Ninth Grade Second Semester Math Curriculum Guide

Third Nine Weeks

Module 3 Linear \& Exponential Functions

SSE.B. 3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression

CED.A. 1 Create equations and inequalities in one variable and use them to solve problems
REI.D.ll Explain why the x-coordinates of the points where the graphs of the equations $y=$ $f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$

F-IF.A.1, F-IF.A.2,F-IF.A.3,F-IF.B.4,F-IF.B.5,F-IF.B.6,F-IF.C.7,F-IF.C. 9
Functions: Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range Understand that if f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x
Understand that the graph of f is the graph of the equation $y=f(x)$
F-BF. 1 Write a function that describes a relationship between two quantities*From a context, determine an explicit expression, a recursive process, or steps for calculation

F-BF. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$ and $f(x+k)$ for specific values of k (k, a constant both positive and negative)
Find the value of k given the graphs of the transformed functions
Experiment with multiple transformations and illustrate an explanation of the effects on the graph with or without technology
F-LE.A.l Distinguish between situations that can be modeled with linear functions and with exponential functions

F-LE.A. 2 Construct linear and exponential equations, including arithmetic and geometric sequences

F-LE.A. 3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or any polynomial function

F-LE.B. 5 In terms of a context, interpret the parameters (rates of growth or decay, domain and range restrictions where applicable, etc.) in a function

Fourth Nine Weeks

Module 4 \& Module 5

Polynomial \& Quadratic Expressions/Equations \& Functions
A Synthesis of Modeling w/ Equations \&\& Functions
N-RN.B. 3 Explain why: The sum/difference or product/quotient (where defined) of two rational numbers is rational The sum/difference of a rational number and an irrational number is irrational

A-SSE.A. 1 Interpret expressions that represent a quantity in terms of its context*
A-SSE.A. 2 Use the structure of an expression to identify ways to rewrite it
A.SSE.B. 3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression*

Factor a quadratic expression to reveal the zeros of the function it defines Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines

A-APR.A.l Add, subtract, and multiply polynomials
Understand that polynomials, like the integers, are closed under addition, subtraction, and multiplication

A-APR.B. 3 Identify zeros of polynomials (linear, quadratic only) when suitable factorizations are available

A-CED.A.l Create equations and inequalities in one variable and use them to solve problem

A-CED.A. 2 Create equations in two or more variables to represent relationships between quantities

A-CED.A. 4 Rearrange literal equations using the properties of equality
A-REI.D. 11 Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$

