Algebra

Summer Assignment

This practice is designed for students who will be enrolled in Algebra I or Foundations of Algebra next school year.
\qquad

Find the value of each expression. Show ALL work.

1. $8+[(16-6) \div 2]$
2. $16-3[9-2(5-3)]$
3. $[(4+8) \div 6] \cdot 3$
4. $(8+16) \div(12-9)$
5. $\frac{30}{3(5-3)}$
6. $14 \cdot[(15-7) \div 4]$

Objective: To evaluate an algebraic expression.

Example 1

Evaluate the expression $c+b-23$ if $c=25$ and $\mathrm{b}=16$.
Solution

$$
\begin{aligned}
c+b-23 & =25+16-23 \text { Substitute the given values for the variables. } \\
& =41-23 \quad \text { Simplify by adding } 25 \text { and } 16 . \\
& =18 \quad \text { Subtract } 23 \text { from } 41 .
\end{aligned}
$$

Example 2

Evaluate the expression $2 x+(3 y-z)+7$ if $x=5, y=2$, and $z=4$.

Solution

$$
\begin{aligned}
2 x+(3 y & -z)+7=2 \cdot 5+(3 \cdot 2-4)+7 \quad \text { Substitute the given values. } \\
& =2 \cdot 5+(6-4)+7 \quad \text { Simplify by multiplying inside parentheses first. } \\
& =10+2+7 \quad \text { Multiply } 2 \text { times } 5 \text { and subtract } 4 \text { from } 6 \text {. } \\
& =19 \quad \text { Add. }
\end{aligned}
$$

Evaluate each expression if $x=2$ and $y=-3$. Show ALL work.

1. $2 x-y$
2. $3 y-(2-x)$
3. $(7+x)(y-1)$

Evaluate each expression if $r=6$ and $t=8$. Show ALL work.
4. $(r-4)+2 t$
5. $[10-(r \div 3)]+2 t$
6. $[3 \cdot(t+1)]-r$

Objective: To simplify an algebraic expression by combining like terms.

Example 1

Simplify the expression $3 x+5-9-x$.
Solution
$3 x-x+5-9$ Rewrite expression so that like terms are together.
$2 x-4$ Combine the like terms.

Example 2

Simplify the expression $6 x-15-4 x-(-8)$.
Solution

$$
\begin{array}{cl}
6 x-4 x-15-(-8) & \text { Rewrite expression so that like terms are together. } \\
2 x-7 & \text { Combine } 6 x-4 x \text { and }-15-(-8) .
\end{array}
$$

Simplify each expression. Show ALL work.

1. $7 x+5+2 x$
2. $6+9 x-3$
3. $4 y-7 y+6$
4. $-8 m+3+10+3 m$
5. $-7 w-6 k+4 w$
6. $-11 g+8 h-3 g-7 h$
7. $-14 b+7 y-5 b-10 y$
8. $6 x-15-4 x-(-8)$
9. $-2 m+9-4 m-13$

Objective: To simplify an algebraic expression by using the distributive property

Example 1

Simplify the expression $2(x+3)$.
Solution

$$
\begin{aligned}
& \text { and } \\
& 2(x+3) \\
& 2 x+6
\end{aligned} \text { Distribute the } 2 \text { by multiplying it by the } x \text { and } 3 .
$$

Example 2

Simplify the expression $3(2 x+y-1)$.

$$
\begin{aligned}
& 3(2 x+y-1) \quad \text { Distribute the } 3 \text { by multiplying it by } 2 x, y \text {, and }-1 . \\
& 6 x+3 y-3
\end{aligned}
$$

Simplify each expression. Show ALL work.

1. $2(x+4)$
2. $-3(x+5)$
3. $2(3 x-6)$
4. $8(5-4 x)$
5. $-7(1+4 x)$
6. $5(3 x-10)$
7. $-4(x+y-8)$
8. $2(-x+2 y-11)$
9. $\frac{1}{2}(x+4)$

Objective: To solve equations using one transformation.

Example 1

a. Solve for x.
b. Solve for x.
$\begin{aligned} x+7 & =10 \\ x+7 & =10 \quad \text { (Isolate } x, \text { think opposite of }+7 \text {) } \\ -7 & =-7 \quad \text { (Subtract } 7 \text { from both sides) } \\ x & =3\end{aligned}$

$$
\frac{x}{7}=3
$$

$$
\frac{x}{7}=3 \quad(\text { Isolate } x, \text { think opposite of } \div 7)
$$

(7) $\frac{x}{7}=3(7) \quad$ (Multiply both sides by 7)
$x=21$

Solve for x. Circle your final answer. Show ALL work.

1. $x+2=13$
2. $4 x=48$
3. $x+9=8$
4. $x-5=-5$
5. $\frac{x}{4}=-2$
6. $x+14=7$
7. $x-10=23$
8. $-6=\frac{x}{3}$
9. $-6+x=-13$
10. $\frac{2}{3} x=8$
11. $5 x=35$
12. $18=-3 x$

SOLVING TWO STEP EQUATIONS

Objective: To solve equations using two transformations.

Example 1

a. Solve for x.

$$
2 x+8=14
$$

b. Solve for x.

$$
\begin{aligned}
2 x+8-8 & =14-8 \text { Subtract } 8 \text { from both sides } \\
2 x & =6
\end{aligned}
$$

$$
\frac{2 x}{2}=\frac{6}{2} \quad \text { Divide by } 2 \text { on both sides }
$$

$$
x=3
$$

$$
\frac{x}{5}-3=-6
$$

$\frac{x}{5}-3=-6$

$$
\frac{x}{5}-3+3=-6+3 \text { Add } 3 \text { to both sides }
$$

$$
\frac{x}{5}=-3
$$

$5 \cdot \frac{x}{5}=-3 \cdot 5$ Multiply by 5 on both sides

$$
x=-15
$$

Solve for x. Circle your final answer. Show ALL work.

1. $2 x+4=12$
2. $-3 x+8=-4$
3. $15=-x-7$
4. $5 x-4=21$
5. $-8=\frac{x}{2}+3$
6. $\frac{x}{5}-3=10$
7. $\frac{x}{4}+5=16$
8. $6 x+8=5$
9. $\frac{2}{3} x-1=11$

Objective: To solve an inequality and graph the solution on a number line.

Example 1

Solve for $x+4>9$ and graph the solution on a number line.

Solution
$x+4>9$
$-4 \quad-4 \quad$ Subtract 4 from both sides.
$x>5$
Plot an open dot on 5 and shade everything
 greater than 5 or to the right of 5 .

Example 2

Solve for $4 \leq \frac{x}{-3}$ and graph the solution on a number line.

Solution

$$
\begin{array}{ll}
-3 \cdot 4 \leq \frac{x}{-3} \cdot-3 & \text { Multiply }-3 \text { by both sides } \\
-12 \geq x & \begin{array}{l}
\text { When you multiply or divide by a negative you } \\
\text { must reverse the inequality symbol }
\end{array}
\end{array}
$$

Plot a solid dot on -12 and shade everything less than $\mathbf{- 1 2}$ or to the left of -12 .

Solve for x and graph the solution on the number line. Show ALL work.

1. $\frac{x}{5} \leq 3$
2. $-3 x<21$
3. $-10 \leq x-6$

4. $x+3<11$
5. $-14>7 x$
6. $-9 \leq 5+x$

TWO STEP INEQUALITIES AND GRAPHING
Objective: To solve an inequality and graph the solution on a number line.

Example 1

Solve for $3 x+6 \leq 15$ and graph the solution on a number line.

Reminder:

Solution

$$
\begin{aligned}
3 x+6 & \leq 15 \\
-6 & -6 \\
\frac{3 x}{3} & \leq \frac{9}{3}
\end{aligned} \quad \text { Subtract } 6 \text { from both sides. }
$$

$$
x \leq 3 \quad \text { Plot a solid dot on } 3 \text { and shade everything }
$$ less than 3 or to the left of 3.

Exaripie 6

Solve for $-3 x-2<10$ and graph the solution on a number line.

Solution

$$
\begin{array}{ll}
\begin{array}{c}
-3 x-2<10 \\
+2
\end{array} & \begin{array}{l}
\text { Add } 2 \text { to both sides. } \\
-3 x<12 \\
\text { Divide both sides by } 3 . \\
-3 x \\
-3
\end{array} \frac{12}{-3} \\
x>-4
\end{array} \quad \begin{aligned}
& \text { When you multiply or divide by a negative you } \\
& \text { must reverse the inequality symbol }
\end{aligned}
$$

Solve for x and graph the solution on the number line. Show ALL work.

1. $\frac{x}{4}-3 \leq 2$
2. $2-2 x<-2$
3. $2 x+17>25$

4. $4<3 x-2$
5. $-5-x \geq-3$
6. $-4>\frac{x}{-3}+1$

SOLVING PROPORTIONS

Objective: To solve a proportion using cross-multiplication.

Solve each proportion for x using cross multiplication. Circle your final answer. Show ALL work.

1. $\frac{x}{9}=\frac{4}{12}$
2. $\frac{5}{x}=\frac{9}{27}$
3. $\frac{7}{16}=\frac{x}{32}$
4. $\frac{x}{35}=\frac{2}{5}$
5. $\frac{1}{3}=\frac{2 x}{18}$
6. $\frac{20}{12}=\frac{5}{3 x}$

PYTHAGOREAN THEOREM

Objective: To find the missing side in a right triangle using Pythagorean Theorem

Steps: (Solving for a missing side in a right triangle)

1. Identify the legs and hypotenuse of the right triangle
2. Substitute the values into the formula $a^{2}+b^{2}=c^{2}$
3. Solve the equation for the missing side.

Example: (Finding a leg)

$$
\begin{aligned}
& a^{2}+24^{2}=26^{2} \\
& a^{2}+576=676 \\
& a^{2}=676-576 \\
& a^{2}=100 \\
& a=\sqrt{100} \\
& a=10
\end{aligned}
$$

a

$b=24$

Example: (Finding the hypotenuse)

$$
\begin{aligned}
& 3^{2}+4^{2}=c^{2} \\
& 9+16=c^{2} \\
& 25=c^{2} \\
& \sqrt{25}=c^{2} \\
& 5=c
\end{aligned}
$$

$$
b=4
$$

Find the missing side in each of the following right triangles.
1.)

15

45

PLOTTING POINTS ON THE COORDINATE PLANE

Objective: To plot points on a coordinate plane.

Example 1

Plot the points $\mathrm{A}(-1,5)$ and $\mathrm{B}(2,-3)$ on the coordinate plane. Label the points using their coordinates.

Plot the points on the coordinate plane and label them.

1. $A(4,5)$
2. $B(-3,-2)$
3. $\quad C(0,-4)$
4. $D(1,-5)$

Name the ordered pair where each point is located.
5. E
6. F
7. G
8. H

