Course:

Competency Constructions- I can construct geometric figures using only a compass and straight edge.
Standard - Description

Learning Targets \& Skills		Vocabulary	
4.0	Student goes above and beyond simple mastery to demonstrates a deeper understanding than a Level 3.0.	- Type	- Type
3.0	I can predict the outcome of rigid transformations on geometric figures.		
	- Define rigid transformation as those that preserve		Resources
2.0		- Type here	
Evidence			
- Type			

Course:
Competency Constructions- I can construct geometric figures using only a compass and straight edge.
Standard - Description

Learning Targets \& Skills		Vocabulary	
4.0	Student goes above and beyond simple mastery to demonstrates a deeper understanding than a Level 3.0.	- Type	- Type
3.0	I can prove that two figures are similar or congruent using a sequence of transformations		
2.0	- Define rigid transformation as those that preserve corresponding angle measures and the distance between points - List the rigid transformations	- Type here	Resources
Evidence			

Course:
Competency Constructions- I can construct geometric figures using only a compass and straight edge.
Standard - Description

Competency Constructions- I can construct geometric figures using only a compass and straight edge.
Standard-G.CO. 2

Learning Targets \& Skills

Student goes above and beyond simple mastery to demonstrates a deeper understanding than a Level 3.0.

NT1-I can compare the effects of rigid transformations versus non-rigid transformations on a given geometric figure

- Explain that a transformation of a figure involves taking the coordinates of the points that make up that figure and changing them into a different set of coordinates or points.
- Explain that the new shape resulting from a transformation is known as the original shape's image.
- Explain that translation, rotation, and reflection are rigid transformations.
- Explain that rigid transformations preserve corresponding angle measures and the distances between corresponding points.
- Explain that translation involves moving all the points of a figure the same distance and direction.
- Explain that rotation involves rotating all the points of a figure the same direction and same amount around the point of rotation.
- Explain that reflection involves reflecting all the points of a figure across a straight line.
- Explain that dilation, stretch, and compression are non-rigid transformations.
- Explain that dilation involves moving all points in a figure by an equal scale factor in relation to the center of dilation.
- Explain that dilation preserves corresponding angle measures, but not distances between corresponding points.
- Explain that stretch and compression involve multiplying or dividing the x - or y-coordinates of all the points in a figure by tho comp ampiunt

Vocabulary

- Angle
- Coordinates
- Corresponding
- Image
- Line of reflection
- Line
- Non-rigid transformation
- Point of rotation
- Point
- Reflection
- Rigid transformation
- Rotation
- Transformation
- Translation

Resources

Competency Constructions- I can construct geometric figures using only a compass and straight edge.
Standard - G.SRT.1a, G.SRT.1b

Learning Targets \& Skills

Student goes above and beyond simple mastery to demonstrates a deeper understanding than a Level 3.0.

- Angle
- Center of dilation
- Compression
- Coordinates
- Corresponding
- Dilation
- Image
- Line

Vocabulary

- Non-rigid transformation
- point
- Side length
- Stretch
- transformation geometric figure
- State that dilation is a non-rigid transformation.
- Explain that dilation involves moving all points in a figure by an equal scale factor in relation to the center of dilation.
- Explain that a center of dilation can be identified by drawing lines through the corresponding vertices of a figure and its dilated image and identifying the point at which the lines intersect.
2.0 - Explain that dilation preserves corresponding angle measures, but not distances between corresponding points.
- Type here
- Explain that a dilation moves a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.
- Perform dilation on a geometric figure.
- Measure the side lengths and angle measures of a figure before and after dilation.

Competency Constructions- I can construct geometric figures using only a compass and straight edge.
Standard - G.CO.12, G.CO. 1

Competency Constructions- I can construct geometric figures using only a compass and straight edge.
Standard - G.CO.12, G.CO. 1

Competency Constructions- I can construct geometric figures using only a compass and straight edge.
Standard-G.CO.12, G.CO. 1

Learning Targets \& Skills		Vocabulary	
4.0	Student goes above and beyond simple mastery to demonstrates a deeper understanding than a Level 3.0.	- Angle - Angle Bisector - Compass	- Equidistant - Line - Line Segment
3.0	LAC3- I can explain a construction of an angle bisector	- Congruent - Corresponding	- Ray - Vertex
			Resources
2.0	- Explain that an angle bisector is a line that bisects an angle into two congruent angles. - List the steps necessary to construct an angle bisector using a straight edge and compass. - Construct congruent triangles using a compass and straight edge. - Identify congruent triangles. - List the properties of congruent triangles (congruent corresponding sides, congruent corresponding angles).	- Type here	

Evidence

Competency Constructions- I can construct geometric figures using only a compass and straight edge.
Standard - G.CO. 13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.

Learning Targets \& Skills		Vocabulary	
4.0	Student goes above and beyond simple mastery to demonstrates a deeper understanding than a Level 3.0.	- Angle - Boundary	- Diagonal - Diameter - Inscribed
3.0	CPC1- I can construct a square inscribed within a circle	- Circle - Circumference - Compass - Congruent - Right angle - Square	- Line segments - Perpendicular Bisector - Plane - Point - Polygon - Quadrilateral - Vertices
			Resources
2.0	- Explain that a polygon inscribed within a circle will have all of its vertices on the circumference of the circle. - State that a square is a quadrilateral with four congruent sides and four right angles. - Explain that the diagonals of a square are perpendicular bisectors of each other. - Explain that a compass can be used to mark all points that are an equal distance from a central point. - Draw a diameter of a circle. - Construct a perpendicular bisector to a line segment.	- Type here	
Evidence			

Competency Constructions- I can construct geometric figures using only a compass and straight edge.

Standard - G.C0. 13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.

Learning Targets \& Skills

Student goes above and beyond simple mastery to demonstrates a deeper understanding than a Level 3.0.

CPC2-I can construct an equilateral triangle inscribed within a circle

Vocabulary

- Angle
- Arc - Inscribed angle
- Boundary - Inscribed
- Center
- Central angle
- Circle
- Circumference
- Compass
- Congruent
- Diagonal
- Diameter
- intersect
- plane
- Point
- Polygon
- Radius
- Ray
- Vertices
- Explain that a polygon inscribed within a circle will have all of its vertices on Resources
the circumference of the circle.
- State that an equilateral triangle is a polygon with three congruent sides and three congruent angles.
- Explain that the angles of an equilateral triangle all have a measure of .
- Explain that a compass can be used to mark all points that are an equal distance from a central point.
- Construct congruent circles such that the center of each intersects the circumference of the other.
- Explain that the distance from the center of a circle to its circumference is constant for all points on the circumference.
- Connect the points of intersection of two overlapping congruent circles whose circumferences intersect each other's centers to form small equilateral triangles with side lengths equal to the radius of the circles.
- Explain that when a circle's circumference is divided into three congruent arcs, each arc has a central angle measure of .
- Construct three congruent central angles within a circle.
- Explain that the measure of an inscribed angle is half the measure of the central angle that intercepts the same arc.

Competency Constructions- I can construct geometric figures using only a compass and straight edge.
Standard - G.CO. 13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.

Competency Constructions- I can construct geometric figures using only a compass and straight edge.
Standard - G.C. 3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle

Learning Targets \& Skills

Student goes above and beyond simple mastery to demonstrates a deeper understanding than a Level 3.0.

- Type here
3.0 CICT1-I can construct the circumscribed circle of a triangle
- State that a triangle's circumcircle is the circle whose boundary passes through all three vertices of the triangle.
- Explain that the circumcircle of a triangle is also known as the circumscribed circle of the triangle.
- State that a triangle's circumcenter is the point equidistant from all three vertices of the triangle.
2.0 - Explain that a triangle's circumcenter is also the center of its circumscribed circle.
- Type here

Vocabulary

Resources

- Type here
- Explain that the distance from the circumcenter of a triangle to any of its vertices is the radius of its circumscribed circle.
- Explain that the perpendicular bisectors of all three of a triangle's sides intersect at the triangle's circumcenter.
- Construct the perpendicular bisector of a line segment using a compass.

Competency Constructions- I can construct geometric figures using only a compass and straight edge.
Standard - G.C. 3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle

