
Code.org Computer Science A Syllabus and Overview

1

AP® Computer Science A Overview
Code.org’s Computer Science A (CSA) curriculum is a full-year, rigorous curriculum that introduces students 
to software engineering and object-oriented programming and design using the Java programming language. 
This curriculum covers a broad range of topics, including the design of solutions to problems, the use of data 
structures to organize large sets of data, the development and implementation of algorithms to process data 
and discover new information, the analysis of potential solutions, and the ethical and social implications of 
computing systems. All teacher and student materials are provided for free online and can be accessed at 
code.org/csa.

AP Endorsed
Code.org is recognized by the College Board as an endorsed provider of curriculum and 
professional development for AP® Computer Science A (AP CSA). This endorsement 
affirms that all components of Code.org CSA’s offerings are aligned to the AP Curriculum 
Framework standards, the AP CSA assessment, and the AP framework for professional 
development. Using an endorsed provider affords schools access to resources including 
an AP CSA syllabus pre-approved by the College Board’s AP Course Audit, and officially-
recognized professional development that prepares teachers to teach AP CSA.

Prerequisites
The Code.org CSA curriculum is recommended for any high school student who wishes to continue their 
computer science education after completing an introductory course such as Computer Science Principles 
(CSP) or Computer Science Discoveries (CSD).

Additionally, the College Board makes the following recommendation:

It is recommended that a student in the AP Computer Science A course has 
successfully completed a first-year high school algebra course with a strong 
foundation of basic linear functions, composition of functions, and problem-solving 
strategies that require multiple approaches and collaborative efforts. In addition, 
students should be able to use a Cartesian (x, y) coordinate system to represent 
points on a plane. It is important that students and their advisers understand that 
any significant computer science course builds upon a foundation of mathematical 
reasoning that should be acquired before attempting such a course.1

1 College Board. AP Computer Science A Course and Exam Description, page 7

http://www.code.org/csa


Code.org Computer Science A Syllabus and Overview

2

Our Vision
Code.org’s vision is that every student in every school should have the opportunity to learn computer science 
(code.org/about). Our curriculum is designed so that an empowered teacher can lead a diverse group 
of students through experiences that are supportive, equitable, engaging, and lead to valuable learning 
(code.org/educate/curriculum/values). 

Historically this vision has contrasted sharply with reality. Until recently, most schools did not offer computer 
science, and schools that did offer computer science did not have enrollment that matched the demographics 
of their school population. Additionally, many students found these classes unengaging, intimidating, or 
disconnected from their lived experiences with technology. Thanks to efforts by many organizations and 
individuals, this world is beginning to change: many more schools now offer computer science courses; the 
diversity of students enrolled in those courses is increasing; and more engaging, relevant, and equitable 
pedagogy has become the established norm. Even so, there is much work still to be done. This course is 
designed to continue this momentum as the collective CS education community moves towards this vision of 
an equitable CS education system.

How We Support Our Vision
Many aspects of Code.org’s CSA curriculum are designed to bring about the eventual change we aim to see 
more broadly in CS education. Some of the most significant features are listed below.

Free and Open: We make our curriculum, videos, and tools free and open for anyone to adopt. 

Prioritize teachers who are new to Java: Historically only a few schools could hire trained computer 
scientists as teachers, which severely limited which schools could offer a CS course. Reaching all schools 
has meant developing our CSA course with the understanding that most of our teachers are new-to-CS and 
prioritizing their needs. As such, our course includes some distinctive features:

•	 Comprehensive lesson plans and resources designed to provide new-to-CS teachers the tools they 
need to teach the course.

•	 Clear and consistent pedagogy to help teachers develop best practices.

•	 High-quality videos that help teachers introduce and explain Java and software engineering 
concepts.

•	 A professional learning program designed to target the needs of teachers.

Equitable Pedagogy: Our curriculum is designed to promote an equitable classroom environment for all 
students, with a focus on the experiences of young women and students from underrepresented groups in 
computing. Drawing from extensive feedback from our classrooms, as well as CS education research, our 
course includes many features designed to support and prioritize these students:

•	 Pedagogy that develops a collaborative and supportive classroom environment.

•	 Projects and activities that highlight a variety of applications of computing and frequently ask 
students to incorporate their own backgrounds and interests.

•	 Curriculum videos that feature a cast of diverse role models in terms of race, gender, and 
profession who empower our diverse students to see themselves as part of the world of computing.

•	 A professional learning program that highlights these features and helps teachers reflect on how 
best to implement them within their own classroom.

http://www.code.org/about
http://www.code.org/educate/curriculum/values


Code.org Computer Science A Syllabus and Overview

3

Materials and Resources
The curriculum provides a comprehensive set of resources for the teacher, including detailed daily lesson 
plans, engaging activities and projects, formative and summative assessments, computing tools that are 
designed for learning specific concepts, and the Java Lab programming environment. These resources have 
been specifically curated to provide a unified experience for teachers and students. Together, these resources 
allow the teacher to act as a facilitator and coach for their students when addressing unfamiliar material. When 
the teacher acts as the primary source of information, generous support is provided.

All resources below can be accessed free of charge at code.org/csa.

Lesson Plans
The following resources and information can be found in each lesson plan:

•	 Instructions and teaching tips for conducting the lesson

•	 Unit Guides, activity guides and handouts, and Extra Practice for students

•	 Unit slide decks

•	 Formative and summative assessments

•	 Answer keys, exemplars, and rubrics

Videos
The Code.org CSA curriculum includes videos that provide:

•	 Content instruction

•	 Software Engineering series

•	 Lesson and tool tutorials

Programming Environment and Tools
The following programming environment and tools are used in the curriculum:

•	 Java Lab – Code.org’s Java programming environment for developing programs

•	 The Neighborhood – a package available in Java Lab to navigate mazes and create drawings

•	 The Theater – a package available in Java Lab to develop short animations with images and drawings, 
manipulate image pixels to create filters, and sound effects

•	 Code Review – a student-friendly version of code review tools used in the industry to allow students to easily 
read and share feedback on each other’s code

http://www.code.org/csa


Code.org Computer Science A Syllabus and Overview

4

Textbook
The curriculum is accessible online at studio.code.org/courses/csa-2022.

Students who are new to computer science and programming may need additional support and practice 
beyond what is available in the Code.org CSA curriculum. Additionally, students who are absent one or more 
class periods may struggle to catch up on the content that they missed.

The following online textbooks can also be used as additional resources to support student learning and for 
students to catch up on content that they missed:

•	 CSAwesome AP CSA Java (online), course.csawesome.org

•	 CodeHS AP Computer Science A (online), codehs.com/textbook/apcsa_textbook

The following resources are available to support students who need additional practice:

•	 CodingBat (online), codingbat.com/java

•	 Open sandbox levels at the end of each unit

Getting Verified
A verified teacher is a Code.org teacher account that we can prove belongs to a teacher. You must become a 
verified teacher to use Java Lab and the CSA curriculum. By becoming verified, you will get access to answer 
keys, project exemplars, and Java Lab. Until you become verified, neither you nor your students will be able 
to run any Java code on Code.org. Once you are verified, your students must be assigned to one of your CSA 
sections on Code.org to be able to run any code on Java Lab.

You can become a verified teacher by:

•	 Attending Code.org Professional Development for our CSA curriculum. This process should happen 
automatically once you have attended Professional Development.

•	 Being manually verified as an actual teacher. If you have not gone through our Professional Development, 
you can apply to become verified by filling out the form at code.org/csa. We manually review each response - 
this process takes on average one business day. You will receive an email once you are verified successfully. 
If you don’t hear back from us after a few business days, contact us at support@code.org

http://studio.code.org/courses/csa-2022
https://runestone.academy/ns/books/published/csawesome/index.html
http://www.codehs.com/textbook/apcsa_textbook/
https://codingbat.com/java
http://www.code.org/csa
mailto:support%40code.org?subject=CSA%20Teacher%20Verification


Code.org Computer Science A Syllabus and Overview

5

Technical Requirements for CSA
The curriculum requires and assumes a 1:1 computer lab or a setup such that each student in the class has 
access to an Internet-connected computer every day in class. All curriculum tools and resources are available 
online. Tablets are not currently supported. For more details on the technical requirements, please visit: 
code.org/educate/it.

In addition, the Code.org CSA course uses a communication standard called WebSockets, which may be 
blocked by some school systems’ networks or device policies. Before teaching this course, please visit 
code.org/educate/websocket to test that your school’s network system will support WebSockets.

Code.org’s CSA curriculum does not require you to download any programs on your or your students’ 
computers. The CSA curriculum only requires computers that have browser access to Code.org from Chrome, 
Edge, Firefox, or Safari. Internet Explorer is not supported.

While the curriculum features many unplugged activities designed to be completed without a computer, daily 
access to a computer is essential for every student. The curriculum is developed to be completed within the 
classroom – no homework or after-hours computer access is assumed.

Additional Materials and Supplies
One potentially significant cost to consider is printing. Many lessons have handouts that are designed to guide 
students through activities. While it is not required that all of these handouts be printed, many were designed to 
be printed, and we highly recommend their use.

Beyond printing, some lessons call for typical classroom supplies and manipulatives such as:

•	 Poster paper

•	 Markers or colored pencils

•	 Sticky notes

•	 Tape

•	 Rubber bands or yarn

Suggested substitutes can be found in individual lesson plans.

http://www.code.org/educate/it
https://code.org/educate/websocket


Code.org Computer Science A Syllabus and Overview

6

AP CSA Framework
The AP CSA CSA Framework developed by the College Board outlines four Big Ideas, each consisting of 
Enduring Understandings, Learning Objectives, and Essential Knowledge statements.

MOD
Modularity

VAR
Variables

CON
Control

IOC
Impact of Computing

Additionally, the framework identifies five Computational Thinking Practices, each outlining skills that 
students should develop throughout the course. These Computational Thinking Practices form the basis of 
tasks on the AP Exam.

CTP1
Program Design 
and Algorithm 
Development

CTP2
Code Logic

CTP3
Code 

Implementation

CTP4
Code Testing

CTP5
Documentation

A Layered Approach
The Code.org CSA curriculum covers the content in a layered approach 
that is different than the outline provided in the AP CSA Course and Exam 
Description. This structure allows students to develop understanding of 
the content within the Big Ideas while developing the skills outlined in the 
Computational Thinking Practices. Students learn the fundamentals of 
object-oriented programming (OOP) first, giving students a foundation for 
the rest of the course and encouraging students to consider the overall 
design of their programs.



Code.org Computer Science A Syllabus and Overview

7

Curriculum Outline
The curriculum is divided into 9 units – 8 content units and 1 review unit. Each lesson is designed for a 
45-minute class period. The last week of each unit makes up a Show What You Know week, which consists of 
a 3-day project, FRQ practice, and a unit assessment.

The following outlines the content of each unit, including the associated big ideas and computational thinking 
practices that are developed.

Unit 1: Object-Oriented Programming
CED Units and Topics

20 45-minute lessons

1.1 Why Programming? Why Java?
1.2 Variables and Data Types
2.1 Objects: Instances of Classes
2.2 Creating and Storing Objects (Instantiation)
2.3 Calling a Void Method
2.5 Calling a Non-void Method
2.6 String Objects: Concatenation, Literals, and More
3.2 if Statements and Control Flow
3.3 if-else Statements
3.5 Compound Boolean Expressions
4.1 while Loops

5.1 Anatomy of a Class
5.2 Constructors
5.3 Documentation with Comments
5.4 Accessor Methods
5.5 Mutator Methods
9.1 Creating Superclasses and Subclasses
9.2 Writing Constructors for Subclasses
9.3 Overriding Methods
9.4 super Keyword
9.5 Creating References Using Inheritance Hierarchies

This unit exposes students to object-oriented programming principles as they explore The Neighborhood. 
Students learn fundamental Java concepts as they navigate and interact with The Neighborhood with Painter 
objects and create new types of Painters to expand the capabilities of their programs (MOD-1, MOD-2, MOD-
3). Students practice predicting the outcome of program code and use their Painter objects with conditional 
statements, while loops, and Boolean expressions to navigate mazes and create drawings (CON-2). While 
students work with the Painter, they practice identifying syntax and logic errors to explain why code segments 
will not compile or work as intended (Skill 4.B, Skill 5.B). Additionally, students learn to document program 
code using comments to describe the behavior of specific code segments (Skill 5.A). Throughout this unit, 
students discover their identity as software engineers and use debugging strategies and code reviews to 
improve their programming skills.



Code.org Computer Science A Syllabus and Overview

8

Unit 2: Class Structure and Design
CED Units and Topics

15 45-minute lessons

1.2 Variables and Data Types
1.3 Expressions and Assignment Statements
1.4 Compound Assignment Operators
2.2 Creating and Storing Objects (Instantiation)
2.3 Calling a Void Method
2.4 Calling a Void Method with Parameters
2.6 String Objects: Concatenation, Literals, and More
2.7 String Methods
5.1 Anatomy of a Class

5.2 Constructors
5.4 Accessor Methods
5.5 Mutator Methods
5.8 Scope and Access
5.9 this Keyword
9.2 Writing Constructors for Subclasses
9.3 Overriding Methods
9.6 Polymorphism
9.7 Object Superclass

This unit expands on the object-oriented programming principles introduced in Unit 1 to explore design 
principles as students develop classes with attributes and behaviors and work with primitive and object 
data. Students learn to work with variables and user input as they develop and utilize classes and objects to 
represent desserts, customers, and food trucks for the Project Mercury Pastries Food Truck business (VAR-
1, MOD-1, MOD-2). As students work with the Dessert class, they build on their knowledge of inheritance to 
design subclasses that represent specific types of desserts (MOD-3). While working with variables, students 
learn to create and evaluate expressions using assignment operators and trace code segments to determine 
the result of output (CON-1, Skill 2.A, Skill 2.B). Throughout this unit, students continue to develop software 
engineering skills as they learn to use UML diagrams to represent classes and the DRY principle to refactor 
program code.

Unit 3: Arrays and Algorithms
CED Units and Topics

15 45-minute lessons

1.2 Variables and Data Types
1.4 Compound Assignment Operators
2.3 Calling a Void Method
3.1 Boolean Expressions
4.1 while Loops
4.2 for Loops
4.4 Nested Iteration
5.3 Documentation with Comments
5.6 Writing Methods

5.7 Static Variables and Methods
5.8 Scope and Access
6.1 Array Creation and Access
6.2 Traversing Arrays
6.3 Enhanced for Loops for Arrays
6.4 Developing Algorithms Using Arrays
9.3 Overriding Methods
9.5 Creating References Using Inheritance Hierarchies
9.6 Polymorphism

This unit introduces students to data structures to store primitive values and object references while working 
with data in text files. Students use one-dimensional (1D) arrays to represent lists of data while expanding their 
knowledge of loops and conditionals to analyze and process data in a 1D array (VAR-2). Students learn to use 
for loops to traverse arrays and discover that an algorithm involving loops can be implemented with either 
a for loop or a while loop (CON-2, Skill 4.C). Throughout the unit, students develop and modify standard 
algorithms to find and manipulate elements in a 1D array while also discovering the concept of polymorphism 
when traversing arrays of objects (MOD-3). As part of the planning process, students identify the preconditions 
and postconditions that an algorithm must satisfy (Skill 5.D). Additionally, students learn to use the final 
keyword to create static variables to represent values shared with all classes and constants to represent 
values that cannot be changed (MOD-2).



Code.org Computer Science A Syllabus and Overview

9

Unit 4: Conditions and Logic
CED Units and Topics

15 45-minute lessons

1.5 Casting and Ranges of Variables
2.9 Using the Math Class
3.1 Boolean Expressions
3.4 else-if Statements
3.5 Compound Boolean Expressions

3.6 Equivalent Boolean Expressions
3.7 Comparing Objects
4.1 while Loops
5.7 Static Variables and Methods
9.7 Object Superclass

This unit revisits the use of packages to access existing functionalities in their programs, such as The 
Neighborhood, to expand their knowledge of APIs and libraries and explore The Theater. With The Theater, 
students learn to improve the decisions made in conditionals and loops with relational and logical operators 
to evaluate primitive values and object references (CON-2). While working with conditionals and logical 
operators, students expand their knowledge of the static keyword to write static methods and explore 
their functionality (MOD-1, MOD-2). Additionally, students use casting operators and Math class methods 
to evaluate expressions and perform calculations, including incorporating random in program decisions and 
behaviors. While working with compound Boolean expressions and logical operators, students develop an 
understanding of De Morgan’s Laws and learn how to evaluate truth tables (CON-1).

Unit 5: Two-Dimensional Arrays
CED Units and Topics

15 45-minute lessons

5.4 Accessor Methods
6.4 Developing Algorithms Using Arrays
8.1 2D Arrays

8.2 Traversing 2D Arrays
5.10 Ethical and Social Implications of Computing Systems

This unit expands on data structures introduced in Unit 3 to create tables of data using two-dimensional (2D) 
arrays. Students identify similarities and differences between 1D and 2D arrays when creating, accessing, and 
traversing 2D arrays and apply standard algorithms to find and manipulate elements (VAR-2). As students 
analyze problems involving 2D arrays, they revisit these standard algorithms to determine what code needs 
to be added or modified and to interact with completed program code (CON-2, Skill 1.B, Skill 1.C). Students 
apply these concepts to manipulate pixels using The Theater to create image filters in addition to working with 
primitive values and various object references. Additionally, students use the programming knowledge and 
skills they have acquired to consider the impacts of programs on society, economies, and culture (IOC-1).

Unit 6: ArrayLists and String Methods
CED Units and Topics

15 45-minute lessons

1.5 Casting and Ranges of Variables
2.6 String Objects: Concatenation, Literals, and More
2.7 String Methods
2.8 Wrapper Classes: Integer and Double
4.1 while Loops

4.3 Developing Algorithms Using Strings
5.3 Documentation with Comments
7.1 Introduction to ArrayLists
7.2 ArrayList Methods
7.4 Developing Algorithms Using ArrayLists

This unit continues to expand on data structures to introduce students to creating lists using the ArrayList 
class (VAR-2). In the process, students learn about the Integer and Double classes and use their methods 
to parse data from text files and explore the limits of integer values (VAR-1). Students differentiate between 
when to use each type of data structure while learning about the structure and functionality of an ArrayList. 
Students apply standard algorithms to find and manipulate data in an ArrayList of numerical and object 
data (CON-2). Throughout the unit, students learn to use the String class to analyze and process text 
obtained from a user and from file input while learning about basic natural language processing techniques 
and applications (VAR-1). Additionally, students further develop software engineering skills by writing Javadoc 
comments to create API documentation for their programs.



Code.org Computer Science A Syllabus and Overview

10

Unit 7: Method Decomposition and Recursion
CED Units and Topics

15 45-minute lessons

2.4 Calling a Void Method with Parameters
5.1 Anatomy of a Class
5.2 Constructors
5.6 Writing Methods

5.9 this Keyword
5.10 Ethical and Social Implications of Computing Systems
9.4 super Keyword
10.1 Recursion

This unit allows students to practice software design and development using the skills they have learned 
throughout the curriculum while planning and developing a creative coding project to convey a personal 
interest or story using The Theater. Students use decomposition strategies and object-oriented principles 
to plan and implement their ideas while ensuring their projects meet specified requirements. In the process, 
students learn to write private, overloaded, and overridden methods and use the super keyword in a 
subclass method to call a superclass method while exploring the functionality of methods and their parameters 
(MOD-1, MOD-2, MOD-3). Throughout the unit, students practice tracing and writing recursive methods and 
comparing these methods to iterative solutions (CON-2, Skill 2.C). With the knowledge and skills acquired 
throughout the year, students consider the need for maximizing system reliability as they explore bugs and 
issues in existing programs (IOC-1).

Unit 8: Searching and Sorting
CED Units and Topics

15 45-minute lessons

4.5 Informal Code Analysis
7.4 Developing Algorithms Using ArrayLists
7.5 Searching
7.6 Sorting

7.7 Ethical Issues Around Data Collection
8.2 Traversing 2D Arrays
10.2 Recursive Searching and Sorting

This unit expands on algorithms students have learned to introduce common approaches to searching and 
sorting 1D and 2D arrays and ArrayLists (CON-2). In the process, students analyze and compare the 
efficiencies of these algorithms using statement execution counts and further develop problem-solving skills to 
decompose complex problems (Skill 2.D). Throughout the unit, students apply their programming and software 
engineering skills to plan and develop a creative coding project using the console that incorporates object-
oriented design, data structures, and algorithmic thinking. With the knowledge and skills acquired throughout 
the year, students consider the privacy and security of programs and users (IOC-1).

Unit 9: AP Exam Review and Practice 15 45-minute lessons

This unit prepares students for the AP CSA Exam by reviewing key concepts, practicing multiple-choice and 
free response questions, and strengthening test-taking strategies. Students identify strengths and areas of 
improvement to create individualized study plans to focus their practice and self-assess their progress.



Code.org Computer Science A Syllabus and Overview

11

Lab Requirement
Students in AP Computer Science A must engage in a minimum of 20 hours of hands-on, structured lab 
experiences to engage students in individual or group problem-solving. The Code.org CSA curriculum 
provides students opportunities to design solutions to problems, express their solutions precisely in the Java 
programming language, test their solutions, identify and correct errors, and compare possible solutions.

Using this curriculum, students will exceed the 20-hour in-class programming requirement. In addition to writing 
dozens of programs throughout the year, students will also complete a larger programming project at the end 
of each unit.

Unit 1: Asphalt Art Project (MOD, CON, CTP3)
Students create asphalt art in The Neighborhood using the Painter classes created throughout the unit and 
writing a new Painter class that they develop for the project. (MOD-1, MOD-2, Skill 3.A, Skill 3.B). In the 
process, students continue to expand their hierarchy of Painter classes which share attributes and behaviors 
but have specific types of behaviors in each subclass (MOD-3). Students choose a theme or concept for their 
asphalt art representing something they are interested in or that is meaningful to them. After brainstorming and 
planning, students develop their programs to create their designs by creating one or more Painter objects and 
calling their methods (Skill 3.A). Students use conditional statements and while loops while incorporating the 
! (not) logical operator and Boolean expressions to manage navigation and painting for their design (CON-2).

Unit 2: Store Management Project (MOD, VAR, CON, CTP3)
Students create a program for a store or business that might exist in their community similar to the 
management program created for the Project Mercury Pastries Food Truck throughout the unit. Students 
identify an object that the store or business would have that can be extended to create two subclasses, define 
instance variables to represent its attributes, and implement accessor, mutator, and toString methods to 
work with the objects (MOD-1, MOD-2, MOD-3, Skill 3.B). Additionally, students use the Scanner class to 
obtain and use input for initializing objects and modifying attribute values and to write expressions to work 
with variables and object data (Skill 3.A). Students use peer feedback from code reviews to inform revisions 
and improvements to their projects. As part of the project development process, students create and manage 
priority lists and self-assess their work and progress in completing project requirements.

Unit 3: Data for Social Good Project (MOD, VAR, CON, CTP3)
Students create a program for a user to analyze data and find information based on their needs using the 
algorithms they learned throughout the unit. Students choose a user scenario or create their own and read data 
from a text file into a one-dimensional (1D) array to process and find information using loops and conditional 
statements (Skill 3.D, MOD-1, VAR-1, VAR-2). Students have the option of incorporating user input to interact 
with their program to request information from the data and execute algorithms they have implemented. 
Students use peer feedback from code reviews to inform revisions and improvements to their projects. As part 
of the project development progress, students create and manage priority lists and self-assess their work and 
progress in completing project requirements.



Code.org Computer Science A Syllabus and Overview

12

Unit 4: Abstract Data Art Project (MOD, CON, CTP2)
Students use The Theater to create visuals and sound effects to portray meaning for a dataset they choose to 
analyze and visualize. Students work with image files, colors, shapes, text, and sounds by creating, traversing, 
and manipulating elements in one-dimensional (1D) arrays to create visuals and sound effects (MOD-1, 
MOD-2). In the process, students use selection statements, iteration, logical operators, and randomness to 
creating interesting visuals and animations that portray the story behind their data (CON-1, CON-2, Skill 3.C). 
Students use peer feedback from code reviews to inform revisions and improvements to their projects. As part 
of the project development progress, students create and manage priority lists and self-assess their work and 
progress in completing project requirements.

Unit 5: Personal Narrative Project (MOD, VAR, CON, CTP3)
Students create a personal narrative using The Theater consisting of visuals and sound effects to 
communicate stories or experiences that have significant meaning to them. To create these effects, students 
plan their algorithms with pseudocode using data structures, expressions, conditional statements, and iterative 
statements to modify and write standard algorithms.Additionally, students define and use classes to represent 
components of their personal narrative, including their scenes and sounds, and use polymorpism to work with 
arrays of objects of superclass types and use subclass versions of methods (MOD-2, VAR-2, Skill 3.E). While 
working with the 2D arrays, students modify standard algorithms used with 1D arrays to find and manipulate 
elements in the 2D array (CON-2). Students use peer feedback from code reviews to inform revisions and 
improvements to their projects. As part of the project development progress, students create and manage 
priority lists and self-assess their work and progress in completing project requirements.

Unit 6: Natural Language Processing Project (VAR, CON, CTP3)
Students use natural language processing (NLP) techniques to identify structure, patterns, and meaning in 
text, stories, poetry, songs, and other forms of communication to process, analyze, and/or generate new text. 
To extract data from literature, students read content from text files to store and manipulate the data using 
ArrayLists and String methods (VAR-2, Skill 3.D). Students plan and manage their projects using project 
management practices, including managing tasks using their Project Planning Board. Throughout the unit, 
students learn about and incorporate NLP techniques, such as keyword extraction, named entity recognition, 
part-of-speech tagging, sentence segmentation, and sentiment analysis and explore how these are used in 
real-world applications. Students self-assess their work and progress in completing project requirements. As 
students develop these algorithms, they incorporate standard algorithms for working with ArrayLists and 
String methods to find elements meeting specific criteria or to add and remove elements from a list (CON-2). 
As part of the peer review process, students learn to write and test acceptance criteria and use the feedback 
they receive to inform revisions and improvements to their projects.



Code.org Computer Science A Syllabus and Overview

13

Unit 7: Creative Coding with The Theater (MOD, CTP4)
Students create art and designs using images and drawings to create artwork or animations to convey a 
personal interest or story using The Theater. To further develop object-oriented design and programming skills, 
students incorporate overloaded and overridden methods, work with objects as parameters to methods and 
constructors to develop more efficient solutions more quickly and with a greater degree of confidence, and 
use the super keyword in subclass methods to call superclass methods (MOD-1, MOD-2, MOD-3). Students 
plan and manage their projects using project management practices, including managing tasks using their 
Project Planning Board. Students self-assess their work and progress in completing project requirements and 
learn to write criteria and perform acceptance testing to evaluate their user stories. As part of the peer review 
process, students write and test acceptance criteria and use the feedback they receive to inform revisions and 

improvements to their projects (Skill 4.A).

Unit 8: Creative Coding with the Console (CON, CTP3, CTP4)
Students plan and develop a program using the console that expands on a previous project they developed, 
solves a new problem for a scenario, or explores a personal interest. Students apply the object-oriented design 
and programming skills they developed throughout the curriculum to incorporate object-oriented programming 
principles, data structures, and algorithms to demonstrate their knowledge and skills and affirm their software 
engineering identity. Students incorporate searching and sorting algorithms to find elements stored in 1D or 2D 
arrays or ArrayLists and self-assess their work and progress in completing project requirements. Additionally, 
students perform acceptance testing to evaluate their user stories (CON-2, Skill 3.C, Skill 4.1). As part of the 
peer review process, students write and test acceptance criteria and use the feedback they receive to inform 
revisions and improvements to their projects.


