Standards Based Map

Grade 4 Math

Timeline	NxG Standard(s)	Student I Can Statement(s) / Learning Target(s)	Essential Questions	Academic Vocabulary	Strategies / Activities	Resources / Materials	Assessment	Notes Self Reflection
$\begin{aligned} & \text { Quarter } \\ & 3 \end{aligned}$	M.4.G. 1 Draw points, lines, line segments, rays, angles (right, acute, obtuse) and perpendicular and parallel lines and identify these in twodimensional figures.	I can draw and identify points, lines, line segments, angles, rays, perpendicular and parallel lines.		- 2 dimensional - Angles - Right - Acute - Obtuse - Line segments - Attribute - Symmetry - Parallel - Perpendicular - Properties of geometric figures - Angle measure - Models - Accurate	Using analog clock identify times that represent the following obtuse, acute, and right angles. Reconfigure for central, pacific, and mountain time zones. Venn Diagrams, Tchart, card games	Analog clocks	Selected response Performance assessment Discussion Teacher observation	

					Frayer Model			
Quarter 3	M.4.G. 2 Classify twodimensional figures based on the presence or absence of parallel or perpendicular lines or the presence or absence of angles of a specified size, recognize right triangles as a category and identify right triangles.	I can classify 2D figures based upon lines and angles.	How are 2D shapes identified?	- acute - angle - line - parallel - perpendicular - right, - obtuse - 2 dimensional figure	Venn diagram Using 2D figures, students discuss the attributes specifically as having parallel or perpendicular lines and the sizes of angles.	Venn diagrams Pattern blocks	Selected response Performance assessment Discussion Teacher observation	
Quarter 3	M.4.G. 3 recognize a line of symmetry for a 2D figure as a line across the figure such that the figure can be folded along the line into matching parts, identify linesymmetric figures and	I can identity and draw lines of symmetry for a 2D shape.	How is symmetry determined for 2D shapes?	- Symmetry - 2 dimensional figure	Students construct figures on geoboards with rubber bands. Use additional bands to create lines of symmetry. Then draw the figure on paper and cut and fold to check for understanding	Geoboard Rubber bands Scissors Paper	Selected response Performance assessment Discussion Teacher observation	

	draw lines of symmetry.						

Quarter 1	M.4.NBT. 1 Recognize that in a multidigit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that $700 \div 70=10$ by applying concepts of place value and division.	I can recognize that in multidigit whole number a digit in one place represents ten times what it represents in the place to its right.	How does a digit's position affect its value?	- multi-digit - whole number - represent - place value	Students use unit cubes to represent numbers. Students use base ten blocks to represent a given number. Place Value mat	Unit cubes Base ten blocks Place value mat	Selected response Performance assessment Discussion Teacher observation	
Quarter 1	M.4.NBT. 2 Read and write multidigit whole numbers using baseten numerals, number names and expanded	I can read and write whole numbers using numerals, words, and in expanded form.	How can numbers be represented differently? How can place value be used to compare numbers?	- Whole numbers - Place value - Base ten - Equivalence - Accurate - Equation - Expanded form	Using knowledge of place value write numbers in expanded form. Given a list of digits students will make two	Paper Pencil Computer	Selected response Performance assessment Discussion Teacher observation	

	form and compare two multi-digit numbers based on meanings of the digits in each place, using >, = and < symbols to record the results of comparisons.	I can compare two large numbers using symbols to show the comparison.			different numbers, compare them and justify their values. Students will research the sales of 5 like items from multiple fast food restaurants for a week and then order the total sales of items for each restaurant from least to greatest. Justify how they got their answers.			
Quarter 1	M.4.NBT. 3 Use place value understanding to round multi-digit whole numbers to any place.	I can round large whole numbers to any place value.	How can place value be used to round whole numbers?	Whole numbers Place value Rounding Multi-digit equation	*When buying school clothes students will use ads to make list of items they want to purchase and round the price to the nearest dollar to estimate their budget of $\$ 500$. *When given 5 countries, students will pick three and research the population and round to the	computer, ads	Selected response Performance assessment Discussion Teacher observation	

					nearest 10 thousand and justify their answers.		

Timeline	$\begin{gathered} \text { NxG } \\ \text { Standard(s) } \end{gathered}$	Student I Can Statement(s) / Learning Target(s) I	Essential Questions	Academic Vocabulary	Strategies / Activities	Resources / Materials	Assessments	Notes / Self Reflection
Quarter 1	M.4.NBT. 4 Fluently add and subtract multi-digit whole numbers using the standard algorithm .	I can add and subtract multi-digit numbers.	How is the standard algorithm used to add and subtract multi-digit numbers?	- place value - addition - subtraction - difference - sum	Students use graph paper to accurately line up a multi-digit addition or subtraction problem. *Students can use base ten blocks to subtract. *Fact Triangles	Graph paper Base ten blocks Fact triangles	Selected response Performance assessment Discussion Teacher observation	
Quarter 1 Quarter 2 Quarter 3 Quarter 4	M.4.NBT. 5 Multiply a whole number of up to four digits by a one-digit whole number,	I can multiply a whole number up to four digits by a one-digit whole number. I can multiply	How can you illustrate and explain the process for multiplying multi-digit numbers? How can	- Multiplicatio n - Multiply - Product - Whole number - Place value	Arrays Lattice multiplication Traditional multiplication Partial	Paper Pencil Fact Triangles	Selected response Performance assessment Discussion Teacher	

	multiply two two-digit numbers, using strategies based on place value and the properties of operations and illustrate and explain the calculation by using equations, rectangular arrays and/or area models.	two two-digit numbers.	equations, arrays, and models be used to illustrate multiplication by multi-digit numbers?		Product: Students write multidigit factors in expanded notation form when multiplying by one-digit factors. *Fact Triangles		observation	
Quarter 1 Quarter 2 Quarter 3 Quarter 4	M.4.NBT. 6 Find wholenumber quotients \& remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, properties of operations and/or the relationship between multiplication	I can find whole- number quotients and remainders with up to four-digit dividends and one-digit divisors. divide, quotients, remainders, dividends, divisors	How can strategies such as place value, properties of operation, and the relationship between multiplication and division be used to illustrate and explain the process of finding whole number quotients?	- Divide - Quotients - Remainders - Dividends - Divisors	Flip Book Fact Triangles Use grid paper to draw rectangular arrays.	Paper Pencil Flip Books Fact triangles Grid paper	Selected response Performance assessment Discussion Teacher observation	

	and division and illustrate and explain calculation by using equations, rectangular arrays and/or area models.					

Quarter 1	M.4.OA. 1 Interpret a multiplication equation as a comparison, e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 and represent verbal statements of multiplicative comparisons as multiplication equations.	I can understand that multiplication fact problems can be seen as comparisons of groups.	How can you represent multiplication facts as comparison groups?	- Comparison - Multiplication - Product	*Students make trains using different color rods to represent comparison groups.	Cubes	Selected response Performance assessment Discussion Teacher observation	
Quarter 1 Quarter 2 Quarter 3 Quarter 4	M.4.OA. 2 multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and	I can multiply or divide to solve word problems by using drawings or writing equations and solving	How can the value of an unknown variable in a number sentence be found?	- Additive - Comparison - Divide - Multiplicative - Multiply - Factor - Product			Selected response Performance assessment Discussion Teacher	

	equations with a symbol for the unknown number to represent the problem and distinguishing multiplicative comparison from additive comparison.		for a missing number.				

	strategies including rounding.	and rounding.						
$\begin{array}{\|l} \hline \text { Quarter } \\ 1 \\ \text { Quarter } \\ 2 \\ \text { Quarter } \\ 3 \end{array}$	M.4.OA. 4 Find all factor pairs for a whole number in the range $1-100$, recognize that a whole number is a multiple of each of its factors, determine whether a given whole number in the range 1100 is a multiple of a given one-digit number and determine whether a given whole number in the range 1100 is prime or composite.	I can find all factor pairs for a number from 1 to 100. I can determine whether a given whole number up to 100 is a prime or composite number.	How can factor pairs be used to determine if a number is composite or prime? prime, composite, factor, whole number, multiple	- Prime - Composite - Factor - Whole Number - Multiple	Factor trees *Use hundreds chart to shade all multiples of given number. Students use counters to form rectangular arrays for given numbers and determine if the numbers are prime or composite.	Hundreds Chart Counters	Selected response Performance assessment Discussion Teacher observation	
$\begin{aligned} & \hline \text { Quarter } \\ & 3 \\ & \text { Quarter } \\ & 4 \end{aligned}$	M4.4.OA. 5 Generate a number or shape pattern that follows a given rule and identify apparent features of the pattern that were not explicit in the rule itself.	I can create a number or shape pattern that follows a given rule. I can notice different features of a pattern once it is created by a rule.	How can patterns help me make a generalization about numbers and number sequences? pattern, rule, term (of a sequence), unknown	- Pattern - Rule - Term of a sequence - Unknown	Input/output Model Hundreds Chart Clear Counters	Hundreds Chart Counters	Selected response Performance assessment Discussion Teacher observation	

Quarter 1 Quarter 2 Quarter 3	M.4.NF. 1 Explain why a fraction a / b is equivalent to a fraction ($n \times$ a) $/(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size and use this principle to recognize and generate equivalent fractions.	I can explain (and show models for) why multiplying a numerator and a denominator by the same number does not change the value of a faction.	How can equivalent fractions be identified? common denominat or, compare, decompos e, denominat or, equivalent, fraction, numerator	- Common denominator - Compare - Decompose - Denominator - Equivalent - Fraction - Numerator	*Students use centimeter grid paper to create strips showing multiples of given numbers Students cut strips apart and line up equivalent fractions.	Grid paper	SelectedresponsePerformanceassessmentDiscussionTeacher observat ion	

Quarter 1 Quarter 2 Quarter 3	M.4.NF. 2 Compare two fractions with different numerators and different denominators, e.g., by creating common denominators, numerators, or by comparing to a benchmark fraction such as $1 / 2$, recognize that comparisons are valid only when the two fractions refer to the same whole and record the results of comparisons with symbols $>$, $=$ or <, and justify the conclusions, e.g., by using a visual fraction model.	I can compare two fractions. I can compare fractions using symbols and justify the comparison by using models.	Why is it important for students to understand that fractions are parts of a whole? How can fractions be compared with different denominators ? common denominator, compare, decompose, denominator, equivalent, fraction, numerator	- Common denominator - Compare - Decompose - Denominator - Equivalent - Fraction - Numerator	Visual fraction models Students create models of fractions that refer to the same whole. Students compare fractions to determine greater than, less than, or equal to and record the results using >, <, or $=$.	Visual fraction models		
Quarter 2 Quarter 3 Quarter 4	M.4.NF. 3 understand a fraction a / b with $a>1$ as a sum of fractions $1 / b$ a. understand	I can understand that improper fractions have a greater numerator	How can you add and subtract fractions?	- Addition - Subtraction - Common denominator - Fraction - Compare	Use fraction circles to add or subtract fractions. Students join pieces to	Fraction circles Paper Pencil	Selected respons e Perform ance	

addition and subtraction of fractions as joining and separating parts referring to the same whole, b. decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation and justify decompositions , e.g., by using a visual fraction model. c. add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction and/or by using properties of operations and the relationship between addition and subtraction,	than denominator I can understand addition and subtraction of fractions as joining and separating parts referring to the same whole. I can decompose a fraction into a sum of fractions with the same denominator. I can add and subtract mixed numbers with like denominators. I can solve word problems involving addition and subtraction of fractions with like denominators.	addition, subtraction, common denominator, fraction, compare, decompose, sum, difference, denominator, numerator, improper fractions, equivalent, mixed number, unit fraction	- Decompose - Sum - Difference - Denominator - Numerator - Improper fraction - Equivalent - Mixed number - Unit fraction	determine the sum and separate pieces to determine the difference. Using fraction models, students demonstrate all possible combinations.	Fraction models	assessm ent Discussi on Teacher observati on	

	d. solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.							
$\begin{aligned} & \text { Quarter } \\ & 2 \\ & \text { Quarter } \\ & 3 \\ & \text { Quarter } \\ & 4 \end{aligned}$	M.4.NF. 4 apply and extend previous understandings of multiplication to multiply a fraction by a whole number a. understand a fraction a / b as a multiple of 1/b, b. understand a multiple of a / b as a multiple of $1 / b$, and use this understanding to multiply a fraction by a whole number, c. solve word problems involving	I can multiply a fraction by a whole number. I can solve word problems involving multiplication of a fraction by a whole number.	How do you multiply a whole number by a fraction? common denominator, compare, decompose, denominator, equivalent, fraction, numerator, multiplication, product, whole number	- Common denominator - Compare - Decompose - Denominator - Equivalent fraction - Numerator - Multiplication - Product - Whole number	Students use visual fraction models to represent an understanding of a fraction as a multiple of its parts. Students decompose the fraction into equal parts and write a multiplication equation to represent the factors.	Fraction Models	Selected respons e Perform ance assessm ent Discussi on Teacher observati on	

| | multiplication of
 a fraction by a
 whole number,
 e.g., by using
 visual fraction
 models and
 equations to
 represent the
 problem. | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

	measurement equivalents in a two column table, (For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in.) and generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36).					

	measurements given in a larger unit in terms of a smaller unit and represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.					

	of a circle is called a "one- degree angle," and can be used to measure angles, b. an angle that turns through n one- degree angles is said to have an angle measure of n degrees.					

	 subtraction problems to find unknown angles on a diagram in real- world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.					

