Whatcom County Math Championship - 2013 Potpourri - $4^{\text {th }}$ Grade

1. How many prime numbers are there between 40 and 100?
2. What is the next term in this sequence: $5,8,12,17,23$, \qquad ?
3. How many times will you use the number 8 when writing the numbers from 1 to 100 ?
4. Yesterday, Abby beat Heather at chess in 40% of their matches. Heather won 9 matches. How many matches did Abby win?
5. Hanzel has 3 more brothers than sisters. How many more brothers than sisters does his sister Gretel have?
6. What two-digit number is three times the sum of its digits?
7. How many positive integers are factors of 96 ?
8. What is the least common denominator of $\frac{1}{12}, \frac{4}{15}$, and $\frac{5}{18}$?
9. A basketball player made 8 baskets during a game. Each basket was worth either 2 or 3 points. How many different numbers could represent the total points scored by the player?
10. How many positive square numbers are there less than $1,000,000$?

Whatcom County Math Championship - 2013 Potpourri - $5^{\text {th }}$ Grade

1. Yesterday, Abby beat Heather at chess in 40% of their matches. Heather won 9 matches. How many matches did Abby win?
2. Hanzel has 3 more brothers than sisters. How many more brothers than sisters does his sister Gretel have?
3. What two-digit number is three times the sum of its digits?
4. How many positive integers are factors of 96 ?
5. What is the least common denominator of $\frac{1}{12}, \frac{4}{15}$, and $\frac{5}{18}$?
6. A basketball player made 8 baskets during a game. Each basket was worth either 2 or 3 points. How many different numbers could represent the total points scored by the player?
7. How many positive square numbers are there less than $1,000,000$?
8. A regular polygon is a polygon that has all equal sides and all equal angles. Ana wants to pick a regular polygon and place copies of it around a point, so that the polygons edges all line up and the copies go all the way around the point. The regular polygon with the smallest number of sides that she cannot do this with has how many sides?
9. Compute $3+6+9+\ldots+2007+2010+2013-4-7-10-\ldots 2005-2008-2011$.
10. In the circle below, the central angle is 120°, and angles \mathbf{a} and \mathbf{b} are inscribed on the circle. What is the sum of the angles \mathbf{a} and \mathbf{b}.

Whatcom County Math Championship - 2013 Potpourri - $6^{\text {th }}$ Grade

1. How many positive integers are factors of 96 ?
2. What is the least common denominator of $\frac{1}{12}, \frac{4}{15}$, and $\frac{5}{18}$?
3. A basketball player made 8 baskets during a game. Each basket was worth either 2 or 3 points. How many different numbers could represent the total points scored by the player?
4. How many positive square numbers are there less than $1,000,000$?
5. A regular polygon is a polygon that has all equal sides and all equal angles. Ana wants to pick a regular polygon and place copies of it around a point, so that the polygons edges all line up and the copies go all the way around the point. The regular polygon with the smallest number of sides that she cannot do this with has how many sides?
6. Compute $3+6+9+\ldots+2007+2010+2013-4-7-10-\ldots 2005-2008-2011$.
7. In the circle below, the central angle is 120°, and angles \mathbf{a} and \mathbf{b} are inscribed on the circle. What is the sum of the angles \mathbf{a} and \mathbf{b}.

8. How many times will you use the number 8 when writing the numbers from 1 to 1000 ?
9. The symbol 3 ! means three factorial and is evaluated as $3 \times 2 \times 1$, which is 6 . Suppose $n!$ ends in exactly 4 zeros after multiplying it out. What is the smallest value n can have?
10. What is then next number in this sequence: $\frac{2}{9}, \frac{1}{3}, \frac{1}{2}, \frac{3}{4}, \ldots$. Write your answer as a reduced fraction.

Whatcom County Math Championship - 2013 Potpourri $-7^{\text {th }}+8^{\text {th }}$ Grade

1. How many positive square numbers are there less than $1,000,000$?
2. A regular polygon is a polygon that has all equal sides and all equal angles. Ana wants to pick a regular polygon and place copies of it around a point, so that the polygons edges all line up and the copies go all the way around the point. The regular polygon with the smallest number of sides that she cannot do this with has how many sides?
3. Compute $3+6+9+\ldots+2007+2010+2013-4-7-10-\ldots 2005-2008-2011$.
4. In the circle below, the central angle is 120°, and angles \mathbf{a} and \mathbf{b} are inscribed on the circle. What is the sum of the angles \mathbf{a} and \mathbf{b}.

5. How many times will you use the number 8 when writing the numbers from 1 to 1000 ?
6. The symbol 3 ! means three factorial and is evaluated as $3 \times 2 \times 1$, which is 6 . Suppose $n!$ ends in exactly 4 zeros after multiplying it out. What is the smallest value n can have?
7. What is then next number in this sequence: $\frac{2}{9}, \frac{1}{3}, \frac{1}{2}, \frac{3}{4}, \ldots$. Write your answer as a reduced fraction.
8. If $\mathrm{a} \otimes \mathrm{b}=\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}}$, what is $\frac{8 \otimes 4}{4 \otimes 8}$?
9. Find the least whole number \mathbf{n} greater than 60 for which
a) $\quad \mathbf{n}$ divided by 5 leaves a remainder of 3
b) $\quad \mathbf{n}$ divided by 9 leaves a remainder of 4
10. If a and b are positive numbers and $\mathrm{a}^{2}-\mathrm{b}^{2}=6$, and $\mathrm{a}-\mathrm{b}=2$, what is $\mathrm{a}+\mathrm{b}$?
