Competency Coordinate Plane Geometry- I can use knowledge of the rectangular coordinate plane in order to find key features of various geometric figures.

Standard - G.GPE. 7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. \star

Learning Targets \& Skills

Learning Targets \& Skills	
4.0	Student goes above and beyond simple mastery to demonstrates a deeper understanding than a Level 3.0.
3.0	PCP1 - I can compute the perimeter of polygons on the Coordinate plane

- State that a polygon is a closed two-dimensional figure with straight sides.
- State that perimeter is the distance around the boundary of a figure.
- Identify the coordinates of the vertices of a polygon on the coordinate plane.
- State the distance formula: .
- Type here
- Explain that the distance formula can be used to calculate the distance between any two points and on the coordinate plane.
- State that the perimeter of a polygon is equal to the sum of the lengths of its sides.

Competency Coordinate Plane Geometry- I can use knowledge of the rectangular coordinate plane in order to find key features of various geometric figures.

Standard - G.GPE. 7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. \star

Competency Coordinate Plane Geometry- I can use knowledge of the rectangular coordinate plane in order to find key features of various geometric figures.

Standard - Description
Learning Targets \& Skills Vocabulary

4.0	Student goes above and beyond simple mastery to demonstrates a deeper understanding than a Level 3.0.
3.0	I can verify the properties of polygons from their coordinates.

- Area
- Coordinate Plane
- Coordinates
- Distance Formula
- Heron's Formula
- Perimeter
- Point
- Polygon
- Rectangle
- Semiperimeter
- Triangle
- Vertices
- Explain that the distance formula can be used to calculate the distance between any two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on the coordinate plane.
- State that slope is the vertical change over the horizontal change between any two points on a line.

Competency Coordinate Plane Geometry- I can use knowledge of the rectangular coordinate plane in order to find key features of various geometric figures.

Standard - G.GPE. 1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
Learning Targets \& Skills Vocabulary

Student goes above and beyond simple mastery to demonstrates a deeper understanding than a Level 3.0.

EC1-I can derive the equation of a circle from its center and radius

- Explain that the equation of a circle describes all of the points that are a specified distance away from a specified central point.
- Construct a right triangle atop two points on a coordinate plane such that its legs are parallel to the x - and y-axes and its hypotenuse is the distance between the points.
- Explain that the x - and y-coordinates of any point on the circumference of a circle centered on the origin will correspond to the lengths of the legs of a right triangle whose hypotenuse connects the point to the center of the circle and whose legs are parallel to the x - and y-axes.
- Explain that the Pythagorean Theorem $\left(a^{2}+b^{2}=c^{2}\right)$ states that the sum of the squares of the legs of a right triangle is equal to the square of its hypotenuse.
- Explain that the square of the radius of a circle centered on the origin will be equal to the sum of the squares of the x and y-coordinates of any point on the circumference of the circle.
- Calculate the difference in the horizontal and vertical directions between any two points on a coordinate plane. For example, for any point (x, y) and a point (h, k) on the coordinate plane, calculate the difference in the horizontal direction between the points as $x-h$ and the difference in the vertical direction as $y-k$.
- Boundary
- Center
- Circle
- Circumference
- Coordinate Plane
- Hypotenuse
- Legs
- Plane
- Point
- Pythagorean Theorem
- Radius
- Right Triangle

Competency Coordinate Plane Geometry- I can use knowledge of the rectangular coordinate plane in order to find key features of various geometric figures.

Standard-G.GPE. 1

Learning Targets \& Skills		Vocabulary	
4.0	Student goes above and beyond simple mastery to demonstrates a deeper understanding than a Level 3.0.	- Boundary - Center - Circle - Circumference - Completing the Square - Factor	- Perfect Square Trinomial - Plane - Point - Radius - Second-Degree Polynomial
3.0	EC2-I can determine the center and radius of a circle from its equation		
		Resources	
2.0	- Identify the standard equation of a circle as $(x-h)^{2}+(y-k)^{2}=r^{2}$ in which (h, k) is the center and r is the length of the radius. - Identify perfect square trinomials. - Explain how to complete the square of a second-degree polynomial to form a perfect square trinomial. - Demonstrate how to factor perfect square trinomials - Manipulate the equation of a circle into the form $(x-h)^{2}+(y-k)^{2}=r^{2}$.	- Type here	

Competency Coordinate Plane Geometry- I can use knowledge of the rectangular coordinate plane in order to find key features of various geometric figures.

Standard-G.GPE. 1

Learning Targets \& Skills		Vocabulary	
4.0	Student goes above and beyond simple mastery to demonstrates a deeper understanding than a Level 3.0.	- Boundary - Center - Circle - Circumference - Completing the Square - Factor	- Perfect Square Trinomial - Plane - Point - Radius - Second-Degree Polynomial
3.0	PPC1-I can give an informal argument for the formula of the circumference of a circle.		
		Resources	
2.0	- Identify the standard equation of a circle as $(x-h)^{2}+(y-k)^{2}=r^{2}$ in which (h, k) is the center and r is the length of the radius. - Identify perfect square trinomials. - Explain how to complete the square of a second-degree polynomial to form a perfect square trinomial. - Demonstrate how to factor perfect square trinomials - Manipulate the equation of a circle into the form $(x-h)^{2}+(y-k)^{2}=r^{2}$.	- Type here	

Competency Coordinate Plane Geometry- I can use knowledge of the rectangular coordinate plane in order to find key features of various geometric figures.

Standard-G.GPE. 1

Learning Targets \& Skills		Vocabulary	
4.0	Student goes above and beyond simple mastery to demonstrates a deeper understanding than a Level 3.0.	- Boundary - Center - Circle - Circumference - Completing the Square - Factor	- Perfect Square Trinomial - Plane - Point - Radius - Second-Degree Polynomial
3.0	PPC2-I can use radian measure to describe the relationship between the length of an arc of a circle and the circle's radius		
		Resources	
2.0	- Identify the standard equation of a circle as $(x-h)^{2}+(y-k)^{2}=r^{2}$ in which (h, k) is the center and r is the length of the radius. - Identify perfect square trinomials. - Explain how to complete the square of a second-degree polynomial to form a perfect square trinomial. - Demonstrate how to factor perfect square trinomials - Manipulate the equation of a circle into the form $(x-h)^{2}+(y-k)^{2}=r^{2}$.	- Type here	

TOPIC
CoCompetency Coordinate Plane Geometry- I can use knowledge of the rectangular coordinate plane in order to find key features of various geometric figures.

Standard-G.GPE. 1

Learning Targets \& Skills		Vocabulary	
4.0	Student goes above and beyond simple mastery to demonstrates a deeper understanding than a Level 3.0 .	- Boundary - Center - Circle	- Perfect Square Trinomial - Plane
3.0	CC1-I can describe the relationship between the chords, radii, diameters, tangents, and secants of a circle.	- Completing the Square - Factor	- Radius - Second-Degree Polynomial
			rces
2.0	- Know the vocabulary for circle, chord, radius, diameter, tangent, and secant.	- Type here	

TOPIC
Competency Coordinate Plane Geometry- I can use knowledge of the rectangular coordinate plane in order to find key features of various geometric figures.

Standard-G.GPE. 1

Learning Targets \& Skills		Vocabulary	
4.0	Student goes above and beyond simple mastery to demonstrates a deeper understanding than a Level 3.0.	- Boundary - Center - Circle - Circumference - Completing the Square - Factor	- Perfect Square Trinomial - Plane - Point - Radius - Second-Degree Polynomial
3.0	CC2-I can construct a line tangent to a circle from a point outside of the circle.		
		Resources	
2.0	- Know the vocabulary for circle, chord, radius, diameter, tangent, and secant.	- Type here	

TOPIC
Competency Coordinate Plane Geometry- I can use knowledge of the rectangular coordinate plane in order to find key features of various geometric figures.

Standard-G.GPE. 1

Learning Targets \& Skills		Vocabulary	
4.0	Student goes above and beyond simple mastery to demonstrates a deeper understanding than a Level 3.0.	- Boundary - Center - Circle	- Perfect Square Trinomial - Plane
3.0	CC3-I can prove that all circles are similar	- Circumference - Completing the Square - Factor	- Radius - Second-Degree Polynomial
			urces
2.0	- Know the vocabulary for circle, chord, radius, diameter, tangent, and secant.	- Type here	
Evidence			

