## Standards Based Map

## $3^{\text {rd }}$ Grade Math

| Timeline | NxG Standard(s) | Student I Can <br> Statement / Learning Target(s) | Essential Questions | Academic Vocabulary | Strategies / Activities | Resources / Materials | Assessment | Notes Self Reflection |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1{ }^{\text {st }}$ Month | M.2.NBT. 1 <br> use place <br> value <br> understanding <br> to round <br> whole <br> numbers to <br> the nearest <br> 10 or 100. <br> M.2.NBT. 2 <br> fluently add <br> and subtract <br> within 1000 <br> using <br> strategies and <br> algorithms <br> based on | I can round numbers to the nearest ten or 100. <br> I can add and subtract numbers within 1000. <br> I can multiply any one digit number by 10. | How do I use the property of operations? <br> How do I round whole numbers to the nearest ten or one hundred? <br> How are addition and subtraction related? | Place value <br> - Rounding <br> - Nearest <br> - Multiples Fluently add subtract <br> - Algorithms Property ofoperations <br> - Multiply <br> - strategies | Skip counting <br> Chants <br> Nine tricks <br> Fact family <br> Triangle cards <br> Pictures <br> Round | Number line <br> Hundreds chart <br> Textbook <br> Counters <br> Calculators <br> Anchor charts <br> Manipulatives <br> Base 10 blocks | Oral Timed tests <br> Pencil/paper tests <br> Flash card <br> Around the world |  |


|  | place value, properties of operations and/or the relationship between addition and subtraction. <br> M.2.NBT. 3 multiply onedigit whole numbers by multiples of 10 in the range 10-90 (e.g., $9 \times 80$, $5 \times 60$ ) using strategies based on place value and properties of operations . |  | Why is understanding place value important? |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2^{\text {nd }}$ <br> Month- <br> End of $1^{\text {st }}$ <br> Semester | M.3.OA. 1 interpret products of whole numbers, e.g., interpret $5 \times 7$ as the total number of objects in 5 groups of 7 objects each. <br> M.3.OA. 2 interpret whole-number | I can use multiplication and division to solve word problems. <br> I can find the missing number in a multiplication or division equation. | How are multiplication and division related? <br> How do I use multiplication and division to solve problems? | - Products <br> - Whole numbers <br> - Multiplication <br> - Array <br> - Equal groups <br> - Digit <br> - Factor <br> - Division <br> - Dividend <br> - Quotient <br> - Divisor <br> - Grouping <br> - partitioning <br> - Commutative | Modeling Skip counting <br> Groups of manipulatives <br> Touch points <br> Drawing pictures for word problems <br> Word problems | Flash cards <br> Manipulatives <br> Base 10 <br> blocks <br> Multiplication chart <br> Multiplication games | Timed tests <br> Open ended questions <br> Math journal <br> Data notebooks <br> Fluency charts <br> Teacher observation |  |





|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | M.3.OA.9 <br> identify <br> arithmetic <br> patterns <br> (including <br> patterns in the <br> addition table <br> or <br> multiplication <br> table) and <br> explain them <br> using <br> properties of <br> operations . |  |  |  |  |  |  |




|  | recognize <br> fractions that <br> are equivalent <br> to whole <br> numbers <br> d. compare <br> two fractions <br> with the same <br> numerator or <br> the same <br> denominator <br> by reasoning <br> about their <br> size, |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| recognize that |  |  |  |  |  |  |
| comparisons |  |  |  |  |  |  |
| are valid only |  |  |  |  |  |  |
| when the two |  |  |  |  |  |  |
| fractions refer |  |  |  |  |  |  |
| to the same |  |  |  |  |  |  |
| whole, record |  |  |  |  |  |  |
| the results of |  |  |  |  |  |  |
| comparisons |  |  |  |  |  |  |
| with the |  |  |  |  |  |  |
| symbols $>,=$ |  |  |  |  |  |  |
| or <and |  |  |  |  |  |  |
| justify the |  |  |  |  |  |  |
| conclusions, |  |  |  |  |  |  |
| e.g., by using |  |  |  |  |  |  |
| a visual |  |  |  |  |  |  |
| fraction |  |  |  |  |  |  |
| model. |  |  |  |  |  |  |



|  | the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Embed in all curricular areas all year long | M.3.MD. 3 <br> draw a scaled picture graph and a scaled bar graph to represent a data set with several categories and solve one- and twostep "how many more" and "how many less" problems using information presented in scaled bar graphs. <br> M.3.MD. 4 generate measurement data by measuring lengths using rulers marked with halves | I can create a picture or bar graph to show data and solve problems. <br> I can create a line plot from measurement data, where the measured objects have been measured to the nearest whole number, half, or quarter. | How do we represent information into a picture or bar graph? | - Picture graphs <br> - Bar graphs <br> - Scale <br> - Key <br> - More <br> - Less <br> - Plot <br> - Legend <br> - Map <br> - Halves <br> - Fourths <br> - Quarters <br> - Inches <br> - length | Science experiments <br> Measurement scavenger hunt <br> Using tape measures <br> Finding reference measurements <br> Classroom polls <br> TECH steps | Rulers Graph paper Crayons Markers <br> Tape measures <br> Yard sticks Meter sticks | Performance tasks <br> Experiments |  |


|  | and fourths of <br> an inch and <br> show the data <br> by making a <br> line plot, <br> where the <br> horizontal <br> scale is <br> marked off in <br> appropriate <br> units-whole <br> numbers, <br> halves or <br> quarters. |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |





|  | areas or with the same area and different perimeters. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| April-May | M.3.G. 1 <br> understand that shapes in different categories (e.g., rhombuses, rectangles and others) may share attributes (e.g., having four sides), that the shared attributes can define a larger category (e.g. quadrilaterals) recognize rhombuses, rectangles and squares as examples of quadrilaterals and draw examples of quadrilaterals that do not belong to any | I can place shapes into categories depending upon their attributes. <br> Recognize and draw a quadrilateral such as rhombuses, rectangles, and squares. <br> Divide shapes into parts with equal areas and show those areas as fractions. | How do we classify geometric shapes? | - Perimeter <br> - Area <br> - Polygon <br> - Rectangle <br> - Quadrilateral <br> - Rhombus <br> - Square <br> - Parallelogram <br> - Trapezoid <br> - Rectangle <br> - Angles <br> - Vertices <br> - Sides <br> - Compare <br> - Contrast <br> - Opposite <br> - Parallel <br> - Polygon <br> - Attributes <br> - partition | Sorting quadrilaterals <br> Anchor charts <br> Flash cards with shapes <br> Hand-drawn investigations <br> Tiling <br> Building 3D models | 3D shapes <br> Toothpicks and marshmallow <br> Graph paper <br> Geometry blocks <br> Shape templates | Performance tasks <br> Real-world problems <br> Scavenger hunts of shapes <br> Pencil/paper sorts |  |


|  | of these <br> subcategories <br> $\cdot$ <br> M.3.G.2 <br> partition <br> shapes into <br> parts with <br> equal areas <br> and express <br> the area of <br> each part as a <br> unit fraction of <br> the whole. For <br> example, <br> partition a <br> shape into 4 <br> parts with <br> equal area, <br> and describe <br> the area of <br> each part as <br> $1 / 4$ or the area <br> of the shape. |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |

