Algebra Summer Assignment

This practice is designed for students who will be enrolled in Algebra I or Foundations of Algebra next school year.

NAME:			

ORDER OF OPERATIONS

Objective: To evaluate expressions using the order of operations.

Example 1

Simplify $9 \div 3 + 4 \cdot 7 - 20 \div 5$

Example 2

Simplify $8-[(3\cdot 4)-5]$.

Solution
$$8-[12-5]$$
 Simplify the innermost parentheses first. Then the [] grouping. Subtract.

Find the value of each expression. Show ALL work.

1.
$$8+[(16-6) \div 2]$$

2.
$$16-3[9-2(5-3)]$$

3.
$$[(4+8) \div 6] \cdot 3$$

Reminder:

Please Excuse My

Dear Aunt Sally

4.
$$(8+16) \div (12-9)$$

5.
$$\frac{30}{3(5-3)}$$

6.
$$14 \cdot [(15-7) \div 4]$$

Objective: To evaluate an algebraic expression.

Example 1

Evaluate the expression c+b-23 if c=25 and b=16.

Solution

$$c+b-23=25+16-23$$
 Substitute the given values for the variables. = $41-23$ Simplify by adding 25 and 16. = 18 Subtract 23 from 41.

Example 2

Evaluate the expression 2x + (3y - z) + 7 if x = 5, y = 2, and z = 4.

Solution

$$2x+(3y-z)+7=2\cdot 5+(3\cdot 2-4)+7$$
 Substitute the given values.
= $2\cdot 5+(6-4)+7$ Simplify by multiplying inside parentheses first.
= $10+2+7$ Multiply 2 times 5 and subtract 4 from 6.
= 19 Add.

Evaluate each expression if x = 2 and y = -3. Show ALL work.

1.
$$2x-y$$

2.
$$3y - (2-x)$$

3.
$$(7+x)(y-1)$$

Evaluate each expression if r = 6 and t = 8. Show ALL work.

4.
$$(r-4)+2t$$

5.
$$[10-(r \div 3)]+2t$$

6.
$$[3 \cdot (t+1)] - r$$

Objective: To simplify an algebraic expression by combining like terms.

Example 1

Simplify the expression 3x + 5 - 9 - x.

Solution

3x - x + 5 - 9 Rewrite expression so that like terms are together.

2x-4Combine the like terms.

Example 2

Simplify the expression 6x-15-4x-(-8).

Solution

6x-4x-15-(-8) Rewrite expression so that like terms are together.

2x-7 Combine 6x-4x and -15-(-8).

Simplify each expression. Show ALL work.

1.
$$7x+5+2x$$

2.
$$6 + 9x - 3$$

3.
$$4y - 7y + 6$$

4.
$$-8m + 3 + 10 + 3m$$

5.
$$-7w - 6k + 4w$$

6.
$$-11g + 8h - 3g - 7h$$

7.
$$-14b + 7y - 5b - 10y$$
 8. $6x - 15 - 4x - (-8)$ 9. $-2m + 9 - 4m - 13$

3.
$$6x-15-4x-(-8)$$

9.
$$-2m+9-4m-13$$

Objective: To simplify an algebraic expression by using the distributive property

Example 1

Simplify the expression 2(x+3).

Solution

$$\sum_{2(x+3)}$$

Distribute the 2 by multiplying it by the x and 3.

$$2x+6$$

Example 2

Simplify the expression 3(2x+y-1).

Solution

3(2x+y-1) Distribute the 3 by multiplying it by 2x, y, and -1.

$$6x + 3y - 3$$

Simplify each expression. Show ALL work.

1.
$$2(x+4)$$

2.
$$-3(x+5)$$

3.
$$2(3x-6)$$

4.
$$8(5-4x)$$

5.
$$-7(1+4x)$$

6.
$$5(3x-10)$$

7.
$$-4(x+y-8)$$

8.
$$2(-x+2y-11)$$

9.
$$\frac{1}{2}(x+4)$$

SOLVING ONE STEP EQUATIONS

Objective: To solve equations using one transformation.

Example 1

a. Solve for x.

$$x + 7 = 10$$

x+7=10 (Isolate x, think opposite of +7)

$$-7 = -7$$
 (Subtract 7 from both sides)

$$x = 3$$

b. Solve for x.

$$\frac{x}{7} = 3$$

 $\frac{x}{7} = 3$ (Isolate x, think opposite of ÷7)

$$(7)\frac{x}{7} = 3(7)$$
 (Multiply both sides by 7)

$$x = 21$$

Solve for x. Circle your final answer. Show ALL work.

1.
$$x + 2 = 13$$

2.
$$4x = 48$$

3.
$$x+9=8$$

4.
$$x-5=-5$$

5.
$$\frac{x}{4} = -2$$

6.
$$x+14=7$$

7.
$$x-10=23$$

8.
$$-6 = \frac{x}{3}$$

9.
$$-6 + x = -13$$

10.
$$\frac{2}{3}x = 8$$

11.
$$5x = 35$$

12.
$$18 = -3x$$

SOLVING TWO STEP EQUATIONS

Objective: To solve equations using two transformations.

Example 1

a. Solve for x.

$$2x + 8 = 14$$

b. Solve for x.

$$\frac{x}{5} - 3 = -6$$

2x+8-8=14-8 Subtract 8 from both sides

$$2x = 6$$

$$\frac{x}{5} - 3 + 3 = -6 + 3$$
 Add 3 to both sides

$$\frac{x}{5} = -3$$

 $\frac{2x}{2} = \frac{6}{2}$ Divide by 2 on both sides

 $5 \cdot \frac{x}{5} = -3 \cdot 5$ Multiply by 5 on both sides

$$x = 3$$

$$x = -15$$

Solve for x. Circle your final answer. Show ALL work.

1.
$$2x + 4 = 12$$

2.
$$-3x + 8 = -4$$

3.
$$15 = -x - 7$$

4.
$$5x-4=21$$

5.
$$-8 = \frac{x}{2} + 3$$

6.
$$\frac{x}{5} - 3 = 10$$

7.
$$\frac{x}{4} + 5 = 16$$

8.
$$6x + 8 = 5$$

9.
$$\frac{2}{3}x-1=11$$

ONE STEP INEQUALITIES AND GRAPHING

Objective: To solve an inequality and graph the solution on a number line.

Example 1

Solve for x + 4 > 9 and graph the solution on a number line.

Reminder:

Solution

$$x + 4 > 9$$

-4 -4

-4 -4 Subtract 4 from both sides.

Plot an open dot on 5 and shade everything greater than 5 or to the right of 5.

Example 2

Solve for $4 \le \frac{x}{3}$ and graph the solution on a number line.

Solution

$$-3 \cdot 4 \le \frac{x}{-3} \cdot -3$$
 Multiply -3 by both sides

 $-12 \ge x$ When you multiply or divide by a negative you must reverse the inequality symbol

Plot a solid dot on -12 and shade everything less than -12 or to the left of -12.

Solve for x and graph the solution on the number line. Show ALL work.

$$1. \qquad \frac{x}{5} \le 3$$

2.
$$-3x < 21$$

3.
$$-10 \le x - 6$$

4.
$$x + 3 < 11$$

5.
$$-14 > 7x$$

6.
$$-9 \le 5 + x$$

TWO STEP INEQUALITIES AND GRAPHING

Objective: To solve an inequality and graph the solution on a number line.

Example 1

Solve for $3x+6 \le 15$ and graph the solution on a number line.

<u>Reminder:</u>

 \leq \geq use a solid dot.

< > use an open dot.

Solution

$$3x+6 \le 15$$

$$-6 -6$$

Subtract 6 from both sides.

$$\frac{3x}{3} \le \frac{9}{3}$$

Divide both sides by 3.

Plot a solid dot on 3 and shade everything

Exumple 2

Solve for -3x-2<10 and graph the solution on a number line.

Solution

$$-3x-2 < 10$$

$$-3x < 12$$

 $\frac{-3x}{1} > \frac{12}{1}$

x > -4

Add 2 to both sides.

Divide both sides by 3.

When you multiply or divide by a negative you must reverse the inequality symbol

Plot an open dot on -4 and shade everything greater than -4 or to the right of -4.

Solve for x and graph the solution on the number line. Show ALL work.

$$1. \qquad \frac{x}{4} - 3 \le 2$$

2.
$$2-2x < -2$$

3.
$$2x+17 > 25$$

4.
$$4 < 3x - 2$$

5.
$$-5 - x \ge -3$$

6.
$$-4 > \frac{x}{-3} + 1$$

SOLVING PROPORTIONS

Objective: To solve a proportion using cross-multiplication.

Solve each proportion for x using cross multiplication. Circle your final answer. Show ALL work.

1.
$$\frac{x}{9} = \frac{4}{12}$$

2.
$$\frac{5}{x} = \frac{9}{27}$$

3.
$$\frac{7}{16} = \frac{x}{32}$$

4.
$$\frac{x}{35} = \frac{2}{5}$$

5.
$$\frac{1}{3} = \frac{2x}{18}$$

6.
$$\frac{20}{12} = \frac{5}{3x}$$

Objective: To find the missing side in a right triangle using Pythagorean Theorem

Steps: (Solving for a missing side in a right triangle)

- Identify the legs and hypotenuse of the right triangle
- 2. Substitute the values into the formula $a^2 + b^2 = c^2$
- Solve the equation for the missing side.

Example: (Finding a leg)

$$a^2 + 24^2 = 26^2$$

$$a^2 + 576 = 676$$

$$a^2 = 676 - 576$$

$$a^2 = 100$$

$$a = \sqrt{100}$$

$$a = 10$$

Example: (Finding the hypotenuse)

$$3^2 + 4^2 = c^2$$

$$9+16=c^2$$

$$25 = c^2$$

$$\sqrt{25} = c^2$$

$$5 = c$$

$$b = 4$$

Find the missing side in each of the following right triangles.

1.)

3.)

4.)

Objective: To plot points on a coordinate plane.

Example 1

Plot the points $A(-1\,,5)$ and $B(2\,,\,-3\,)$ on the coordinate plane. Label the points using their coordinates.

Points can be located on the plane using an ordered pair (x,y).

(x-coordinate, y-coordinate)
left or right, up or down
(-) (+) (+) (-)

For $\,(-1\,,\,5)\,$ you must travel LEFT 1 (-1) and UP 5.

For (2, -3) you must travel RIGHT 2 and DOWN 3 (-3).

Plot the points on the coordinate plane and label them.

- 1. A(4,5)
- 2. B(-3, -2)
- 3. C(0,-4)
- 4. D(1,-5)

Name the ordered pair where each point is located.

- 5. E
- 6. F
- 7. G
- 8. H

