000 435,000 1,800,000 980,000 NE 300,000
Cyclohexane	0.3 2.9 00 4.6 0.4 0.8 0.0 0.5 0.0 0.5 0.2 0.5 0.2 0.5 0.4 0.5 0.5 0.2 1.1 1.1 0.5 0.2 7.0 0.4	0.3 3.1 1,400 3.4 0.4 0.8 120.0 0.6 < 0.2 2.2 0.4 < 0.4 < 0.4 < 0.4 < 0.4 0.5 3.3 0.5 < 0.2 1.1 0.4	0.3 2.5 790 2.3 0.4 0.8 130.0 0.4 0.5 3.1 0.5 3.1 0.5 3.1 0.5 3.1 0.5 0.2	0.3 2.3 1,100 4.8 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	<0.2 <0.2 9 <0.2 <1.0 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0	0.2 3.5 720 2 0.3 0.8 44.0 0.5 < 0.2 2.9 0.6 0.4 0.4 3.1	0.3 4.4 820 2.3 0.3 1.5 45.0 0.3 < 0.2 1.1 0.9 0.7 0.4	0.2 4.3 670 1.9 0.3 1.1 49.0 0.4 1.0 1.3 0.6 0.5	0.3 3.1 970 2.3 0.4 0.8 100.00 0.5 0.8 1.9 0.5	0.2 0.5 260 0.8 0.3 0.5 11.00 0.3 0.8 1.0	6.3 1.2 1,300 NE 6.4 NE NE NE NE 1.9	345,000 60,000 NE 1,400,000 90,000 180,000 492,000 NE 150,000	450,000 1,900,000 1,400,000 435,000 1,800,000 980,000 NE 300,000
1,4-Dichlorobenzene Ethanol Ethylacetate Stopropanol 2-Methyl-1-propanol A-Methyl-2-propanol Yene Styrene Toluene 1,1,2-Trinchtor-1,2,2-trifluoroethane 1,2,4-Trinchtylbenzene o-Xylene SEMI QUANTITATIVE COMPOUNDS 2,6-Dimethyl-7-octen-2-ol Acetaldehyde Butane (C 4) 1-Butanol 1-Butanol 2-Butoxyethanol 2-Lett-Sutylochexyl acetate C12-C14 Hydrocarbon ¹ C12-C14 Hydrocarbon ¹ C12-C14 Hydrocarbon 1 Decanal OircHylene glycol ethyl ether 2	2.9 00 4.6 0.4 0.0 0.5 0.2 1.6 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	3.1 1,400 3.4 0.4 0.8 120.0 0.6 < 0.2 2.2 2 2.2 0.4 < 0.4 < 0.4 0.5 3.3 3 0.5 < 0.2 1.1 0.5	2.5 790 2.3 0.4 0.8 130.0 0.5 < 0.4 0.5 < 0.4 0.5 3.1 0.5 < 0.2 0.5	2.3 1,100 4.8 0.4 0.8 110.0 0.4 0.8 1.3 0.5 < 0.4 0.6 3.6 0.5 < 0.2 1.1	< 0.2 9 < 0.2 < 0.2 < 1.0 < 0.2 < 0.	3.5 720 2 0.3 0.8 44.0 0.5 <0.2 2.9 0.6 0.6 0.4 0.4 3.1	4.4 820 2.3 0.3 1.5 45.0 0.3 < 0.2 1.1 0.9 0.7 0.4	4.3 670 1.9 0.3 1.1 49.0 0.4 1.0 1.3 0.6 0.5	3.1 970 2.3 0.4 0.8 100.00 0.5 0.8 1.9 0.5	0.5 260 0.8 0.3 0.5 11.00 0.3 0.8 1.0	1.2 1,300 NE 6.4 NE NE NE NE 1.9	60,000 NE 1,400,000 90,000 180,000 492,000 NE 150,000	450,000 1,900,000 1,400,000 435,000 1,800,000 980,000 NE 300,000
Ethanol 1,5 Ethylacetate Ethylacetate Ethylacetate Ethylacetate Hexane (C 6) 15 Jsopropanol 15 2-Methyl-1-propanol <	00 4.6 0.4 0.8 0.0 0.5 0.2 1.6 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.2 1.1 0.4 7.0 0.0	1,400 3.4 0.4 0.8 120.0 0.6 < 0.2 2.2 0.4 < 0.4 < 0.4 0.5 3.3 0.5 < 0.2 1.1 0.4	790 2.3 0.4 0.8 130.0 0.4 0.9 1.3 0.5 <0.4 0.5 3.1 0.5 <0.5 <0.5 0.5	1,100 4.8 0.4 0.8 110.0 0.4 0.8 1.3 0.5 < 0.4 0.6 3.6 0.5 < 0.2 1.1	9 < 0.2	720 2 0.3 0.8 44.0 0.5 < 0.2 2.9 0.6 0.4 0.4 3.1	820 2.3 0.3 1.5 45.0 0.3 < 0.2 1.1 0.9 0.9 0.7 0.4	670 1.9 0.3 1.1 49.0 0.4 1.0 1.3 0.6 0.5	970 2.3 0.4 0.8 100.00 0.5 0.8 1.9 0.5	260 0.8 0.3 0.5 11.00 0.3 0.8 1.0	1,300 NE 6.4 NE NE NE NE 1.9	NE 1,400,000 90,000 180,000 492,000 NE 150,000	1,900,000 1,400,000 435,000 1,800,000 980,000 NE 300,000
Ethylbenzene Hexane (C 6) Jisopropanol Isopropanol 2-Methyl-1-propanol A-Methyl-2-propanol Methylene Chloride Mathylanene Styrene Toluene 1,2-Trinchloro-1,2,2-trifluoroethane 1,2,4-Trinchtylbenzene o-Xylene SEMI QUANTIATIVE COMPOUNDS 2,6-Dimethyl-7-octen-2-ol Acetaldehyde Butane (C 4) 1-Butoxy-2-propanol 2-Butoxyethanol 2-Lett Hydrocarbon ¹ C12-C14 Hydrocarbon ¹ C12-C14 Hydrocarbon 1 Decanal Or-C9 Hydrocarbon 1 Diropylene glycol ethyl ether	0.4 0.8 0.0 0.5 0.2 1.6 0.5 0.4 0.5 0.4 0.5 0.2 1.1 0.2 1.1 0.4 7.0 0.0	0.4 0.8 120.0 0.6 < 0.2 2.2 0.4 < 0.4 < 0.4 < 0.5 3.3 0.5 < 0.2 1.1 0.4	0.4 0.8 130.0 0.9 1.3 0.5 < 0.4 0.5 3.1 0.5 < 0.2 0.9	0.4 0.8 110.0 0.4 0.8 1.3 0.5 < 0.4 0.6 3.6 0.5 < 0.2 1.1	0.4 < 0.2 < 1.0 < 0.2 <	0.3 0.8 44.0 0.5 < 0.2 2.9 0.6 0.4 0.4 3.1	0.3 1.5 45.0 0.3 <0.2 1.1 0.9 0.7 0.4	0.3 1.1 49.0 0.4 1.0 1.3 0.6 0.5	0.4 0.8 100.00 0.5 0.8 1.9 0.5	0.3 0.5 11.00 0.3 0.8 1.0	6.4 NE NE NE 1.9	90,000 180,000 492,000 NE 150,000	435,000 1,800,000 980,000 NE 300,000
Hexane (C 6) 15 Isopropanol 15 p-Isoprogyltoluene 2 P-Isoprogyltoluene 2 2-Methyl-1-propanol <	0.8 0.0 0.5 0.2 1.6 0.5 0.4 0.5 0.4 0.5 0.2 1.1 0.4 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.8 120.0 0.6 < 0.2 2.2 0.4 < 0.4 0.5 3.3 0.5 < 0.2 1.1 0.4	0.8 130.0 0.4 0.9 1.3 0.5 < 0.4 0.5 3.1 0.5 < 0.2 0.9	0.8 110.0 0.4 0.8 1.3 0.5 < 0.4 0.6 3.6 0.5 < 0.2 1.1	< 0.2 < 1.0 < 0.2 < 0.2	0.8 44.0 0.5 < 0.2 2.9 0.6 0.4 0.4 0.4 3.1	1.5 45.0 0.3 < 0.2 1.1 0.9 0.7 0.4	1.1 49.0 0.4 1.0 1.3 0.6 0.5	0.8 100.00 0.5 0.8 1.9 0.5	0.5 11.00 0.3 0.8 1.0	NE NE NE 1.9	180,000 492,000 NE 150,000	1,800,000 980,000 NE 300,000
isopropanol 15 p-isopropyltoluene - 2-Methyl-1-propanol 4-Methyl-2-pentanone - Methylec Chloride Naphthalene Styrene - Toluene - 1,2Trichloro-1,2,2-trifluoroethane - 1,2Trichloro-1,2,2-trifluoroethane - 1,2Trichloro-1,2,2-trifluoroethane - 2,4-Trimethylbenzene mp-Xylene - O-Xylene - 2.6-Dimethyl-7-octen-2-ol - Acetaldehyde 6 Betaane (C 4) 1 1-Butanol 2 Butane (C 4) 1 2-Butayethanol 2 Butavethoxyethanol 4 4-tert-Butylcyclohexyl acetate - C12-C14 Hydrocarbon ¹ - C12-C14 Hydrocarbon 1 Decanal Diethylene glycol ethyl ether 2	0.0 0.5 0.2 1.6 0.5 0.4 0.5 0.2 1.1 0.4 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	120.0 0.6 < 0.2 2.2 0.4 < 0.4 0.5 3.3 0.5 < 0.2 1.1 0.4	130.0 0.4 0.9 1.3 0.5 < 0.4 0.5 3.1 0.5 < 0.2 0.9	110.0 0.4 0.8 1.3 0.5 < 0.4 0.6 3.6 0.5 < 0.2 1.1	< 1.0 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.4 < 0.2 < 0.2 < 0.2	44.0 0.5 < 0.2 2.9 0.6 0.4 0.4 3.1	45.0 0.3 < 0.2 1.1 0.9 0.7 0.4	49.0 0.4 1.0 1.3 0.6 0.5	100.00 0.5 0.8 1.9 0.5	11.00 0.3 0.8 1.0	NE NE NE 1.9	492,000 NE 150,000	980,000 NE 300,000
p-Isopropyltoluene 2-Methyl-1-propanol 3-Methyl-1-propanol 4-Methyl-2-propanol Methylene Chloride Naphthalene 3 Styrene Toluene 1,1,2-Trinkinor-1,2,2-trifluoroethane 1,2,4-Trinkethylbenzene 3-Xylene 5-Xylene 5-Xylene 5-Xylene 5-Xylene 5-Xylene 5-Xylene 3-Columethyl-7-octen-2-ol Acetaldehyde Butane (C 4) 1 1-Butanol 1-Butanol 1-Butanol 1-Butanol 2-Butoxyethanol 2-Butoxyethanol 2-Butoxyethanol 2-Butoxyethanol 2-Butoxyethanol 2-Butoxyethanol 2-C14-C16 Hydrocarbon ² <-C14-C16 Hydrocarbon 1 Decanal 3-C-S Hydrocarbon 1 Decanal 3-Butoylene glycol ethyl ether 3-Diropylene glycol ethyl ether 3-Diropylene glycol methyl ether 3-Diropylene	0.5 0.2 1.6 0.5 0.4 0.5 0.5 0.2 1.1 0.4 7.0 0.0	0.6 < 0.2 2.2 0.4 < 0.4 0.5 3.3 0.5 < 0.2 1.1 0.4	0.4 0.9 1.3 0.5 < 0.4 0.5 3.1 0.5 < 0.2 0.9	0.4 0.8 1.3 0.5 <0.4 0.6 3.6 0.5 <0.2 1.1	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.4 < 0.2 < 0.2 < 0.2	0.5 < 0.2 2.9 0.6 0.4 0.4 3.1	0.3 < 0.2 1.1 0.9 0.7 0.4	0.4 1.0 1.3 0.6 0.5	0.5 0.8 1.9 0.5	0.3 0.8 1.0	NE NE 1.9	NE 150,000	NE 300,000
2-Methyl-1-propanol <	0.2 1.6 0.5 0.4 0.5 3.4 0.5 0.2 1.1 0.4 7.0 0.0	< 0.2 2.2 0.4 < 0.4 0.5 3.3 0.5 < 0.2 1.1 0.4	0.9 1.3 0.5 < 0.4 0.5 3.1 0.5 < 0.2 < 0.2	0.8 1.3 0.5 <0.4 0.6 3.6 0.5 <0.2 (0.2 1.1	< 0.2 < 0.2 < 0.2 < 0.4 < 0.2 < 0.2 < 0.2	< 0.2 2.9 0.6 0.4 0.4 3.1	< 0.2 1.1 0.9 0.7 0.4	1.0 1.3 0.6 0.5	0.8 1.9 0.5	0.8 1.0	NE 1.9	150,000	300,000
4-Methyl-2-pentanone Methylene Chloride Methylene Chloride Methylene Chloride Styrene Toluene 1,12-Trichloro-1,2,2-trifluoroethane 1,2,4-Trimethylbenzene m,p-Xylene o-Xylene GeDimethyl-7-octen-2-ol Acetaldehyde Butane (C 4) 1-Butanol 3-Butavyethoxyethanol 2-Butytychoknyd acetate C12-C14 Hydrocarbon ¹ C12-C14 Hydrocarbon C14-C16 Hydrocarbon 1 Decanal Sethale glycol ethyl ether	1.6 0.5 0.4 0.5 3.4 0.5 0.2 1.1 0.4 7.0 0.0	2.2 0.4 < 0.4 0.5 3.3 0.5 < 0.2 1.1 0.4	1.3 0.5 < 0.4 0.5 3.1 0.5 < 0.2 0.9	1.3 0.5 < 0.4 0.6 3.6 0.5 < 0.2 < 1.1	< 0.2 < 0.2 < 0.4 < 0.2 < 0.2	2.9 0.6 0.4 0.4 3.1	1.1 0.9 0.7 0.4	1.3 0.6 0.5	1.9 0.5	1.0	1.9		
Methylene Chloride Naphthalene Naphthalene Styrene Toluene	0.5 0.4 0.5 3.4 0.5 0.2 1.1 0.4 7.0 0.0	0.4 < 0.4 0.5 3.3 0.5 < 0.2 1.1 0.4	0.5 < 0.4 0.5 3.1 0.5 < 0.2 0.9	0.5 <0.4 0.6 3.6 0.5 <0.2 1.1	< 0.2 < 0.4 < 0.2 < 0.2	0.6 0.4 0.4 3.1	0.9 0.7 0.4	0.6 0.5	0.5	-		82.000	
Naphthalene <	0.4 0.5 3.4 0.5 0.2 1.1 0.4 7.0 0.0	< 0.4 0.5 3.3 0.5 < 0.2 1.1 0.4	< 0.4 0.5 3.1 0.5 < 0.2 0.9	< 0.4 0.6 3.6 0.5 < 0.2 1.1	< 0.4 < 0.2 < 0.2	0.4 0.4 3.1	0.7	0.5			16.0	174,000	87,000
Styrene Toluene 1,1,2-Trichloro-1,2,2-trifluoroethane 1,2,4-Trimethylbenzene 1,2,2-Trichloro-1,2,2-trifluoroethane 1,2,4-Trimethylbenzene up: Trimethylbenzene w.p.Xylene SEMI QUANTTATIVE COMPOUNDS 2,6-Dimethyl-7-octen-2-ol Acetaldehyde 6 Benzaldehyde 6 Butane (C 4) 1 1-Butoxy-2-propanol 2 Butoxyethanol 2 Butoxyethanol 2 Butoxyethanol 2 C12-C14 Hydrocarbon ¹ C12-C14 Hydrocarbon ² C14-C16 Hydrocarbon Decanal <	0.5 3.4 0.5 0.2 1.1 0.4 7.0 0.0	0.5 3.3 0.5 < 0.2 1.1 0.4	0.5 3.1 0.5 < 0.2 0.9	0.6 3.6 0.5 < 0.2 1.1	< 0.2 < 0.2	0.4	0.4		< 0.4	< 0.4	I0.0	52,000	50,000
Toluene .1,2-Trinkhoro-1,2,2-trifluoroethane 1,1,2-Trinkhoro-1,2,2-trifluoroethane .1,2,4-Trinkhoroethane 1,2,4-Trinkhoroethane	3.4 0.5 0.2 1.1 0.4 7.0	3.3 0.5 < 0.2 1.1 0.4	3.1 0.5 < 0.2 0.9	3.6 0.5 < 0.2 1.1	< 0.2	3.1		0.4	0.5	< 0.2	1.4	86,000	425,000
1,1,2-Trichloro-1,2,2-trifluoroethane 1,2,4-Trimethylberzene n,2-Xipene SEMI QUANTTATIVE COMPOUNDS 2,6-Dimethyl-7-octen-2-ol Acetaldehyde Benzaldehyde Butane (C 4) 1-Butanol 3-Butoxyethanol 2-Butoxyethanol C12-C14 Hydrocarbon ¹ C12-C14 Hydrocarbon C14-C16 Hydrocarbon Decanal Diethylene glycol ethyl ether Diethylene glycol ethyl ether	0.5 0.2 1.1 0.4 7.0 0.0	0.5 < 0.2 1.1 0.4	0.5 < 0.2 0.9	0.5 < 0.2 1.1	< 0.2		3.0	3.3	3.3	1.3	57.0	753,000	754,000
m,p-Xylene o-Xylene SEMI QUANTITATIVE COMPOUNDS 2,6-Dimethyl-7-octen-2-ol Acetaldehyde Benzaldehyde Butane (C 4) 1-Butanol 1-Butanol 2-Butoxyethanol Butoxyethoxyethanol C12-C14 Hydrocarbon ¹ C12-C14 Hydrocarbon ² C14-C16 Hydrocarbon C12-C14 Hydrocarbon Decanal Diethylene glycol ethyl ether Dipropylene glycol ethyl ether	1.1 0.4 7.0 0.0	1.1 0.4	0.9	1.1		0.5	0.5	0.5	0.6	0.6	NE	7,600,000	7,600,000
o-Xylene SEMI QUANTTATIVE COMPOUNDS 2.6-Dimethyl-7-octen-2-ol Acetaldehyde Benzaldehyde Butane (C 4) 1-Butanol 1-Butanol 2-Butaxyethanol 2-Butaxyethanol 4-tert-Butylcyclohexyl acetate C12-C14 Hydrocarbon ² C12-C14 Hydrocarbon Decanal Sethylene glycol ethyl ether Diropylene glycol methyl ether C12-C14 Hydrocarbon Sethylene glycol methyl ether C12-C14 Hydrocarbon C1 Decanal Sethylene glycol methyl ether C12-C14 Hydrocarbon C2 Diropylene glycol methyl ether C2 Diropylene glycol methyl ether C2 C14-C16 Diropylene glycol methyl ether C2 Diropylene C2 C14-C16 C2 C14-C16 C2	0.4 7.0 0.0	0.4			< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2	9.8	NE	NE
SEMI QUANTITATIVE COMPOUNDS 2,6-Dimethyl-7-octen-2-ol Acetaldehyde Benzaldehyde Butane (C 4) 1-Butanol 1-Butanol 2-Butoxyethanol Butoxyethoxyethanol 2-Butoxyethanol 4-tert-Butylcyclohexyl acetate C12-C14 Hydrocarbon ¹ C12-C14 Hydrocarbon ² C14-C16 Hydrocarbon Decanal Dioroylene glycol ethyl ether Diproylene glycol methyl ether 42	7.0		0.3		< 0.4	0.9	1.0	1.0	1.0	0.8	11.0	435,000	435,000
2,6-Dimethyl-7-octen-2-ol Acetaldehyde Butane (C 4) 1-Butanol 1-Butanol 2-Butoxyethanol Butane (C 4) 1-Butanol 2-Butoxyethanol Butoxyethoxyethanol 4-ter-Butylcyclohexyl acetate C12-C14 Hydrocarbon ¹ C12-C14 Hydrocarbon C14-C16 Hydrocarbon C16-C36 Hydrocarbon Decanal Diethylene glycol ethyl ether Diethylene glycol methyl ether	0.0			0.4	< 0.2	0.3	0.3	0.3	0.3	0.3	7.1	435,000	435,000
Acetaldehyde 6 Benzaldehyde Butane (C 4) Butane (C 4) 1 1-Butanol 3 1-Butanol 2 Butoxyethoxyethanol 2 Butoxyethoxyethanol 4 4-tert-Butylcyclohexyl acetate C12-C14 Hydrocarbon ¹ C12-C14 Hydrocarbon C14-C16 Hydrocarbon Decanal Diethylene glycol ethyl ether 2 Dipropylene glycol methyl ether 2	0.0												
Benzaldehyde Butane (C 4) 1 Butane (C 4) 1 3 1-Butanol 3 3 1-Butoxy-2-propanol 2 3 2-Butoxyethanol 2 3 Butoxyethoxyethanol 4 4 4-tert-But/kyc/clohexyl acetate 2 3 C12-C14 Hydrocarbon ¹ 2 2 3 C12-C14 Hydrocarbon ¹ 2 2 3 C12-C14 Hydrocarbon ¹ 2 2 3 C12-C14 Hydrocarbon ² 2 2 2 C14-C16 Hydrocarbon 2 2 2 Diethylene glycol ethyl ether 1 1 2 Diethylene glycol ethyl ether 2 2 1		8.0	5.0	4.0	< 4.0	6.0	4.0	6.0	7.0	< 4.0	NE	NE	NE
Butane (C 4) 1 1-Butanol 2 1-Butanol 2 2-Butoxyethanol 2 Butoxyethoxyethanol 2 Butoxyethoxyethanol 2 4-ter-Butylcyclohexyl acetate 2 C12-C14 Hydrocarbon ¹ 2 C12-C14 Hydrocarbon ² 2 C14-C16 Hydrocarbon 2 Decanal 2 Diethylene glycol ethyl ether 2 Dipropylene glycol methyl ether 42	7.0	60.0 7.0	22.0 5.0	33.0 6.0	< 4.0	20.0	26.0	52.0 7.0	22.0	< 4.0	NE	NE	360,000 NE
1-Butanol 2 1-Butoxy-2-propanol - 2-Butoxyethanol 2 Butoxyethoxyethanol 4 Cl2-Cl4 Hydrocarbon ¹ - Cl2-Cl4 Hydrocarbon ² <	0.0	10.0	10.0	13.0	< 4.0	5.0	5.0	7.0	7.0	29.0	NE	NE	NE
1-Butoxy-2-propanol 2-Butoxyethanol 2 2-Butoxyethanol 2 2 Butoxyethoxyethanol 4 2 Butoxyethoxyethanol 4 2 C12-C14 Hydrocarbon ¹ 2 2 C12-C14 Hydrocarbon ² <	0.0	30.0	23.0	36.0	< 4.0	22.0	17.0	15.0	26.0	< 4.0	NE	60,000	300,000
2-Butoxyethanol 2 Butoxyethaxyethanol 4 4-terr-Butykyclohexyl acetate 2 C12-C14 Hydrocarbon ¹ 2 C12-C14 Hydrocarbon ² 2 C14-C16 Hydrocarbon 2 C7-C9 Hydrocarbon 1 Decanal 2 Diethylene glycol ethyl ether 2 Dipropylene glycol methyl ether 42	4.0	< 4.0	< 4.0	5.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	NE	NE	NE
Butoxyethoxyethanol 4 4-tert-Butylcyclohexyl acetate 2 C12-C14 Hydrocarbon ¹ 2 C12-C16 Hydrocarbon 2 C14-C16 Hydrocarbon 2 C17-C9 Hydrocarbon 1 Decanal 2 Diethylene glycol ethyl ether 2 Dipropylene glycol methyl ether 42	2.0	24.0	17.0	26.0	< 4.0	16.0	13.0	23.0	24	< 4.0	NE	97,000	240,000
C12-C14 Hydrocarbon ¹ C12-C14 Hydrocarbon ² C14-C16 Hydrocarbon C16-C9 Hydrocarbon Decanal Diethylene glycol ethyl ether Dipropylene glycol methyl ether	5.0	42.0	17.0	18.0	< 4.0	29.0	16.0	40.0	34.0	< 4.0	NE	67,000	NE
C12-C14 Hydrocarbon ² <	5.0	6.0	< 4.0	< 4.0	< 4.0	5.0	< 4.0	< 4.0	5.0	< 4.0	NE	NE	NE
C14-C16 Hydrocarbon C7-C9 Hydrocarbon 1 Decanal Diethylene glycol ethyl ether 2 Dipropylene glycol methyl ether 42	8.0	10.0	7	5.0	< 4.0	7.0	6.0	6.0	9.0	< 4.0	NE	NE	NE
C7-C9 Hydrocarbon 1 Decanal < Diethylene glycol ethyl ether 2 Dipropylene glycol methyl ether 42	4.0	5.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	NE	NE	NE
Decanal <	4.0	< 4.0	4	< 4.0	< 4.0	< 4.0	10.0	< 4.0	< 4.0	< 4.0	NE	NE	NE
Diethylene glycol ethyl ether 2 Dipropylene glycol methyl ether 42	0.0	10.0	9	11	< 4.0	7.0	6.0	8.0	8.0	< 4.0	NE	NE	NE
Dipropylene glycol methyl ether 42		6.0	5	< 4.0	< 4.0	7.0	9.0	14.0	7.0	< 4.0	NE	NE	NE
	9.0	15.0 450.0	11 240	8.0 320.0	< 4.0	9.0 270.0	9.0 190.0	23.0 330.0	21.0 300.0	< 4.0	NE	NE	NE
Dodecane (C 12)	8.0	430.0	6.0	7.0	< 4.0	6.0	5.0	8.0	7.0	< 4.0	NE	NE	NE
	8.0	18.0	19.0	18.0	< 4.0	15.0	15.0	18.0	18.0	< 4.0	NE	NE	NE
	7.0	53.0	73.0	58.0	< 4.0	43.0	91.0	41.0	56.0	< 4.0	NE	NE	NE
Isobutane 1	0.0	9.0	10.0	9.0	< 4.0	4.0	5.0	5.0	6.0	9.0	NE	NE	NE
	7.0	7.0	6.0	5.0	< 4.0	< 4.0	< 4.0	< 4.0	7.0	< 4.0	NE	NE	NE
	7.0	8.0	6.0	4.0	< 4.0	7.0	6.0	< 4.0	9.0	< 4.0	9.5	NE	NE
	0.0	70.0	23.0	22.0	< 4.0	25.0	17.0	21.0	42.0	8.0	20.0	NE	NE
	4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	5.0	< 4.0	< 4.0	< 4.0	NE	NE	NE
	7.0	7.0	6.0	6.0	< 4.0	7.0	6.0	5.0	10.0	< 4.0	NE	NE	NE
	6.0 5.0	5.0 5.0	5.0 < 4.0	6.0 6.0	< 4.0	< 4.0	< 4.0	< 4.0	5.0 < 4.0	4.0 < 4.0	NE	2,950,000 NE	2,950,000 NE
	5.0	5.0	< 4.0	6.0 < 4.0	< 4.0	< 4.0	5.0 < 4.0	< 4.0	< 4.0	< 4.0	NE	NE	NE
	3.0	25.0	18.0	17.0	< 4.0	27.0	22.0	22.0	29.0	8.0	NE	2,950,000	295,000
	7.0	6.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	NE	250,000	500,000
	7.0	9.0	5.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	15.0	< 4.0	NE	420,000	840,000
	4.0	14.0	13.0	8.0	< 4.0	14.0	16.0	12.0	14.0	< 4.0	NE	NE	NE
	6.0	5.0	< 4.0	< 4.0	< 4.0	4.0	4.0	5.0	5.0	< 4.0	NE	NE	NE
	1 T	47.0	12.0	9.0	< 4.0	30.0	17.0	8.0	20.0	< 4.0	NE	NE	NE
	4.0	240.0	220.0	260.0	< 4.0	170.0	130.0	220.0	300.0	9.0	NE	NE	NE
	0.0	300.0 6.0	280.0	330.0	< 4.0	230.0	170.0	270.0	390.0	19.0	NE	NE	NE
Tridecane (C 13) Urea <			< 4.0 < 4.0	5.0 < 4.0	< 4.0	5.0 < 4.0	4.0	6.0 8.0	5.0 < 4.0	< 4.0	NE	NE	NE

¹ Contains silicon and oxygen; appears to be a siloxane ² Cyclic; may be a terpene NE = Not Established

TABLE 2.

RESULTS ABOVE NEW YORK STATE DEPARTMENT OF HEALTH SURVEY, AND COMPARED TO ACGIH THRESHOLD LIMIT VALUES (TLV) AND OSHA PERMISSIBLE EXPOSURE LIMITS (PEL)

Table 2. Results above New York State Department of Health Survey, and compared to ACGIH Threshold Limit Values (TLV) and OSHA Permissable Exposure Limits (PEL)													
Compound	Room 7 (ng/L)	Room 10 (ng/L)	Room 3 (ng/L)	Room 4 (ng/L)	Library (ng/L)	Room 26 (ng/L)	SE Hallway between Rooms 36 & 37 (ng/L)	Room 31 (ng/L)	Room 14 (ng/L)	Hall Outside of Little Theater (ng/L)	NYS DOH Upper Fence Limit (ng/L)	ACGIH Threshold Limit Value (ng/L)	OSHA PEL (ng/L)
O-17 Compounds													
Carbon Tetrachloride	0.7	0.7	0.7	0.7	< 0.2	0.9	1.4	0.8	0.8	0.5	1.3	31,500	63,000
1,4-Dichlorobenzene	2.9	3.1	2.5	2.3	< 0.2	3.5	4.4	4.3	3.1	0.5	1.2	60,000	450,000
Ethanol	1,500.0	1,400.0	790.0	1,100.0	8.8	720.0	820.0	670.0	970.0	260.0	1,300.0	NE	1,900,000
4-Methyl-2-pentanone	1.6	2.2	1.3	1.3	< 0.2	2.9	1.1	1.3	1.9	1.0	1.9	82,000	410,000
Limonene	50.0	70.0	23.0	22.0	< 4.0	25.0	17.0	21.0	42.0	8.0	20.0	NE	NE