Key Course Objectives or Enduring Understandings:

Important ideas and core processes

- Triangle congruence and similarity criteria
- Using coordinates to establish geometric results
- Calculating length and angle measures
- Using geometric representations as modeling tools
- Using construction tools, physical and computational to draft models of geometric phenomenon

Overarching Skills/Essential Questions:

Ideas or skills that transcend discipline-Specific learning

Congruence

- Understand congruence in terms of rigid motions
- Prove geometric theorems

Similarity, Right Triangles, and Trigonometry

- Understand similarity in terms of similarity transformations
- Prove theorems using similarity
- Define trigonometric ratios and solve problems involving right triangles

Expressing Geometric Properties with Equations

- Use coordinates to prove simple geometric theorems algebraically

Modeling with Geometry

- Apply geometric concepts in modeling situations

Assessments

- Common Unit Assessments for Units 1-11
- Common Mid-Unit Quizzes
- Midterm
- Common Core Geometry Exam

Unit Pacing Names of units and approximate pacing	Unit Learning Targets By the end of the unit, students will be able to:	Standards Identify content and/or CCLS Standards
Unit 1 Angle Relationships - 12 days	- Construct - Copy an Angle - Parallel Lines - Identify and apply the following theorems: Vertical Linear Pair Consecutive Adjacent Angles on a Line Alternate Interior Corresponding Same Side Interior - Prove Parallel Lines (converse theorems) - Write angle proofs - Transitive and Substitution Properties	G-CO.1, G-CO.9, G-CO. 12
Unit 2 Triangles-13 days	- Construct Equilateral Triangle Isosceles Triangle Regular Hexagon Midsegment Centroid Perpendicular Lines and Bisector Altitude Circumcenter Angle Bisector Incenter - Identify and apply the following theorems: Triangle Sum Theorem Isosceles Triangle/Converse Exterior Angle Midsegment Centroid - Write triangle proofs	G-C0.1, G-C0.10, G-C0.12, G-C0.13

Unit 3 Properties of Quadrilaterals - 7 days	- Identify and apply the following properties: parallelogram rectangle rhombus square trapezoid	G-C0.9, G-C0.10, G-CO.11, G-CO. 13
Unit 4 Rigid Motions - 13 days	- Construct - Rotations 180 and 60 Center of Rotation Reflection Line of Reflection Translation - Perform the following rigid motions on a coordinate plane - Reflection (x-axis, y-axis, $y=x$, the origin) Rotation (90, 180, 270) Translation - Describe the rotations and reflections that carry the following figures onto themselves Rectangle Parallelogram Trapezoid Regular Polygon	G-CO.2, G-CO.3, G-CO.4, G-CO.5, G-CO. 6
Unit 5 Proving Congruent Triangles - 14 days	- Identify corresponding parts of congruent triangles - Use the definition of congruence in terms of rigid motions to decide if two triangles are congruent - Prove two triangles are congruent by: - SSS - SAS - ASA - AAS - HL - Apply the following properties in proofs - Isosceles - Supplementary Angles - Prove corresponding parts of congruent triangles are congruent - Use congruent triangles to prove additional theorems (isosceles, parallel lines, midpoint, etc.)	G-CO.7, G-CO. 8

Unit 6 Similarity - 15 days	- Construct - Center of Dilation - Dilations with scale factor of one-half and $r>1$ - Perform dilations on the coordinate plane - Write the equation of a line that is dilated with the center of dilation on and off the line - Use similarity transformations to justify whether two figures are similar - Use the properties of similar triangles to find missing side lengths - Find the perimeter of similar figures - Apply the side-splitter theorem - Prove two triangles are similar by: AA SAS Similarity SSS Similarity	G-SRT.1, G-SRT.2, G-SRT.3, G-SRT.4, G-SRT. 5
Unit 7 Quadrilateral Proofs - 5 days	- Use the properties of parallelograms and special quadrilaterals to write quadrilateral proofs	G-CO. 11
Unit 8 Right Triangle Trigonometry- 13 days	- Solve similar right triangle problems - Apply the Pythagorean theorem (perimeter of a rhombus) - Use trigonometry to solve right triangle problems Angle of Elevation and Depression Cofunctions Law of Sines	G-SRT.6, G-SRT.7, G-SRT. 8
Unit 9 Area and Volume - 13 days	- Calculate the perimeter/circumference and area of: Square Rectangle Triangle Circles - Shaded Area - Find the area of similar figures - Calculate the volume of: Prisms Pyramids Cylinders Cones Spheres - Identify cross-sections - Solve volume word problems (Dimensional Analysis, Shaded) - Find the volume of similar figures - Apply the density formula to volume word problems	G-MG.1, G-MG.2, G-MG. 3 G-GMD.1, G-GMD.3, G-GMD. 4

Unit 10 Coordinate Geometry - 12 days	- Use the slope criteria for parallel and perpendicular lines to solve problems - Write the equation of a line that is parallel or perpendicular to a given line and goes through a specific point - Use the distance and midpoint formulas - Calculate the perimeter polygons on the coordinate plane - Calculate the area of triangles and rectangles on the coordinate plane - Write the equation of a perpendicular bisector - Partition a segment - Use the distance and slope formulas to prove two triangles are: - Scalene - Isosceles - Equilateral - Rlght - Use the distance, slope, and midpoint formulas to prove diagonals are: - Congruent - Perpendicular - Bisect Each Other - Use the distance, slope and midpoint formulas to prove a quadrilateral is a: Trapezoid/Isosceles Trapezoid Parallelogram Rectangle Rhombus Square	G-GPE.4, G-GPE.5, G-GPE.6, G-GPE. 7
Unit 11 Circles-18 days	- Write the equation of a circle given the center and radius - Graph a circle given the center and radius - Write the equation of circle given the graph - Determine if a point is on a circle - Use the distance formula, midpoint formula, and/or Pythagorean theorem to write the equation of a circle given the endpoints of the diameter - Write the equation of a circle in center-radius form given standard form - Apply circle theorems - Central/Inscribed/Interior/Exterior - Parallel Chords - Congruent Chords/Congruent Arcs - Tangent Perpendicular to the Radius - Inscribed Quadrilateral	$\begin{gathered} \text { G-C.1, G-C.2, G-C.3, G-C. } 5 \\ \text { G-GPE.1, G-GPE. } 4 \end{gathered}$

	- Radius Perpendicular to a Chord - 2 Tangents Drawn to a Circle are Congruent - Secant-Tangent - Secant-Secant - Write Circle Proofs - Calculate the area of a sector and arc length of a circle (radians)	

