<table>
<thead>
<tr>
<th>Period in School Year</th>
<th>Chapter in Textbook and Objectives</th>
<th>Oklahoma PASS Skills covered</th>
</tr>
</thead>
</table>
| **1st Six Weeks** | *Define chemistry and differentiate among its traditional divisions*
 List several reasons to study chemistry
 Summarize ways in which chemistry affects your daily life
 Describe the impact of chemistry on various fields of science
 Describe the steps involved in the scientific method
 Distinguish between a theory and scientific law
 Explain why learning chemistry requires daily effort
 Describe the importance of writing in the study of chemistry
 Identify the characteristics of matter and substances
 Differentiate among the three states of matter
 Define physical property and list several common physical properties of substances
 Categorize a sample of matter as a substance or mixture
 Distinguish between a homogeneous and heterogeneous samples of matter
 Explain the difference between an element and a compound
 Identify the chemical symbols of common elements, and name common elements when given their symbols
 Differentiate between physical and chemical changes in matter
 Apply the law of conservation of mass
| | PS: 1.1, 1.2, 1.3, 1.4; 2.1, 2.3, 2.4; 3.1, 3.2, 3.4; 4.1, 4.2, 4.4, 4.5, 4.6, 4.7, 4.8; 5.1, 5.2, 5.3, 6.1
 S: 1.1, 1.2; 2.1, 2.2, 2.3, 2.4 | |
<table>
<thead>
<tr>
<th>Period in School Year</th>
<th>Chapter in Textbook and Objectives</th>
<th>Oklahoma PASS Skills covered</th>
</tr>
</thead>
</table>
| 1st Six Weeks | *Distinguish between quantitative and qualitative measures
* Convert measurements to scientific notation
* Distinguish among the accuracy, precision, and error of a measurement
* Identify the number of significant figures in a measurement and in the result of a calculation
* List SI units of measurement and common SI prefixes
* Distinguish between the mass and weight of an object
* Calculate the density of an object from experimental data
* List some useful applications of the measurement of specific gravity
* Convert between the Celsius and Kelvin temperature scales | PS: 1.1, 1.2, 1.3, 1.4; 3.1, 3.2, 3.3, 3.4; 4.1, 4.2, 4.6, 4.7, 4.8; 5.1, 5.2, 5.3
S: 1.1, 1.2; 2.1, 2.2, 2.3, 2.4 |
| 2nd Six Weeks | * Summarize Dalton’s Atomic Theory
* Describe the size of an atom
* Distinguish among protons, electrons, and neutrons in terms of relative mass and charge
* Describe the structure of an atom, including the location of the protons, electrons, and neutrons with respect to the nucleus
* Explain how the atomic number identifies an element
* Use the atomic number and mass number of an element to find the numbers of protons, electrons, and neutrons
* Explain how isotopes differ and why the atomic masses of elements are not whole numbers
* Calculate the average atomic mass of an element from isotope data | PS: 1.1, 1.2, 1.3, 1.4; 2.1; 3.1, 3.2, 3.3, 3.4; 4.1, 4.2, 4.6, 4.7, 4.8; 5.1, 5.2, 5.3; 6.2
S: 7.1, 7.2; 8.1, 8.2, 8.3, 8.4 |
<table>
<thead>
<tr>
<th>Period in School Year</th>
<th>Chapter in Textbook and Objectives</th>
<th>Oklahoma PASS Skills covered</th>
</tr>
</thead>
</table>
| 2nd Six Weeks | *Summarize the development of atomic theory
*Explain the significance of quantized energies of electrons as they relate to the quantum mechanical model of the atom
*Apply the Aufbau principle, the Pauli exclusion principle, and Hund’s rule in writing the electron configurations of elements
*Explain why the electron configurations for some elements differ from those assigned using the Aufbau principle
*Calculate the wavelength, frequency, or energy of light, given two of these values
*Explain the origin of the atomic emission spectrum of an element
*Describe the origin of the periodic table
*Identify the position of groups, periods, and the transition metals in the periodic table
*Explain why you can infer the properties of an element based on those of other elements in the periodic table
*Use electron configurations to classify elements as noble gases, representative elements, transition metals, or inner transition metals
*Interpret group trends in atomic radii, ionic radii, ionization energies, and electronegativities
*Interpret period trends in atomic radii, ionic radii, ionization energies, and electronegativities | PS: 1.1, 1.2, 1.3, 1.4; 2.1, 2.3, 2.4; 3.1, 3.2, 3.3, 3.4; 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8; 5.1, 5.2, 5.3; 6.1, 6.2, 6.3
S: 1.1, 1.2; 2.1, 2.2, 2.3, 2.4 |
| 3rd Six Weeks | *Use the periodic table to infer the number of valence electrons in an atom, and draw it’s electron dot structure
*Describe the formation of cations from metals, and of anions from nonmetals | PS: 1.1, 1.2, 1.3, 1.4; 2.2, 2.3, 2.4; 3.1, 3.2, 3.3, 3.4; 4.1, 4.2, 4.3, 4.5, 4.6, 4.7, 4.8; 5.1, 5.2, 5.3; 6.2
S: 1.1, 1.2; 2.1, 2.2, 2.3 |
<table>
<thead>
<tr>
<th>Period in School Year</th>
<th>Chapter in Textbook and Objectives</th>
<th>Oklahoma PASS Skills covered</th>
</tr>
</thead>
</table>
| 3rd Six Weeks | *List the characteristics of an ionic bond
*Use the characteristics of ionic compounds to explain the electrical conductivity of ionic compounds when melted and when in aqueous solutions
*Use the theory of metallic bonds to explain the physical properties of metals
*Describe the arrangement of atoms in some common metal crystal structures
*Use electron dot structures to show the formation of single, double, and triple covalent bonds
*Describe and give examples of coordinate covalent bonding, resonance structures, and exceptions to the octet rule
*Use VSEPR theory to predict the shapes of simple covalently bonded molecules
*Use electronegativity to classify a bond as nonpolar covalent, polar covalent, or ionic
* Name and describe the weak attractive forces that hold groups of molecules together
*Distinguish between ionic and molecular compounds
*Define cation and anion, and relate them to metal and nonmetal
*Distinguish among chemical formulas, molecular formulas, and formula units
*Use experimental data to show that a compound obeys the law of definite proportions
*Use the periodic table to determine the charge on an ion
*Define a polyatomic ion and give the names and formulas of the most common polyatomic ions
*Apply the rules for naming and writing formulas for binary ionic compounds | PS: 1.1, 1.2, 1.3, 1.4; 2.2, 2.3, 2.4; 3.1, 3.2, 3.3, 3.4; 4.1, 4.2, 4.5, 4.6, 4.7, 4.8; 5.1, 5.2, 5.3; 6.1, 6.2, 6.3
S: 1.1, 1.2; 2.1, 2.2, 2.3 |

PS: 1.1, 1.2, 1.3, 1.4; 2.1, 2.3, 2.4; 3.1, 3.2, 3.4; 4.1, 4.2, 4.5, 4.6, 4.7, 4.8; 5.1, 5.2, 5.3; 6.2
S: 1.1, 1.2; 2.2, 2.3, 2.4
<table>
<thead>
<tr>
<th>Period in School Year</th>
<th>Chapter in Textbook and Objectives</th>
<th>Oklahoma PASS Skills covered</th>
</tr>
</thead>
</table>
| | *Apply the rules for naming and writing formulas for ternary ionic compounds
*Apply the rules for naming and writing formulas for binary molecular compounds
*Name and write formulas for common acids | PS: 1.1, 1.2, 1.3, 1.4; 3.1, 3.2, 3.3, 3.4; 4.1, 4.2, 4.5, 4.6, 4.7, 4.8; 5.1, 5.2, 5.3
S: 1.1, 1.2; 2.1, 2.2, 2.3 |
| **3\(^{rd}\) Six Weeks** | *Describe how Avogadro’s number is related to a mole of any substance
*Calculate the mass of a mole of any substance
*Use the molar mass to convert between mass and moles of a substance
*Use the mole to convert among measurements of mass, volume, and number of particles
*Calculate the percent concentration of a substance from its chemical formula or experimental data
*Derive the empirical formula and molecular formula of a compound from experimental data | **4\(^{th}\) Six Weeks**
*Write equations describing chemical reactions using appropriate symbols
*Write balanced chemical equations when given the names or formulas of the reactants and products in a chemical reaction
*Identify a reaction as combination, decomposition, single-replacement, double-replacement, or combustion
*Predict the products of combination, decomposition, single-replacement, double-replacement, or combustion
*Write and balance net ionic equations
*Use solubility rules to predict the precipitate formed in double-replacement reactions | **4\(^{th}\) Six Weeks** |
<table>
<thead>
<tr>
<th>Period in School Year</th>
<th>Chapter in Textbook and Objectives</th>
<th>Oklahoma PASS Skills covered</th>
</tr>
</thead>
</table>
| 4th Six Weeks | *Calculate the amount of reactants required or product formed in a non-chemical process
*Interpret balanced chemical equations in terms of interacting moles, representative particles, masses, and gas volume at STP
*Construct mole ratios from balanced chemical equations, and apply these ratios in mole-mole stoichiometric calculations
*Calculate stoichiometric quantities from balanced chemical equations using units of moles, mass, representative particles, and volumes of gases at STP
*Identify and use the limiting reagent in a reaction to calculate the maximum amount of product(s) produced and the amount of excess reagent
*Calculate theoretical yield, actual yield, or percent yield given appropriate information | PS: 1.1, 1.2, 1.3, 1.4; 3.1, 3.2, 3.3, 3.4; 4.1, 4.2, 4.3, 4.5, 4.6, 4.7, 4.8; 5.1, 5.2, 5.3
S: 1.1, 1.2; 2.1, 2.2, 2.3, 2.4 |
| | *Describe the motion of gas particles according to the kinetic theory
*Interpret gas pressure in terms of kinetic theory
*Describe the nature of a liquid in terms of the attractive forces between the particles
*Differentiate between evaporation and boiling of a liquid, using kinetic theory
*Describe how the degree of organization of particles distinguishes solids from gases and liquids
*Distinguish between a crystal lattice and a unit cell
*Explain how allotropes of an element differ
*Interpret the phase diagram of water at any given temperature and pressure
*Describe the behavior of solids that change directly to the vapor state and recondense to solids without passing through the liquid state | PS: 1.1, 1.2, 1.3, 1.4; 2.2, 2.3, 2.4; 3.1, 3.2, 3.3, 3.4; 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8; 5.1, 5.2, 5.3; 6.2
S: 1.1, 1.2; 2.1, 2.2 |
<table>
<thead>
<tr>
<th>Period in School Year</th>
<th>Chapter in Textbook and Objectives</th>
<th>Oklahoma PASS Skills covered</th>
</tr>
</thead>
</table>
| 5th Six Weeks | *Describe the properties of gas particles
*Explain how the kinetic energy of gas particles relates to Kelvin temperature
*Explain how the amount of gas and the volume of the container affect gas pressure
*Infer the effect of temperature changes on the pressure exerted by a contained gas
*State Boyle’s Law, Charles’s Law, Gay-Lussac’s Law, and the combined gas law
*Apply the gas laws to problems involving the temperature, volume, and pressure of a contained gas
*Calculate the amount of gas at any specified conditions of pressure, volume, and temperature
*Distinguish between ideal and real gases
*State Avogadro’s hypothesis, Dalton’s Law, and Graham’s Law
*Calculate moles, masses, and volumes of gases at STP
*Calculate partial pressures and rates of effusion
*Describe the hydrogen bonding that occurs in water
*Explain the high surface tension and low vapor pressure of water in terms of hydrogen bonding
*Account for the high heat of vaporization and the high boiling point of water in terms of hydrogen bonding
*Explain why ice floats in water
*Explain the significance of the statement “like dissolves like”
*Distinguish among strong electrolytes, weak electrolytes, and nonelectrolytes, giving examples of each |
| | PS: 1.1, 1.2, 1.3, 1.4; 3.1, 3.2, 3.3, 3.4; 4.1, 4.2, 4.3, 4.5, 4.6, 4.7, 4.8; 5.1, 5.2, 5.3
S: 1.1, 1.2; 2.1, 2.2, 2.3, 2.4 |
| | PS: 1.1, 1.2, 1.3, 1.4; 3.1, 3.2, 3.4; 4.1, 4.2, 4.3, 4.5, 4.6, 4.7, 4.8; 5.1, 5.2, 5.3; 6.2, 6.3
S: 1.1, 1.2; 2.1, 2.2, 2.3 |
<table>
<thead>
<tr>
<th>Period in School Year</th>
<th>Chapter in Textbook and Objectives</th>
<th>Oklahoma PASS Skills covered</th>
</tr>
</thead>
</table>
| 5th Six Weeks | *Explain how colloids and suspensions differ from solutions
 *Describe the Tyndall effect
 *Identify the factors that determine the rate at which a solute dissolves
 *Calculate the solubility of a gas in a liquid under various pressure conditions
 *Solve problems involving the molarity of a solution
 *Describe how to prepare dilute solutions from more concentrated solutions of known molarity
 *Explain what is meant by percent by volume (%v/v) and percent by mass (%m/v) solutions
 *Explain on a particle basis why a solution has a lower vapor pressure than the pure solvent of that solution
 *Explain on a particle basis why a solution has an elevated boiling point and a depressed freezing point compared to the pure solvent
 *Calculate the molality and mole fraction of a solution
 *Calculate the molar mass of a molecular compound from the freezing point depression or boiling point elevation of a solution of a compound | PS: 1.1, 1.2, 1.3, 1.4; 2.3, 2.4; 3.1, 3.2, 3.4; 4.1, 4.2, 4.4, 4.5, 4.6 4.7, 4.8; 5.1, 5.2, 5.3; 6.3
S: 1.1, 1.2; 2.1, 2.2, 2.3 |
| 6th Six Weeks | *Explain the relationship between energy and heat
 *Distinguish between the heat capacity and specific heat
 *Construct equations that show the heat changes for chemical and physical processes
 *Calculate heat changes in chemical and physical processes
 *Classify, by type, the heat changes that occur during melting, freezing, boiling, and condensing
 *Calculate heat changes that occur during melting, | PS: 1.1, 1.2, 1.3, 1.4; 3.1, 3.2, 3.3, 3.4; 4.1, 4.2, 4.4, 4.5, 4.6, 4.7, 4.8; 5.1, 5.2, 5.3; 6.3
S: 1.1, 1.2; 2.1, 2.2, 2.3 |
<table>
<thead>
<tr>
<th>Period in School Year</th>
<th>Chapter in Textbook and Objectives</th>
<th>Oklahoma PASS Skills covered</th>
</tr>
</thead>
</table>
| 6th Six Weeks | freezing, boiling, and condensing
*Apply Hess’s law of heat summation to find heat changes for chemical and physical processes
*Calculate heat changes using standard heats of formation
*Explain what is meant by the rate of a chemical reaction
*Using collision theory, explain how the rate of a chemical reaction is influenced by the reaction conditions
*Predict changes in the equilibrium position due to changes in concentration, temperature, and pressure
*Write the equilibrium constant expression for a reaction, and calculate its value from experimental data
*Define entropy and free energy, and characterize reactions as spontaneous or nonspontaneous
*Describe how heat change and entropy change determine the spontaneity of a reaction
*Calculate the standard entropy changes that accompany chemical and physical processes
*Calculate the free-energy changes that accompany chemical and physical processes
*List the properties of acids and bases
*Name an acid or base when given the formula
*Given the hydrogen-ion or hydroxide-ion concentration, classify a solution as neutral, acidic, or basic
*Convert hydrogen-ion concentrations into values of pH, and hydroxide-ion concentrations into values of pOH
*Compare and contrast acids and bases as defined | PS: 1.1, 1.2, 1.3, 1.4; 3.1, 3.2, 3.4; 4.1, 4.2, 4.4, 4.5, 4.6, 4.7, 4.8; 5.1, 5.2, 5.3
S: 1.1, 1.2; 2.1, 2.2, 2.3 |
| | PS: 1.1, 1.2, 1.3, 1.4; 3.1, 3.2, 3.3, 3.4; 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8; 5.1, 5.2, 5.3; 6.3
S: 1.1, 1.2; 2.2, 2.2, 2.3 |
<table>
<thead>
<tr>
<th>Period in School Year</th>
<th>Chapter in Textbook and Objectives</th>
<th>Oklahoma PASS Skills covered</th>
</tr>
</thead>
</table>
| 6th Six Weeks | by the theories of Arrhenius, Bronsted-Lowry, and Lewis
*Identify conjugate acid-base pairs in acid-base reactions
*Define strong acids and weak acids
*Calculate an acid dissociation constant (Ka) from concentration and pH measurements
*Arrange acids by strength according to their acid dissociation constants (Ka)
*Arrange bases by strength according to their base dissociation constants (Kb) | |