SpringBoard
Precalculus
Khan Academy Video Correlations
By SpringBoard Activity

SB Activity	Video(s)
Unit 1: Sequences, Series, Exponential and Logarithmic Functions	
Activity 1 Arithmetic Sequences 1-1 Learning Targets: - Write an expression for a sequence. - Use subscript notation. 1-2 Learning Targets: - Use sigma notation to represent a series. - Write the algebraic form of an arithmetic sequence. - Calculate the nth term or nth partial sum of an arithmetic series. 1-3 Learning Targets: - Understand the method of mathematical induction. - Use mathematical induction to prove statements.	Sequences and Subscript Notation
	Arithmetic sequences
	Finding the $100^{\text {th }}$ term in a sequence
	Equations of sequence patterns
	Sigma Notation
	Sigma notation for sums
	Mathematical Induction
	Proof by induction
	Alternate proof to induction for integer sum
Activity 2 Geometric Sequences 2-1 Learning Targets: - Identify a geometric sequence. - Determine the common ratio of a geometric sequence. 2-2 Learning Targets: - Write the algebraic form of a geometric sequence. - Calculate the sum of a finite geometric series. 2-3 Learning Targets: - Determine if a sequence converges or diverges. - Find the sum of an infinite geometric series.	Identifying Geometric Sequences
	Geometric sequences introduction
	Geometric sequences
	Finite Geometric Sequences and Series
	$\underline{\text { Geometric series }}$
	Formula for a finite geometric series
	Series as sum of sequence
	Constructing a geometric series for new users
	Geometric series sum to figure out mortgage payments
	Infinite Geometric Sequences and Series
	Sum of an infinite geometric series
	Another derivation of the sum of an infinite geometric series
	Geometric series convergence and divergence
	examples
	Repeating decimal as infinite geometric series
	Vertical distance of bouncing ball

Activity 3

Modeling Recursive Relationships
3-1 Learning Targets:

- Represent arithmetic and geometric sequences recursively.
- Determine the explicit form of a recursive sequence.
3-2 Learning Targets:
- Represent arithmetic and geometric sequences recursively.
- Determine the explicit form of a recursive sequence.

Activity 4

Exponential Functions

4-1 Learning Targets:

- Write, graph, analyze, and model with exponential functions.
- Solve exponential equations.

4-2 Learning Targets:

- Write, graph, analyze, and model with exponential functions.
- Calculate compound interest.
- Solve exponential equations.

4-3 Learning Targets:

- Write, graph, analyze, and model with exponential functions.
- Calculate compound interest.
- Solve exponential equations.

Activity 5

Logarithms
5-1 Learning Targets:

- Explore the inverse relationship between exponents and logarithms.
- Graph logarithmic functions and analyze key features of the graphs.
5-2 Learning Targets:
- Apply the Change of Base Formula.
- Use properties of logarithms to evaluate and transform expressions.
5-3 Learning Targets:
- Solve exponential equations by taking the logarithm of both sides.
- Use properties of exponents and logarithms to solve logarithmic equations.

Explicit and Recursive Formulas
Explicit and recursive definitions of sequences
Converting an explicit function to a recursive function

Exponential Functions and Equations
Exponential growth functions
Graphing exponential functions
Solving exponential equation

Modeling with Exponential Functions

Exponential growth and decay word problems
Decay of cesium 137 example
Modeling ticket fines with exponential function
Compound Interest
Introduction to compound interest and e
Compound interest and e (part 2)
Compound interest and e (part 3)
Compound interest and e (part 4)

Common and Natural Logarithms

Comparing exponential and logarithmic functions
Graphing logarithmic functions
Matching functions to their graphs
Graphs of logarithmic functions
Using Properties and the Change of Base Formula
Introduction to logarithm properties
Introduction to logarithm properties (part 2)

Logarithm of a power

Sum of logarithms with same base
Using multiple logarithm properties to simplify
Change of base formula
Solving Logarithmic Equations

	Solving exponential equation with logarithm Solving exponential equation Solving logarithmic equations
Solving logarithmic equations	

SpringBoard

Activity 9

Polynomial Functions: End Behavior
Polynomials
9-1 Learning Targets:

- Compare models to best fit a data set.
- Use a polynomial regression to make predictions.
9-2 Learning Targets:
- Describe and analyze graphs of polynomial functions.
- Graph polynomial functions using technology.

Activity $10 \quad$ Fundamental Theorem of Algebra

Analyzing Polynomial Functions
10-1 Learning Targets:

- Analyze end behavior and zeros to sketch polynomial functions.
- Understand the Fundamental Theorem of Algebra.
- Understand the Linear Factorization Theorem.
10-2 Learning Targets:
- Apply the Rational Root Theorem to find zeros.
- Use the Factor Theorem.
- Apply the Remainder Theorem.

10-3 Learning Targets:

- Use Descartes' Rule of Signs.
- Accurately graph polynomial functions.

Activity 11

Complex Polynomial Roots and Inequalities
11-1 Learning Targets:

- Maximize volume in applications.
- Apply the Complex Conjugate Theorem.

11-2 Learning Targets:

- Rewrite polynomial functions in factored form.
- Find all of the zeros of a polynomial function.
11-3 Learning Targets:
- Solve polynomial inequalities.
- Represent solutions using interval notation and graphs.

Activity 12

Rational Expressions and the Reciprocal Function 12-1 Learning Targets:

Asymptotes

Asymptotes of rational functions
Horizontal and vertical asymptotes of function

- Write ratios of variable expressions.
- Write a rational function based on a realworld scenario.
12-2 Learning Targets:
- Write equations for vertical and horizontal asymptotes.
- Sketch the graph of a rational function.

Activity 13

Rational Functions

13-1 Learning Targets:

- Compare and contrast graphs of rational functions.
- Write and sketch graphs of transformations of rational functions.
13-2 Learning Targets:
- Determine horizontal, vertical, or oblique asymptotes.
- Accurately graph rational functions.
- Solve rational inequalities.

13-3 Learning Targets:

- Write the equation of a rational function given certain attributes.
- Solve rational inequalities.

Finding horizontal and vertical asymptotes
Rational Functions and Their Gaphs
Matching rational functions to their graphs

Graphing Rational Functions

Another rational function graph example
A third example of graphing a rational function
Rational Inequalities

Rational inequalities
Rational inequalities 2

Unit 3: Trigonometric Functions

Activity 14

Angles and Angle Measure
14-1 Learning Targets:

- Draw angles in standard position.
- Find the initial side and terminal side of an angle in standard position.
- Identify coterminal angles.

14-2 Learning Targets:

- Measure angles in radians.
- Convert angle measures from degrees to radians.
- Recognize trigonometric ratios to complete reference triangles.

Activity 15

Sinusoidal Functions
15-1 Learning Targets:

- Recognize situations that involve periodic data.
- Sketch a graph of periodic data.

15-2 Learning Targets:

Radian Measure
Introduction to radians
Rotation by radians and quadrants
Finding arc length from radian angle measure
Example: Radian measure and arc length
Example: Converting degrees to radians
Example: Converting radians to degrees
Radian and degree conversion practice
Radians and degrees

Exploring Periodic Data
Modeling annual temperature variation with trigonometry Modeling temperature through the day Day length in Alaska
Periodic Functions
Midline, amplitude and period of a function

- Explore how a change in parameters affects a graph.
- Determine the period, amplitude, or phase shift of a periodic function.
15-3 Learning Targets:
- Graph a periodic function with various domains.
- Compare the graph of $y=\sin x$ to periodic graphs.

Example: Amplitude and period
Example: Amplitude and period transformations
Example: Amplitude and period cosine transformations

Graph of the Sine and Cosine Function
Example: Graph, domain, and range of sine function
Example: Graph of cosine
Example: Intersection of sine and cosine
The Unit Circle
Introduction to the unit circle
Unit circle manipulative
Matching ratios to trig functions
Solving triangle in unit circle
Finding trig functions of special angles example

Reciprocal Trigonometric Functions
Secant (sec), cosecant (csc) and cotangent (cot) example

Example: Using trig to solve for missing information
Trigonometric Graphs
Example: Figure out the trig function
Determining the equation of a trig function

- Graph a trigonometric function over a specified interval.
- Describe how changing parameters affect a trigonometric graph..
17-2 Learning Targets:
- Find the amplitude and period of a trigonometric function.
- Write a trigonometric function given its graph.
- Model situations with trigonometric functions.

Activity 18

Graphs of Trigonometric Functions
18-1 Learning Targets:

- Sketch the graphs of $\csc x, \sec x, \tan x$, and $\cot x$.
- Find the period and locate asymptotes of reciprocal trig functions.

Tangent Graph

- Determine the domain and range of reciprocal trig functions.
18-2 Learning Targets:
- Graph transformations of reciprocal trig functions.
- Describe how changing parameters affect a trigonometric graph.

Activity 19

Inverse Cosine Functions

Inverse trig functions: arccos
Example: Calculator to evaluate inverse trig function
Inverse Sine Functions
Inverse trig functions: arcsin
Example: Calculator to evaluate inverse trig function

Inverse Tangent Functions

Inverse trig functions: arctan
Example: Calculator to evaluate inverse trig function
Modeling with Trigonometric Functions
Inverse tan domain and range
Inverse tangent scenario
Angle of sun with the ground based on shadow
Modeling annual temperature variation with
trigonometry
Applying inverse trig function with model

Activity 20

Solving Simple Trigonometric Equations
20-1 Learning Targets:

- Apply a trigonometric equation to represent a real-world situation.
- Find the general solution to a trigonometric equation
20-2 Learning Targets:
- Use reference angles to solve trigonometric equations.
- Find the solution to a trigonometric equation over an interval.
- Generate a trigonometric equation for a real-world situation

Unit 4: Analytic Trigonometry and Trigonometric Applications

Activity 21	
Trigonometric Identities	Trigonometric Identities
21-1 Learning Targets:	Pythagorean trig identity from soh cah toa
	Pythagorean trig identity from unit circle

- Define the reciprocal and quotient identities.
- Use and transform the Pythagorean identity.
21-2 Learning Targets:
- Simplify trigonometric expressions.
- Verify trigonometric identities.

Activity 22

Identities and Equations
22-1 Learning Targets:

- Use the unit circle to write equivalent trigonometric expressions.
- Write cofunction identities for sine and cosine.
22-2 Learning Targets:
- Use trigonometric identities to solve equations.
- Solve trigonometric equations by graphing.

Activity 23

Multiple Angle Identities
23-1 Learning Targets:

- Model a sound wave with a trigonometric function.
- Derive an expression for the cosine of a difference.
23-2 Learning Targets:
- Write the sum and difference identities for sine, cosine, and tangent.
- Use sum and difference identities to find exact values of a trig function.
- Derive the double angle and half angle identities.
23-3 Learning Targets:
- Use trigonometric identities to solve equations.
- Verify trigonometric identities

Activity 24

Law of Cosines
24-1 Learning Targets:

- Use trigonometry to draw and interpret diagrams for a model.

Using the Pythagorean trig identity

Simplifying Trigonometric Expressions

Examples using pythagorean identities to simplify trigonometric expressions

N/A

Exploring Sums of Trig Functions

Applying angle addition formula for sin
Angle addition formula with cosine
Another example using angle addition formula with cosine

Sine of non special angle
Cosine addition identity example
Proof of angle addition formula for sine
Proof of angle addition formula for cosine

Double Angle Formulas

Double angle formula for cosine example

Law of Cosines

Law of cosines
Law of cosines to determine grade
Law of cosines for star distance
Proof of the law of cosines

- Write a trigonometric function for a realworld situation
-

24-2 Learning Targets:

- Write equations for the Law of Cosines using a standard angle.
- Apply the Law of Cosines in real-world and mathematical situations.

Activity 25

Law of Sines
25-1 Learning Targets:

- Calculate the bearing of a flight.
- Derive and use the Law of Sines.
- Find unknown sides or angles in oblique triangles.
25-2 Learning Targets:
- Determine the number of distinct triangles given certain criteria.
- Use the Law of Sines to solve triangles with unknown sides or angles.

Law of Sines

Law of sines
Law of sines for missing angle
Proof: Law of sines

Unit 5: Conics, Parametric Equations, and Vectors

Activity 26

Parabola Equations and Graphs
26-1 Learning Targets:

- Define conic sections as intersections of a double-napped cone.
- Relate the locus definition of a parabola to its equation.
- Find the inverse relation for a parabola.

26-2 Learning Targets:

- Find the standard form of a parabola.
- Graph parabolas in the coordinate plane.
- Find the focus, directrix, and axis of symmetry of a parabola.
- Find the equation of a parabola with certain characteristics.

Parabolas and Conic Sections
Introduction to conic sections

Graphs of Parabolas

Examples: Graphing and interpreting quadratics
Graphing a parabola with a table of values
Graphing a parabola by finding the roots and vertex
Graphing a parabola using roots and vertex
Multiple examples graphing parabolas using roots and vertices

Graphs and Equations of Parabolas

Parabola vertex and axis of symmetry
Focus and directrix introduction
Using the focus and directrix to find the equation of a parabola

Equation for parabola from focus and directrix
Finding focus and directrix from vertex
Finding the vertex of a parabola example

Activity 27

Ellipses and Hyperbolas
27-1 Learning Targets:

- Define and sketch an ellipse.
- Determine the equation of an ellipse.
- Graph an ellipse using its characteristics.

27-2 Learning Targets:

- Define and sketch a hyperbola.
- Determine the equation of a hyperbola.
- Graph a hyperbola using its characteristics.

27-3 Learning Targets:

- Graph hyperbolas to represent a realworld problem.
- Use equations of hyperbolas to find intersection points.

Activity 28

Polar Graphs
28-1 Learning Targets:

- Understand and use the polar grid.
- Define polar coordinates.
- Plot and label points in the polar grid.

28-2 Learning Targets:

- Convert rectangular coordinates to a polar point (r, θ).
- Convert polar coordinates to a rectangular point (x, y).
28-3 Learning Targets:
- Express x and y in terms of r and θ.
- Sketch polar curves on the polar grid.
- Use polar functions to represent realworld situations.

Activity 29

Polar Curves and Polar Conics
29-1 Learning Targets:

- Sketch graphs represented by polar equations.
- Compare and contrast polar graphs.
- Write equivalent rectangular and polar equations.
29-2 Learning Targets:
- Convert a polar equation to rectangular form.
- Convert a rectangular equation to polar form.

Conic sections: Intro to ellipses

Foci of an ellipse

Identifying an ellipse from equation

Hyperbolas

Conic sections: Intro to hyperbolas
Conic sections: Hyperbolas 2
Conic sections: Hyperbolas 3
Foci of a hyperbola
Proof: Hyperbola foci
Identifying a hyperbola from an equation
Hyperbola and parabola examples

Polar Coordinates
Polar coordinates 1
Polar coordinates 2
Polar coordinates 3

- Describe and sketch graphs of polar equations.
29-3 Learning Targets:
- Classify different types of polar equations.
- Explore patterns in the graphs of polar curves.
- Predict the resulting graph for a polar equation.

Activity 30

Parametric Equations
30-1 Learning Targets:

- Use data points on a grid to write linear equations.
- Interpret the parameters of an equation in a real-world context.
- Write rules to describe the position of an object at time t .
30-2 Learning Targets:
- Define and write parametric equations.
- Use parametric equations to solve realworld problems.
30-3 Learning Targets:
- Convert equations from rectangular to parametric, and vice versa.
- Use parametric equations to solve realworld problems.

Activity 31

Parametric Equations Revisited
31-1 Learning Targets:

- Understand, calculate, and compare angular and linear velocities.
- Write equations to model circular motion.
- Sketch the graph of circular motion.

31-2 Learning Targets:

- Sketch the graph of a moving object.
- Write parametric equations using trigonometry.
- Use technology to model motion.

31-3 Learning Targets:

- Understand and apply the equations for projectile motion.
- Write and graph parametric equations.
- Solve real-world problems involving projectile motion.

Parametric Equations

Parametric equations 1
Parametric equations 2
Parametric equations 3
Parametric equations 4

Activity 32

Vectors and Complex Numbers
32-1 Learning Targets:

- Understand and model rectilinear motion.
- Define and use vectors.
- Use the notation for position vectors.

32-2 Learning Targets:

- Understand and model rectilinear motion.
- Define and use vectors.
- Use the notation for position vectors.

32-3 Learning Targets:

- Find the direction angle of a vector.
- Resolve a vector into its components.
- Sketch vectors and vector sums in the coordinate plane
32-4 Learning Targets:
- Represent complex numbers as vectors.
- Find the conjugate of a complex number.
- Add, subtract, multiply, and divide complex numbers.
32-5 Learning Targets:
- Find the polar form of a complex number.
- Represent complex numbers in polar form in the complex plane.

Activity 33
Applications of Vectors
33-1 Learning Targets:

- Write equations to describe rectilinear motion.
- Use vectors to describe velocity of an object.
- Interpret speed as the magnitude of a velocity vector.
33-2 Learning Targets:
- Use vectors to describe planar motion.
- Graph position vectors in the coordinate plane.
- Write a vector equation to model a realworld context.

Introduction to Vectors
Vector representations exercise example

Classifying vectors and quantities example

Operations with Vectors

Multiplying a vector by a scalar
Visualizing vector addition examples
Adding vectors
Adding vectors exercise example
Subtracting vectors exercise example

Vector Components

Breaking down vectors into components
Magnitude and direction of vector sums
Magnitude of vector sums

Complex Numbers and Operations

Introduction to complex numbers
Plotting complex numbers on the complex plane
Adding complex numbers
Subtracting complex numbers
Multiplying complex numbers
Dividing complex numbers
Polar Form
Complex number polar form intuition exercise
Rectangular to polar form of complex number

Activity 34

Matrix Operations
34-1 Learning Targets:

- Use matrices to represent numeric data.
- Add and subtract matrices.
- Define and use scalar multiplication.

34-2 Learning Targets:

- Determine if two matrices can be multiplied.
- Find the matrix product of two matrices.
- Explore properties of matrix operations.

34-3 Learning Targets:

- Determine if a matrix has an inverse.
- Find the determinant and inverse of a matrix.
- Justify properties of matrix operations.

Activity 35

Matrices and Transformations
35-1 Learning Targets:

- Use matrices as vectors to translate figures in the plane.
- Use matrices as vectors to reflect figures in the plane.
35-2 Learning Targets:
- Use matrices as vectors to rotate figures in the plane.
- Use matrices as vectors to dilate figures in the plane.
35-3 Learning Targets:
- Work with matrices to represent realworld situations.
- Interpret absolute value of determinants as areas.

Activity 36

Matrices and Systems of Equations
36-1 Learning Targets:

- Write a linear system of equations as a matrix equation.
- Represent a real-world situation with a matrix equation.
- Identify the coefficient matrix, variable matrix, and constant matrix.

Representing Data with Matrices
Introduction to the matrix
Representing data with matrices
Matrix addition and subtraction
Scalar multiplication

Matrix Multiplication

Matrix multiplication introduction
Multiplying a matrix by a matrix
Defined and undefined matrix operations

Inverse Matrices

Finding the determinant of a 2×2 matrix
Inverse of a 2×2 matrix
Idea behind inverting a 2×2 matrix
Finding the determinant of a 3×3 matrix method 1
Finding the determinant of a 3×3 matrix method 2

Linear Transformations

Linear transformation examples: Scaling and reflections

Linear transformation examples: Rotations in R2

Matrices and Systems of Equations
Matrices to solve a system of equations
Matrix equations and systems

36-2 Learning Targets:

- Use an inverse matrix to solve a matrix equation.
- Connect the existence of an inverse matrix to solutions of systems.
36-3 Learning Targets:
- Use technology to solve large linear systems.
- Solve a 3×3 matrix equation using technology.

Activity 37

Volume of Spheres
Volume of a sphere
Limits
Introduction to limits
Limit examples (part 1)
Limit examples (part 2)
Limit examples (part 3)

