CONSTRUCTION

Standards and Benchmarks

Safety

Standard I: Understand the basic safety and safety operating procedures necessary for a construction project.

Benchmarks

- 1. Comply with shop and equipment safety rules.
- 2. Inspect workplaces for safe working environment and report unsafe conditions.
- 3. Correct safety hazards.
- 4. Clean and maintain work area and leave in safe condition.
- 5. Follow tool checkout and maintenance procedures including reporting of equipment failures.
- 6. Demonstrate proper shoveling and lifting techniques,
- 7. Explain the application of first aid interventions for particular situations.
- 8. Explain OSHA job safety compliance.
- 9. Implement and comply with OSHA job site safety rules.

Standard II: Understand the basic background knowledge required for entry into the construction industry.

Benchmarks

)

)

- 1. Cut material to specified dimensions and shape.
- 2. Install and remove fasteners properly (i.e., nails, screws, and anchor bolts).
- 3. Measure and compute using fractions and decimals.
- 4. Measure accurately and use the following instruments; ruler, tape measure, chalk line, level, transit, and square.
- 5. Explain the importance of estimating to the construction trade.
- 6. Identify the parts of a structure from a cross-section on a blueprint.
- 7. Identify basic materials for a particular trade or process.
- 8: Identify anchors, hangers and supports and their appropriate use of each trade.

Preplanning

Standard III: Understand the basic sequence of procedures necessary for a construction project.

Benchmarks

- 1. Receive, inspect, inventory, stack, and properly store equipment, materials, and supplies on-site.
- 2. Interpret a materials list.
- 3. Explain the cost of doing a job to include labor, tools, materials and overhead and their relationship to profit.
- 4. Compute the quantity of commonly used materials needed for a job (i.e., area, cubic area, and linear measurement).
- 5. Identify parts and materials using a suppliers' and manufacturers' catalog/manual.

Sitework

Standard IV: Understand the processes and activities that must be completed to prepare a site for construction.

Benchmarks

1. Explain how to prepare a building site to include the following: establish elevation reference points from bench mark; establish footing grades; locate and square corners; install batter boards; set grade stakes; and lay out building using transit.

Construction Processes

Standard V: Differentiate among and apply the appropriate methods and processes to various construction materials and their installation.

Concrete

Benchmarks

- 1. Explain all components of preparing foundations and footings.
- 2. Build forms for concrete including the erection of wall forms to include anchor bolts, bulkheads and key-way on an appropriate footing.
- 3. Pour, screed and finish concrete.
- 4. Strip and clean forms.
- 5. Demonstrate appropriate handling and placing techniques.

Masonry

Benchmarks

- 1. Explain bonding of masonry walls.
- 2. Explain joint finishes.
- 3. Demonstrate appropriate mortar mixing techniques.
- 4. Demonstrate appropriate layout techniques for inside and outside corners.

Metals

Benchmarks

- 1. Measure, cut, form, fit, and install metal flashing.
- 2. Measure, cut and install metal siding.
- 3. Measure, fit and install metal trim.

Woods and Plastics

Benchmarks

- 1. Identify parts of a stair and compute rise, run, and headroom.
- 2. Rough in wall, roof, and floor systems.
- 3. Install cabinetry and case work.
- 4. Miter and install molding trim.
- 5. Install prefab truss or rafter roof system.
- 6. Lay out structural members on center.

Thermal and Moisture Protection

Benchmarks

)

- 1. Identify the side wall and ceiling insulation, vapor barriers, ventilation and air infiltration.
- 2. Identify types of roofing systems including common standards associated with roofing (i.e., flashing, penetrations, and installation).

- 3. Install insulation.
- 4. Observe appropriate waterproofing and drainage procedures.

Door and Windows

Benchmarks

1. Install prehung door and/or precased window.

Finishes

Benchmarks

- 1. Identify different types of exterior finishes (i.e., cornice, door, window, siding, fascia, and soffit).
- 2. Identify the pros and cons of exterior finishes (i.e., stucco, wood, masonry, aluminum, and vinyl).
- 3. Identify different types of interior finishes for molding trims, cabinets, doors, hardware, walls, etc.
- 4. Explain the proper procedures for preparing a surface for finishing and selecting a proper finish (i.e., wood, metal, and masonry).
- 5. Demonstrate appropriate techniques for installing and finishing drywall.
- 6. Identify various floor-covering options.

Equipment

Standard VI: Use the appropriate equipment for the particular situation.

Benchmarks

- 1. Inspect climbing equipment and demonstrate the setup of ladders, ladder jacks, planks, and scaffolds.
- 2. Maintain and utilize basic hand and power tools from one of the following: hacksaw, circular saw, handsaw, screwdrivers, drills and bits, carpentry, masonry, electrical, HVAC, plumbing.
- 3. Explain the use of earth moving site preparation equipment in preparing construction sites.
- 4. Explain proper safety procedures for a safe working environment regarding on site construction vehicles (forklifts, bulldozers, track loader backhoes, dump trucks, etc).
- 5. Explain proper safety considerations for work in or near open excavations.

Electrical

Standard VII: Apply basic electrical techniques.

Benchmarks

}

- 1. Splice a wire correctly.
- 2. Wire and diagram the following switching arrangements: a. 3-way switching system on one light; b. a single pole switch on one light; c. a single pole switch on two lights; and d. a duplex receptacle.
- 3. Identify and explain ground fault protection, and where they are required.
- 4. Identify types and sizes of wire, wire coverings and appropriate short circuit protections.
- 5. Identify types and sizes of electrical conduits and demonstrate connection techniques.
- 6. Identify the method of transporting electrical power from generating station to utilization locations.

- 7. Diagnose malfunctions of simple electrical systems using test and measurement equipment and repair; such as voltmeter, amp meter and ohmeter.
- 8. Read and explain information given on motor nameplates.
- 9. Observe the installation and connection of an electrical service entrance and breaker box.

Mechanical

Standard VIII: Understand the basic mechanical procedures involved in the construction industry.

Benchmarks

1. Explain the difference between the components and operation of the following HVAC systems: steam, hot water, forced air and unit ventilation, air conditioning, and solar systems.

54

Plumbing

Standard IX: Understand the basic plumbing procedures involved in the construction industry.

Benchmarks

- 1. Explain the installation of water faucet and water closet replacement.
- 2. Identify the plumbing system in a structure (i.e., ventilation, sewage, potable water, etc.).
- 3. Identify the components and functions of sanitary and storm sewer systems in a community.

Digital Electronics

Standards

Students will be able to:

- 1. Use a digital electronics software package to design, build and trouble shoot any digital projects.
- 2. Understanding science rules of electronics, Ohm's Law, Kirchhoff's Law Boolean algebra, DE Morgan's Theorems, and K-mapping.
- 3. Develop presentations on major concepts and components used in digital electronics.
- 4. Work in teams to design and build digital electronics projects.

Benchmarks

j

- 1. Identify the attributes, uses, advantages, and disadvantages of the components used in electronics by using the suitcase trainer and using Multisim software.
- 2. Develop power point presentation on major concepts and components used in digital electronics.
- 3. Work effectively in an engineering team to design and trouble shooting digital electronics projects.
- 4. Design and implement solutions to problems encountered in electronics by uses of laws of Boolean algebra.
- 5. Identify the attributes, uses, advantages, and disadvantages of shift registers, asynchronous counters and synchronous counters.
- 6. Write programs to control electronics by the use of Basic Stamp and Boolean algebra, to control servo robots, and automated control systems.
- 7. Utilize state machines to enhance lessons on flip-flop circuits by programming a chip.
- 8. Understand all background information necessary to use ohm's law and kirchoff's laws of electricity.
- 9. Understand basic fluid power systems.
- 10. Identify the attributes, uses, advantages, and disadvantages of seven segment displays, multiplexers and demultiplexers.

Introduction to Engineering Design (IED)

Standards

)

Students will be able to:

- 1. Demonstrate the ability to use three-dimensional modeling software.
- 2. Demonstrate the use of problem-solving model to improve existing products and

invent new ones in and outside the classroom.

3. Experience the creative thinking process through the use of vertical and lateral thinking; identifying, categorizing, and selecting a solution to a problem; and communicate the solution in written and verbal formats.

Benchmarks

- 1. Discuss the history of engineering and engineering technology design.
- 2. Utilize sketching and visualization techniques.
- 3. Communicate conceptual ideas through written and verbal formats.
- 4. Practice effective oral communication techniques.
- 5. Apply the steps of the design process to solve a variety of design problems.
- 6. Translate a three-dimensional drawing or model into corresponding.

Principles of Engineering

Standards

Students will be able to:

1. Understand and apply math and science concepts.

Benchmarks

)

- 1. Determine efficiency; calculate work; and mechanical advantages of mechanical systems.
- 2. Calculate circuit resistance, current, and voltage using Ohm's Law.
- 3. Complete calculations for conduction, R-values, and radiation.
- 4. Compute center of gravity, moment of inertia, stress, strain, deflection, mean, median, mode, and standard deviation.
- 5. Calculate weight, volume, mass, density, and surface area of selected products.
- 6. Perform nondestructive and descriptive testing on materials.
- 7. Design a control system based on given needs and constraints.
- 8. Calculate values in a pneumatic system, and calculate flow rate, flow velocity and mechanical advantage in a hydraulic system.
- 9. Calculate distance, displacement, speed, velocity, and acceleration from data.
- 10. Communicate in team settings using effective presentation skills.

CAD₁

Standards

Students will be able to:

- 1. Provide the basic information necessary for planning various types of working drawings.
- 2. Develop the necessary technical skills to communicate engineering concepts in an understandable, efficient and accurate manner.
- 3. Utilize the latest drawing techniques to incorporate communication and engineering career opportunities.

Benchmarks

)

- 1. Exhibit knowledge of drafting standards.
- 2. Understand the need for sketching skills.
- 3. Produce a working drawing.
- 4. Demonstrate skills in developing orthographic projection.
- 5. Use proper dimensioning rules.
- 6. Produce a detailed section drawing.
- 7. Produce a detailed auxiliary drawing.
- 8. Produce three different pictorial drawings.
- 9. Exposure to drafting career paths.
- 10. Demonstrate knowledge of CAD systems used in the preparation of drawings used in engineering.

Standards

Students will be able to:

- 1. Provide the advanced information necessary for planning various types of working drawings.
- 2. Develop the advanced technical skills to communicate engineering concepts in an understandable, efficient and accurate manner.
- 3. Utilize the latest drawing techniques to incorporate communication and engineering career opportunities.

Benchmarks

- 1. Exhibit an advanced knowledge of drafting standards.
- 2. Understand the need for sketching skills.
- 3. Produce an advanced working drawing.
- 4. Demonstrate higher skills in developing orthographic projection.
- 5. Use proper dimensioning rules.
- 6. Produce an advanced detailed section drawing.
- 7. Produce an advanced detailed auxiliary drawing.
- 8. Produce an advanced three different pictorial drawings.
- 9. Exposure to drafting career paths.
- 10. Demonstrate advanced knowledge of CAD systems used in the preparation of drawings used in engineering.

CAD₃

Standards

Students will be able to:

- 1. To provide the basic information necessary for planning various types of structures.
- 2. Develop the necessary technical skills to communicate architectural concepts in an understandable, efficient and accurate manner.
- 3. Utilize the latest products and building techniques to incorporate communication and architectural career opportunities.

Benchmarks

Students will be able to:

- 1. Exhibit knowledge of drafting standards.
- 2. Design a set of plans using sketching and drafting tools.
- 3. Know the required drawings needed to make a set of construction plans.
- . 4. Develop a set of construction plans.
- 5. Demonstrate proper dimensioning rules used on architectural plans.
- 6. Draw section drawings for a set of plans.
- 7. Demonstrate the knowledge of a CAD system.
- 8. Operate a CAD program to produce a set of plans.
- 9. Demonstrate presentation methods.
- 10. Investigate

)

}

Standards

- 1. Demonstrate comprehension, computation, and applied technology skills for 3d drawing.
- 2. Develop communication, employability and life management skills.

Benchmarks

Ì

)

- 1. Demonstrate the proper use of CAD software.
- 2. Complete orthographic, isometric and sectional drawings using CAD software.
- 3. Determine proper drawing set-up procedures.
- 4. Use proper terminology as it relates to drafting.
- 5. Demonstrate the use of math as it relates to CAD.
- 6. Output a drawing using a printer.
- 7. Benchmarks: Demonstrate good preparation and organizational skills for class.
- 8. Demonstrate an understanding of the educational qualifications and levels of Computer Aided Drafting.
- 9. Demonstrate punctuality, responsibility, reliability, and honesty.
- 10. Demonstrate self-regulation.
- 11. Demonstrate problem solving skills.

Standards

- 1. Demonstrate compréhension, computation, and applied technology skills for 3d animation software.
- 2. Develop communication, employability and life management skills.

Benchmarks

Ì

- 1. Demonstrate the proper use of 3d animation software.
- 2. Complete orthographic, isometric and sectional drawings using 3d animation software.
- 3. Determine proper drawing set-up procedures.
- 4. Use proper terminology as it relates to animation design.
- 5. Demonstrate the use of math as it relates to 3d animation.
- 6. Output 3d animation drawings using a printer.
- 7. Demonstrate good preparation and organizational skills for class.
- 8. Demonstrate an understanding of the educational qualifications and levels of 3d animation.
- 9. Demonstrate punctuality, responsibility, reliability, and honesty.
- 10. Demonstrate self-regulation.
- 11. Demonstrate problem solving skills.

Standards

- 1. Demonstrate comprehension, computation, and applied technology skills for program that will be use by this student in their career.
- 2. Develop communication, employability and life management skills.

Benchmarks

- 1. Demonstrate the proper use of CADsoftware.
- 2. Complete orthographic, isometric and sectional drawings using CAD software.
- 3. Determine proper drawing set-up procedures:
- 4. Use proper terminology as it relates to CAD design,
- 5. Demonstrate the use of math as it relates to CAD industry.
- 6. Output drawings using a printer.
- 7. Demonstrate good preparation and organizational skills for class.
- 8. Demonstrate an understanding of the educational qualifications and levels CAD industry.
- 9. Demonstrate punctuality, responsibility, reliability, and honesty.
- 10. Demonstrate self-regulation.
- 11. Demonstrate problem solving skills.

MANUFACTURING

Standards

Students will be able to:

- 1. Understand and apply the fundamentals of manufacturing.
- 2. Understand and apply manufacturing processes.
- 3. Understand and demonstrate production techniques.
- 4. Understand and demonstrate the use of materials in manufacturing.

Benchmarks

Students will be able to:

- 1. Apply basic emergency first aid techniques.
- 2. Comply with school district rules.
- 3. Inspect, clean and organize work area and equipment for appropriate equipment use.
- 4. Identify various manufacturing enterprises.
- 5. Identify and maintain handtools for a specified job.
- 6. Measure parts with metric and English systems.
- 7. Discuss mechanical advantage applications.
- 8. Set up and use power saws.
- 9. Recognize when cutting tools need reconditioning or service. Clean and store precision measurement tools, handtools, cutters, jigs, fixtures, and grinding wheels.
- 10. Demonstrate proper care and storage of lab tools.
- 11. Perform maintenance procedures on lab equipment.
- 12. Explain career pathways in manufacturing occupations.
- 13. Explain industrial relations in manufacturing.
- 14. Explain various classes/types of finishes.
- 15. Cut threads with various processes.
- 16. Process materials with portable power tools.
- 17. Measure parts using precision measurement tools (i.e., micrometer, vernier, dialcalipers, and dial indicators).
- 18. Measure, calculate and layout precision patterns.
- 19. Apply jigs and fixtures for machine operations.
- 20. Set up and use precision machining equipment.
- 21. Explain destructive and nondestructive methods of testing.
- 22. Identify and explain hydraulic systems.
- 23. Identify and explain pneumatic systems.
- 24. Identify and explain electrical systems.
- 25. Identify valves and control systems.
- 26. Interpret and use prints, charts, diagrams, tables, and graphs.
- 27. Draw sketch of desired work piece (manual or CAD).
- 28. Develop bill of materials.

)

- 29. Plan operation flowchart for production.
- 30. Explain CAD/CAM/CNC and robotics and describe its use in flexible manufacturing system(CIM).
- 31. Utilize advanced math skills in product design and development.
- 32. Demonstrate material fabrication.