A Correlation of
ënnVision Mathematics
©2021

to the

Pennsylvania Assessment Anchors and
 Eligible Content
 Grades 6 - 8

Introduction

The new enVision® Mathematics ©2021 is the latest offering of the nationally recognized Grades K-12 series, created for print, digital, and blended instruction. Problem- Based Learning connects with Visual Learning to deep conceptual understanding. Interactive multimedia experiences engage learners in student choice and solving rich problems. Extensive customization and differentiation options empower every teacher and student.

UNDERSTANDING

A simple lesson design provides a clear, intentional pathway. Starting on a firm foundation of conceptual understanding, students can connect and apply math ideas in amazing ways. High-interest math projects invite all students to be active participants.

A simple lesson design provides a clear, intentional pathway.

STEP 1 Problem- Based Learning
 STEP 2 Visual Learning
 STEP 3 Assess and Differentiate

ASSESSMENT
The enVision Assessment Suite offers options to move students toward mastery of state standards while driving instructional differentiation.

DIAGNOSTIC Assessment
Reading Test, Diagnostic Test (Math Diagnosis and Intervention System), Review What You Know FORMATIVE Assessment
SCOUT Observational Assessment used during Solve \& Share, Do You Understand? And Convince Me! Guide Practice, Quick Check
SUMMATIVE Assessment
Topic Assessments, Topic Performance Assessments, Examview Test Generator, Fluency Assessments, Cumulative/Benchmarks Assessments, Progress Monitoring Assessments

INSTRUCTIONAL SUPPORT
Gain a new perspective on your teaching with embedded strategies, methods, and a wide range of Professional Development opportunities in print and digital formats.

Ideas, Inspiration, and Teaching Methods
Math background for every Topic and Lesson serves as an easy- to- access math methods course.
Make every lesson perfect for you. Access all digital content, assessments, and management tools at PearsonRealize.com.

Kids See the Math. Teachers See Results.

A Correlation of enVision Mathematics, ©2021
to the Pennsylvania Assessment Anchors and Eligible Content

Table of Content
Grade 6 1
Grade 7 7
Grade 8 13

A Correlation of enVision Mathematics, ©2021 to the Pennsylvania Assessment Anchors and Eligible Content

Pennsylvania Assessment Anchors and Eligible Content Grade 6	

PennsyIvania Assessment Anchors and Eligible Content Grade 6

enVision Mathematics © 2021
 Grade 6

Reference: CC.2.1.6.E. 3 Develop and/or apply number theory concepts to find common factors and multiples. M06.A- N. 3 Apply and extend previous understandings of numbers to the system of rational numbers.
M06.A- N.3.1 Understand that positive and negative numbers are used together to describe quantities having opposite directions or values and locations on the number line and coordinate plane.

M06.A- N.3.1.1 Represent quantities in real-world contexts using positive and negative numbers, explaining the meaning of 0 in each situation (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge).

M06.A- N.3.1.2 Determine the opposite of a number and recognize that the opposite of the opposite of a number is the number itself (e.g., $-(-3)=3 ; 0$ is its own opposite).

M06.A- N.3.1.3 Locate and plot integers and other rational numbers on a horizontal or vertical number line; locate and plot pairs of integers and other rational numbers on a coordinate plane.

SE: 69-74, 111-114
TE: 69A - 74B, 111 - 114

SE: $69-74,75-80,81-86,111-114$
TE: 69A - 74B, 75A - 80B, 81A - 86B, 111 - 114

SE: 69-74, 75-80, 81-86, 89-94, 99-104, 105 -110, 111-114

TE: 69A - 74B, $75 \mathrm{~A}-80 \mathrm{~B}, 81 \mathrm{~A}-86 \mathrm{~B}, 89 \mathrm{~A}-94 \mathrm{~B}$, 99A - 104B, 105A - 110B, 111 - 114

Reference: CC.2.1.6.E.4 Apply and extend previous understandings of numbers to the system of rational numbers.
M06.A- N.3.2 Understand ordering and absolute value of rational numbers.

M06.A- N.3.2.1 Write, interpret, and explain statements of order for rational numbers in realworld contexts. Example: Write $-3^{\circ} \mathrm{C}>-7^{\circ} \mathrm{C}$ to express the fact that $-3^{\circ} \mathrm{C}$ is warmer than $-7^{\circ} \mathrm{C}$.

M06.A- N.3.2.2 Interpret the absolute value of a rational number as its distance from 0 on the number line and as a magnitude for a positive or negative quantity in a real-world situation. Example: For an account balance of -30 dollars, write $\left.\right|^{-3} 30 \mid=30$ to describe the size of the debt in dollars, and recognize that an account balance less than-30 dollars represents a debt greater than 30 dollars.

M06.A- N.3.2.3 Solve real- world and mathematical problems by plotting points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.

SE: 75-80, $81-86,111-114$
TE: 75A - 80B, 81A - 86B, 111 - 114

SE: 81 - 86, 111-114
TE: 81A - 86B, 111 - 114

SE: 89 - 94, 99 - 104, 105 - 110, 111 - 114, 419 424, 455 - 460

TE: 89A - 94B, 99A - 104B, 105A - 110B, 111 114, 419A - 424B, 455 - 460

PennsyIvania Assessment Anchors and Eligible Content Grade 6

enVision Mathematics © 2021
 Grade 6

Reference: CC.2.1.6.E.4 Apply and extend previous understandings of numbers to the system of rational numbers.

M06.A- R Ratios and Proportional Relationships

M06.A- R. 1 Understand ratio concepts and use ratio reasoning to solve problems.
M06.A- R.1.1 Represent and/or solve real world and mathematical problems using rates, ratios, and/or percents.

M06.A- R.1.1.1 Use ratio language and notation (such as 3 to $4,3: 4,3 / 4$) to describe a ratio relationship between two quantities. Example 1: "The ratio of girls to boys in a math class is 2:3 because for every 2 girls there are 3 boys." Example 2: "For every five votes candidate A received, candidate B received four votes."

M06.A- R.1.1.2 Find the unit rate a/b associated with a ratio a:b (with $b \neq 0$) and use rate language in the context of a ratio relationship. Example 1: "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is $3 / 4$ cup of flour for each cup of sugar." Example 2: "We paid $\$ 75$ for 15 hamburgers, which is a rate of $\$ 5$ per hamburger."

M06.A- R.1.1.3 Construct tables of equivalent ratios relating quantities with whole- number measurements, find missing values in the tables, and/or plot the pairs of values on the coordinate plane. Use tables to compare ratios.
M06.A- R.1.1.4 Solve unit rate problems including those involving unit pricing and constant speed. Example: If it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?

M06.A-R.1.1.5 Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means $30 / 100$ times the quantity); solve problems involving finding the whole, given a part and the percentage.

SE: 267-272, 273-278, 279-284, 285-290, 293-298, 299-304, 305-310, 315-320, 321 326, 327 - 332, 333 - 338

TE: 267A - 272B, 273A - 278B, 279A - 284B, 285A

- 290B, 293A - 298B, 299A - 304B, 305A - 310B, 315A-320B, 321A-326B, 327A-332B, $333-338$

SE: 293-298, 299-304, 305-310, 333-338
TE: 293A - 298B, 299A - 304B, 305A - 310B, 333 338

SE: 273-278, 279-284, 285-290, 333-338
TE: 273A - 278B, 279A - 284B, 285A - 290B, 333 338

SE: 293-298, 299-304, 305-310, 333-338
TE: 293A - 298B, 299A - 304B, 305A - 310B, 333 338

SE: 347 - 352, 353 - 358, $359-364,367-372,373$

- 378, 379 - 384, 389 - 392

TE: 347A - 352B, 353A - 358B, 359A - 364B, 367A

- 372B, 373A - 378B, 379A - 384B, 389 - 392

Reference: CC.2.1.6.D. 1 Understand ratio concepts and use ratio reasoning to solve problems.
M06.B-E Expressions and Equations
M06.B-E. 1 Apply and extend previous understandings of arithmetic to numerical and algebraic expressions.
M06.B-E.1.1 Identify, write, and evaluate numerical and algebraic expressions.

M06.B-E.1.1.1 Write and evaluate numerical
expressions involving whole- number exponents.
SE: 123 - 128, 173 - 176
TE: 123A - 128B, 173 - 176

A Correlation of enVision Mathematics, ©2021 to the Pennsylvania Assessment Anchors and Eligible Content

Pennsylvania Assessment Anchors and Eligible Content Grade 6	enVision Mathematics © 02021 Grade 6
M06.B- E.1.1.2 Write algebraic expressions from verbal descriptions. Example: Express the description "five less than twice a number" as $2 y-5$.	$\begin{aligned} & \text { SE: } 145-150,151-156,161-166,167-172,173 \\ & -176 \\ & \text { TE: } 145 \mathrm{~A}-150 \mathrm{~B}, 151 \mathrm{~A}-156 \mathrm{~B}, 161 \mathrm{~A}-166 \mathrm{~B}, 167 \mathrm{~A} \\ & -172 \mathrm{~B}, 173-176 \end{aligned}$
M06.B- E.1.1.3 Identify parts of an expression using mathematical terms (e.g., sum, term, product, factor, quotient, coefficient, quantity). Example: Describe the expression $2(8+7)$ as a product of two factors.	$\begin{aligned} & \text { SE: } 137-142,145-150,151-156,161-166,167 \\ & -172,173-176 \end{aligned}$ TE: 137A - 142B, 145A - 150B, 151A - 156B, 161A - 166B, 167A - 172B, 173-176
M06.B- E.1.1.4 Evaluate expressions at specific values of their variables, including expressions that arise from formulas used in real-world problems. Example: Evaluate the expression $b^{2}-5$ when $b=4$.	SE: 151-156, 173-176 TE: 151A - 156B, 173 - 176
M06.B- E.1.1.5 Apply the properties of operations to generate equivalent expressions. Example 1: Apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x$. Example 2: Apply the distributive property to the expression $24 x+$ $18 y$ to produce the equivalent expression $6(4 x+3 y)$. Example 3: Apply properties of operations to $y+y+y$ to produce the equivalent expression $3 y$.	$\begin{aligned} & \text { SE: } 161-166,167-172,173-176,191-196,253 \\ & -258 \\ & \text { TE: } 161 \text { A - 166B, 167A - 172B, } 173-176,191 \text { A- } \\ & \text { 196B, } 253-258 \end{aligned}$
Reference: CC.2.2.6.B. 1 Apply and extend previous understandings of arithmetic to algebraic expressions.	
M06.B-E. 2 Interpret and solve one-variable equations and inequalities.	
M06.B- E.2.1 Create, solve, and interpret one variable equations or inequalities in real-world and mathematical problems.	
M06.B- E.2.1.1 Use substitution to determine whether a given number in a specified set makes an equation or inequality true.	$\begin{aligned} & \text { SE: } 185-190,219-224,225-230,253-258 \\ & \text { TE: } 185 \mathrm{~A}-190 \mathrm{~B}, 219 \mathrm{~A}-224 \mathrm{~B}, 225 \mathrm{~A}-230 \mathrm{~B}, \\ & 253-258 \end{aligned}$
M06.B- E.2.1.2 Write algebraic expressions to represent real- world or mathematical problems.	$\begin{aligned} & \text { SE: } 145-150,173-176,197-202,203-208,209 \\ & -216,219-224,253-258 \end{aligned}$ TE: 145A - 150B, 173 - 176, 197A - 202B, 203A 208B, 209A - 216B, 219A - 224B, $253-258$
M06.B-E.2.1.3 Solve real- world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q, and x are all non- negative rational numbers.	SE: 197-202, 203-208, 209-216, 253-258 TE: 203A-208B, 209A-216B, 219A-224B, 253 - 258
M06.B-E.2.1.4 Write an inequality of the form $x>c$ or $x<c$ to represent a constraint or condition in a	SE: 219-224, 225-230, 253-258

A Correlation of enVision Mathematics, ©2021 to the Pennsylvania Assessment Anchors and Eligible Content

Pennsylvania Assessment Anchors and Eligible Content Grade 6	

A Correlation of enVision Mathematics, ©2021 to the Pennsylvania Assessment Anchors and Eligible Content

Pennsylvania Assessment Anchors and Eligible Content Grade 6	enVision Mathematics ©2021 Grade 6
M06.C- G.1.1.6 Determine the surface area of triangular and rectangular prisms (including cubes). Formulas will be provided.	SE: 437-442, 443-448, 455-460 TE: 437A-442B, 443A-448B, 455 - 460
Reference: CC.2.3.6.A. 1 Apply appropriate tools to solve real- world and mathematical problems involving area, surface area, and volume.	
M06.D- S Statistics and Probability	
M06.D-S.1 Demonstrate understanding of statistical variability by summarizing and describing distributions.	
M06.D-S.1.1 Display, analyze, and summarize numerical data sets in relation to their context.	
M06.D- S.1.1.1 Display numerical data in plots on a number line, including line plots, histograms, and box- and whisker plots.	$\begin{aligned} & \text { SE: } 469-474,483-488,489-494,497-502,509 \\ & -514,519-522 \end{aligned}$ TE: 469A-474B, 483A-488B, 489A-494B, 497A502B, 509A-514B, 519 - 522
M06.D-S.1.1.2 Determine quantitative measures of center (e.g., median, mean, mode) and variability e.g., range, interquartile range, mean absolute deviation).	SE: 475-482, 497-502, 503-508, 509-514, 519-522 TE: 475A-482B, 497A-502B, 503A-508B, 509A514B, 519-522
M06.D- S.1.1.3 Describe any overall pattern and any deviations from the overall pattern with reference to the context in which the data were gathered.	$\begin{aligned} & \text { SE: } 483-488,489-494,497-502,503-508,509 \\ & -514,519-522 \end{aligned}$ TE: 483A-488B, 489A-494B, 497A-502B, 503A508B, 509A-514B, 519 - 522
M06.D- S.1.1.4 Relate the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.	SE: 503-508, 509-514, 519-522 TE: 503A-508B, 509A-514B, 519 - 522
Reference: CC.2.4.6.B. 1 Demonstrate an understanding of statistical variability by displaying, analyzing, and summarizing distributions.	

A Correlation of enVision Mathematics, ©2021 to the Pennsylvania Assessment Anchors and Eligible Content

Pennsylvania Assessment Anchors and Eligible Content Grade 7	enVision Mathematics, ©2021 Grade 7
M07.A- N The Number System	
M07.A- N. 1 Apply and extend previous understandings of operations to add, subtract, multiply, and divide rational numbers.	
M07.A- N.1.1 Solve real- world and mathematical problems involving the four operations with rational numbers.	
M07.A- N.1.1.1 Apply properties of operations to add and subtract rational numbers, including real- world contexts.	SE: $21-26,27-32,33-38,65-70,75-80$ TE: 21A-26B, 27A-32B, 33A-38B, 65A-70B, 75 80
M07.A- N.1.1.2 Represent addition and subtraction on a horizontal or vertical number line.	SE: 9-14, 75-80 TE: 9A-14B, 75 - 80
M07.A- N.1.1.3 Apply properties of operations to multiply and divide rational numbers, including real- world contexts; demonstrate that the decimal form of a rational number terminates or eventually repeats.	$\begin{aligned} & \text { SE: } 41-46,47-52,53-58,59-64,65-70,75 \\ & -80 \\ & \text { TE: } 41 \mathrm{~A}-46 \mathrm{~B}, 47 \mathrm{~A}-52 \mathrm{~B}, 53 \mathrm{~A}-58 \mathrm{~B}, 59 \mathrm{~A}-64 \mathrm{~B}, \\ & 65 \mathrm{~A}-70 \mathrm{~B}, 75-80 \end{aligned}$
Reference: CC.2.1.7.E. 1 Apply and extend previous understandings of operations with fractions to operations with rational numbers.	
M07.A- R Ratios and Proportional Relationships	
M07.A- R. 1 Demonstrate an understanding of proportional relationships.	
M07.A- R.1.1 Analyze, recognize, and represent proportional relationships and use them to solve realworld and mathematical problems.	
M07.A- R.1.1.1 Compute unit rates associated with ratios of fractions, including ratios of lengths, areas, and other quantities measured in like or different units. Example: If a person walks $1 / 2$ mile in each $1 / 4$ hour, compute the unit rate as the complex fraction 1/2 / 1/4 miles per hour, equivalently 2 miles per hour.	SE: 89 - 94, 95 - 100, 131-134 TE: 89A-94B, 95A-100B, 131 - 134
M07.A- R.1.1.2 Determine whether two quantities are proportionally related (e.g., by testing for equivalent ratios in a table, graphing on a coordinate plane and observing whether the graph is a straight line through the origin).	$\begin{aligned} & \text { SE: } 101-106,119-124,131-134,143-148 \text {, } \\ & \text { 185-188 } \end{aligned}$ TE: 101A-106B, 119A-124B, 131 - 134, 143A143B, 185-188
M07.A- R.1.1.3 Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.	$\begin{aligned} & \text { SE: } 101-106,119-124,131-134,143-148, \\ & 185-188,323-330,341-346,357-360 \end{aligned}$ TE: 101A-106B, 119A-124B, 131 - 134, 143A143B, 185 - 188, 323A-330B, 341A-346B, 357 360

A Correlation of enVision Mathematics, ©2021
to the Pennsylvania Assessment Anchors and Eligible Content

Pennsylvania Assessment Anchors and Eligible Content Grade 7	enVision Mathematics, ©2021 Grade 7
M07.A- R.1.1.4 Represent proportional relationships by equations. Example: If total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$.	$\begin{aligned} & \text { SE: } 107-112,131-134,149-154,155-160, \\ & \text { 185-188 } \\ & \text { TE: } 107 \mathrm{~A}-112 \mathrm{~B}, 131-134,149 \mathrm{~A}-154 \mathrm{~B}, 155 \mathrm{~A}- \\ & \text { 160B, } 185-188 \end{aligned}$
M07.A- R.1.1.5 Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$, where r is the unit rate.	$\begin{aligned} & \text { SE: } 119-124,131-134,143-148,185-188 \\ & \text { TE: } 119 A-124 B, 131-134,143 A-143 B, 185- \\ & 188 \end{aligned}$
M07.A- R.1.1.6 Use proportional relationships to solve multi- step ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease.	$\begin{aligned} & \text { SE: } 89-94,95-100,125-130,131-134,163 \\ & -168,173-178,179-184,185-188,323- \\ & 330,341-346,357-360 \\ & \text { TE: } 89 \mathrm{~A}-94 \mathrm{~B}, 95 \mathrm{~A}-100 \mathrm{~B}, 125 \mathrm{~A}-130 \mathrm{~B}, 131-134, \\ & 163 \mathrm{~A}-168 \mathrm{~B}, 173 \mathrm{~A}-178 \mathrm{~B}, 179 \mathrm{~A}-184 \mathrm{~B}, 185-188, \\ & 323 \mathrm{~A}-330 \mathrm{~B}, 331 \mathrm{~A}-338 \mathrm{~B}, 357-360 \end{aligned}$
Reference: CC.2.1.7.D. 1 Analyze proportional relationships and use them to model and solve realworld and mathematical problems.	
M07.B-E Expressions and Equations	
M07.B-E. 1 Represent expressions in equivalent forms.	
M07.B-E.1.1 Use properties of operations to generate equivalent expressions.	
M07.B- E.1.1.1 Apply properties of operations to add, subtract, factor, and expand linear expressions with rational coefficients. Example 1: The expression $1 / 2 \cdot(x+6)$ is equivalent to $1 / 2 \cdot x+3$. Example 2: The expression $5.3-y+$ 4.2 is equivalent to $9.5-y$ (or $-y+9.5$). Example 3: The expression $4 w-10$ is equivalent to $2(2 w$ 5).	SE: 203-208, 209-214, 215 - 220, 221 - 226, 233-238, 239 - 244, 251-254 TE: 203A-208B, 209A-214B, 215A-220B, 221A226B, 233A-238B, 239A-244B, 251 - 254

A Correlation of enVision Mathematics, ©2021 to the Pennsylvania Assessment Anchors and Eligible Content

Pennsylvania Assessment Anchors and Eligible Content Grade 7	

A Correlation of enVision Mathematics, ©2021 to the Pennsylvania Assessment Anchors and Eligible Content

Pennsylvania Assessment Anchors and Eligible Content Grade 7	enVision Mathematics, ©2021 Grade 7 7

A Correlation of enVision Mathematics, ©2021 to the Pennsylvania Assessment Anchors and Eligible Content

Pennsylvania Assessment Anchors and Eligible Content Grade 7	enVision Mathematics, ©2021 Grade 7
M07.C-G.2.1.2 Identify and use properties of angles formed when two parallel lines are cut by a transversal (e.g., angles may include alternate interior, alternate exterior, vertical, corresponding).	SE: 451-456, 493-498

Pennsylvania Assessment Anchors and Eligible Content Grade 7	enVision Mathematics, ©2021 Grade 7

Pennsylvania Assessment Anchors and Eligible Content Grade 8	enVision Mathematics © 02021 Grade 8
M08.A- N The Number System	
M08.A- N. 1 Demonstrate an understanding of rational and irrational numbers.	
M08.A- N.1.1 Apply concepts of rational and irrational numbers.	
M08.A- N.1.1.1 Determine whether a number is rational or irrational. For rational numbers, show that the decimal expansion terminates or repeats (limit repeating decimals to thousandths).	SE: $9-14,15-20,75-80$ TE: 9A-14B, 15A-20B, $75-80$
M08.A- N.1.1.2 Convert a terminating or repeating decimal to a rational number (limit repeating decimals to thousandths).	SE: 9 - 14, 75-80 TE: 9A-14B, $75-80$
M08.A- N.1.1.3 Estimate the value of irrational numbers without a calculator (limit whole number radicand to less than 144). Example: $\sqrt{ } 5$ is between 2 and 3 but closer to 2.	SE: 15-20, $21-26,75-80$ TE: 15A-20B, 21A-26B, $75-80$
M08.A- N.1.1.4 Use rational approximations of irrational numbers to compare and order irrational numbers.	SE: 21-26, 75-80 TE: 21A-26B, $75-80$
M08.A- N.1.1.5 Locate/identify rational and irrational numbers at their approximate locations on a number line.	SE: 21-26, 75-80 TE: 21A-26B, 75 - 80
Reference: CC.2.1.8.E. 1 Distinguish between rational and irrational numbers using their properties. CC.2.1.8.E.4 Estimate irrational numbers by comparing them to rational numbers.	
M08.B-E Expressions and Equations	
M08.B-E. 1 Demonstrate an understanding of expressions and equations with radicals and integer exponents.	
M08.B- E.1.1 Represent and use expressions and equations to solve problems involving radicals and integer exponents.	
M08.B- E.1.1.1 Apply one or more properties of integer exponents to generate equivalent numerical expressions without a calculator (with final answers expressed in exponential form with positive exponents). Properties will be provided. Example: $3^{12} \times 3^{-15}=3^{-3}=1 /\left(3^{3}\right)$	$\begin{aligned} & \text { SE: } 41-46,47-52,53-58,59-64,69-74, \\ & 75-80 \end{aligned}$ TE: $41 \mathrm{~A}-46 \mathrm{~B}, 47 \mathrm{~A}-52 \mathrm{~B}, 53 \mathrm{~A}-58 \mathrm{~B}, 59 \mathrm{~A}-64 \mathrm{~B}$, 69A-74B, $75-80$
M08.B- E.1.1.2 Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of perfect squares (up to and including 12^{2}) and cube roots of perfect cubes (up to and including 5^{3}) without a calculator. Example: If $x^{2}=25$ then $x= \pm \sqrt{ } 25$.	SE: 27-32, 33-38, 75-80 TE: 27A-32B, 33A-38B, $75-80$

A Correlation of enVision Mathematics, ©2021
to the Pennsylvania Assessment Anchors and Eligible Content

Pennsylvania Assessment Anchors and Eligible Content Grade 8	enVision Mathematics © 02021 Grade 8
M08.B- E.1.1.3 Estimate very large or very small quantities by using numbers expressed in the form of a single digit times an integer power of 10 and express how many times larger or smaller one number is than another. Example: Estimate the population of the United States as 3×10^{8} and the population of the world as 7×10^{9} and determine that the world population is more than 20 times larger than the United States' population.	SE: 53-58, 59-64, 69-74, 75-80 TE: 53A-58B, 59A-64B, 69A-74B, 75 - 80
M08.B- E.1.1.4 Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Express answers in scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology (e.g., interpret 4.7EE9 displayed on a calculator as 4.7 $\times 10^{9}$).	$\begin{aligned} & \hline \text { SE: } 69-74,75-80 \\ & \text { TE: } 69 A-74 B, 75-80 \end{aligned}$
Reference: CC.2.2.8.B. 1 Apply concepts of radicals and integer exponents to generate equivalent M08.B-E. 2 Understand the connections between proportional relationships, lines, and linear equations.	
M08.B-E.2.1 Analyze and describe linear relationships between two variables, using slope.	
M08.B-E.2.1.1 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. Example: Compare a distance- time graph to a distance- time equation to determine which of two moving objects has greater speed.	SE: 121-126, 151-156 TE: 121A-126B, 151 - 156
M08.B- E.2.1.2 Use similar right triangles to show and explain why the slope m is the same between any two distinct points on a non- vertical line in the coordinate plane.	$\begin{aligned} & \text { SE: } 127-132,133-138,139-144,145-150 \text {, } \\ & \text { 151-156 } \\ & \text { TE: } 127 \mathrm{~A}-132 \mathrm{~B}, 133 \mathrm{~A}-138 \mathrm{~B}, 139 \mathrm{~A}-144 \mathrm{~B}, 145 \mathrm{~A}- \\ & \text { 150B, } 151-156 \end{aligned}$
M08.B- E.2.1.3 Derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b. expressions.	$\begin{aligned} & \text { SE: } 133-138,139-144,145-150,151-156 \\ & \text { TE: } 133 A-138 B, 139 A-144 B, 145 A-150 B, 151- \\ & 156 \end{aligned}$

A Correlation of enVision Mathematics, ©2021 to the Pennsylvania Assessment Anchors and Eligible Content

Pennsylvania Assessment Anchors and Eligible Content Grade 8
 enVision Mathematics ©2021
 Grade 8

Reference: CC.2.2.8.B. 2 Understand the connections between proportional relationships, lines, and linear equations.
M08.B-E. 3 Analyze and solve linear equations and pairs of simultaneous linear equations.
M08.B- E.3.1 Write, solve, graph, and interpret linear equations in one or two variables, using various methods.
M08.B- E.3.1.1 Write and identify linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms until an equivalent equation of the form $x=a, a=$ a, or $a=b$ results (where a and b are different numbers).

M08.B- E.3.1.2 Solve linear equations that have rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.
M08.B- E.3.1.3 Interpret solutions to a system of two linear equations in two variables as points of intersection of their graphs because points of intersection satisfy both equations simultaneously.

M08.B- E.3.1.4 Solve systems of two linear equations in two variables algebraically and estimate solutions by graphing the equations. Solve simple cases by inspection. Example: $3 x+$ $2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 .

M08.B- E.3.1.5 Solve real- world and mathematical problems leading to two linear equations in two variables. Example: Given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.

SE: 107-114, 151-156
TE: 107A-114B, 151 - 156

SE: $89-94,95-100,101$ - 106, 151-156
TE: 89A-94B, 95A-100B, 101A-106B, 151 - 156

SE: 267-272, 273-278, 297-300
TE: 267A-272B, 273A-273B, 297 - 300

SE: 267-272, 273-278, 281-286, 287-292, 297-300

TE: 267A-272B, 273A-273B, 281A-286B, 287A292B, 297 - 300

SE: 267-272, 273-278, 281-286, 287-292, 297-300

TE: 267A-272B, 273A-273B, 281A-286B, 287A292B, 297 - 300

Reference: CC.2.2.8.B.3 Analyze and solve linear equations and pairs of simultaneous linear equations.

M08.B-F Functions

M08.B-F. 1 Analyze and interpret functions.
M08.B- F.1.1 Define, evaluate, and compare functions displayed algebraically, graphically, or numerically in tables or by verbal descriptions.
M08.B- F.1.1.1 Determine whether a relation is a function.

SE: 165-170, 207-210
TE: 165A-170B, 207 - 210

A Correlation of enVision Mathematics, ©2021 to the Pennsylvania Assessment Anchors and Eligible Content

Pennsylvania Assessment Anchors and Eligible Content Grade 8	enVision Mathematics ©2021 Grade 8
M08.B- F.1.1.2 Compare properties of two functions, each represented in a different way (i.e., algebraically, graphically, numerically in tables, or by verbal descriptions). Example: Given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.	SE: 177-182, 189-194, 207-210 TE: 177A-182B, 189A-194B, 207 - 210
M08.B- F.1.1.3 Interpret the equation $y=m x+b$ as defining a linear function whose graph is a straight line; give examples of functions that are not linear.	$\begin{aligned} & \text { SE: } 177-182,207-210,225-230,231-236 \text {, } \\ & 255-258 \\ & \text { TE: } 177 \mathrm{~A}-182 \mathrm{~B}, 207-210,225 \mathrm{~A}-230 \mathrm{~B}, 231 \mathrm{~A}- \\ & 236 \mathrm{~B}, 255-258 \end{aligned}$
Reference: CC.2.2.8.C. 1 Define, evaluate, and compare functions.	
M08.B-F. 2 Use functions to model relationships between quantities.	
M08.B- F.2.1 Represent or interpret functional relationships between quantities using tables, graphs, and descriptions.	
M08.B- F.2.1.1 Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models and in terms of its graph or a table of values.	$\begin{aligned} & \text { SE: } 189-194,207-210,225-230,231-236 \text {, } \\ & \text { 255-258 } \end{aligned}$ TE: 189A-194B, 207 - 210, 225A-230B, 231A236B, 255 - 258
M08.B- F.2.1.2 Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch or determine a graph that exhibits the qualitative features of a function that has been described verbally.	$\begin{aligned} & \text { SE: } 171-176,195-200,201-206,207-210 \\ & \text { TE: } 171 \text { A-176B, 195A-200B, 201A-206B, } 207- \\ & 210 \end{aligned}$
Reference: CC.2.2.8.C. 2 Use concepts of functions to model relationships between quantities.	
M08.C-G Geometry	
M08.C- G. 1 Demonstrate an understanding of geometric transformations.	
M08.C- G.1.1 Apply properties of geometric transformations to verify congruence or similarity.	
M08.C- G.1.1.1 Identify and apply properties of rotations, reflections, and translations. Example: Angle measures are preserved in rotations, reflections, and translations.	$\begin{aligned} & \text { SE: } 309-314,315-320,321-326,327-332 \text {, } \\ & 377-382 \\ & \text { TE: 309A-314B, 315A-320B, 321A-326B, 327A- } \\ & \text { 332B, } 377-382 \end{aligned}$
M08.C- G.1.1.2 Given two congruent figures, describe a sequence of transformations that exhibits the congruence between them.	SE: 337-342, 377-382 TE: 337A-342B, 377 - 382

A Correlation of enVision Mathematics, ©2021 to the Pennsylvania Assessment Anchors and Eligible Content

$\begin{array}{c}\text { Pennsylvania Assessment Anchors and } \\ \text { Eligible Content } \\ \text { Grade 8 }\end{array}$	$\begin{array}{c}\text { enVision Mathematics ©2021 } \\ \text { Grade 8 }\end{array}$
$\begin{array}{l}\text { M08.C- G.1.1.3 Describe the effect of dilations, } \\ \text { translations, rotations, and reflections on two- } \\ \text { dimensional figures using coordinates. }\end{array}$	$\begin{array}{l}\text { SE: 309-314, 315-320, 321-326, 327-332, } \\ 337-342,345-350,351-356,377-382\end{array}$

332B, 337A-342B, 345A-350B, 351A-356B\end{array}\right]\)

A Correlation of enVision Mathematics, ©2021
to the Pennsylvania Assessment Anchors and Eligible Content

Pennsylvania Assessment Anchors and Eligible Content Grade 8	enVision Mathematics ©2021 Grade 8
Reference: CC.2.3.8.A. 1 Apply the concepts of volume of cylinders, cones, and spheres to solve real-world and mathematical problems.	
M08.D- S Statistics and Probability	
M08.D-S.1 Investigate patterns of association in bivariate data.	
M08.D- S.1.1 Analyze and interpret bivariate data displayed in multiple representations .Formulas will be provided.	$\begin{aligned} & \text { SE: } 219-224,225-230,231-236,239-244, \\ & 245-250,255-258 \end{aligned}$ TE: 219A-224B, 225A-230B, 231A-236B, 239A244B, 245A-250B, 255 - 258
M08.D- S.1.1.1 Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative correlation, linear association, and nonlinear association.	SE: 219-224, 225-230, 231-236, 255-258 TE: 219A-224B, 225A-230B, 231A-236B, 255 258
M08.D-S.1.1.2 For scatter plots that suggest a linear association, identify a line of best fit by judging the closeness of the data points to the line.	SE: 231-236, 255-258 TE: 231A-236B, 255 - 258
M08.D- S.1.1.3 Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. Example: In a linear model for a biology experiment, interpret a slope of $1.5 \mathrm{~cm} / \mathrm{hr}$ as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.	SE: 231-236, 255-258 TE: 231A-236B, 255 - 258
Reference: CC.2.4.8.B.1 Analyze and/or interpret bivariate data displayed in multiple representations.	
M08.D- S.1.2 Understand that patterns of associa displaying frequencies and relative frequencies in	can be seen in bivariate categorical data by two- way table.
M08.D- S.1.2.1 Construct and interpret a twoway table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible associations between the two variables. Example: Given data on whether students have a curfew on school nights and whether they have assigned chores at home, is there evidence that those who have a curfew also tend to have chores?	SE: 239-244, 245-250, 255-258 TE: 239A-244B, 245A-250B, 255 - 258
Reference: CC.2.4.8.B. 2 Understand that patterns of association can be seen in bivariate data utilizing frequencies.	

Copyright ©2020 Savvas Learning Company LLC.

